City of Wilsonville, Oregon

SOURCE WATER ASSESSMENT REPORT FOR THE SURFACE WATER SUPPLY

September 2002

Prepared For

City of Wilsonville 30000 SW Town Center Loop East Wilsonville, OR 97070

Prepared By

MWH 671 East Riverpark Lane, Suite 200 Boise, Idaho 83706-4000 (208) 345-5865

TABLE OF CONTENTS

CITY OF WILSONVILLE SOURCE WATER ASSESSMENT REPORT FOR THE SURFACE WATER SUPPLY

Description	Page No
SECTION 1 EXECUTIVE SUMMARY	1-1
Overview	
Objectives	
Summary of Findings	
SECTION 2 INTRODUCTION	2-1
Background	2-2
Site Description	2-2
SECTION 3 DELINEATION OF THE PROTECTION AREA	3-1
Methodology	3-1
Results	3-2
SECTION 4 — IDENTIFICATION OF SENSITIVE AREAS	4-1
Methodology	4-1
Sensitive Area Setbacks	4-1
High Soil Erosion Potential	4-1
High Permeability Soils	
High Runoff Potential Soils	
Additional Sensitive Areas	
Results	
SECTION 5 INVENTORY OF POTENTIAL CONTAMINANT SO	OURCES5-1
Methodology	
Results	
SECTION 6 SUSCEPTIBILITY ANALYSIS	6-1
Methodology	6-1
Results	6-1
SECTION 7 - SUMMARY AND RECOMMENDATIONS	

		0 1
SECTION 8 -	REFERENCES SITED	.ð-1

APPENDIX A

and Quin

APPENDIX B

LIST OF TABLES

Table No.	Description	Page No.
5-1	Summary of Zoned Land Uses in Drinking Water Protection Area	5-3
5-2	Potential Contaminant Sources by Land Uses and Activities	5-4
5-3	City of Wilsonville Potential Contaminant Source List	
6-1	Potential Contaminant Sources Sensitivity by Location	6-2

LIST OF FIGURES

Figure No.	FollowingDescriptionPage No.
3-1	City of Wilsonville Willamette River Water Treatment Plant
	and 8-Hour Time of Travel Drinking Water Protection Area
4-1	Sensitive Area Delineation by Soils Type4-3
4-2	Sensitive Area Composite Delineation
5-1	Oregon Land Use Data
5-2	Potential Contaminant Sources in Drinking Water Protection Area

EXECUTIVE SUMMARY

OVERVIEW

In April 2002, the City of Wilsonville, Oregon began using a water treatment plant (WTP) with a surface intake on the Willamette River. The WTP intake is in the Middle Willamette Subbasin of the Willamette Basin. Treated surface water is now the primary drinking water source for the City, which previously had been provided solely from groundwater from the City's wellfield. This wellfield now serves as a backup and supplemental water source. The public water system serves approximately 15,000 people.

Two Source Water Assessment Reports (SWAR) have been prepared by MWH. This SWAR addresses the assessment of the surface water source area upstream of the new WTP intake. A second SWAR has been prepared to address the groundwater supply source area. The plan was prepared by MWH staff for the City of Wilsonville in accordance with the guidelines and requirements of the Oregon Source Water Assessment Plan, prepared by the Oregon Department of Environmental Quality (DEQ, 1999).

OBJECTIVES

Ó

The primary objectives of this SWAR are to:

- Delineate the watershed upstream of the WTP intake
- Delineate the Drinking Water Protection Area within the watershed for the WTP intake
- Within the watershed's Drinking Water Protection Area, delineate sensitive areas requiring special consideration for protecting water quality
- Perform an inventory of existing potential contamination sources (PCSs) within the protection area, with special attention to the sensitive areas
- Assess the susceptibility of the drinking water supply to contamination
- Prepare a document that summarizes the findings and will serve as a foundation for a source area protection plan.

SUMMARY OF FINDINGS

The major findings of this SWAR are listed below:

- The Willamette Valley watershed upstream of the Wilsonville WTP intake encompasses an area of approximately 8,400 square miles.
- Using an 8-hour time of travel (TOT) for surface water, the watershed source area protection zone encompasses an area of 34.4 square miles and reaches 7.85 miles upstream

on the Willamette River. Tributary flows occur from Mission Creek, Champoeq Creek, Case Creek, Yergen Creek, Ryan Creek, Spring Brook, Mill Creek, Jim Tapman Creek, Corral Creek, and several small unnamed intermittent channels.

- The mean water surface elevation of the Willamette River at the WTP intake is approximately 59 feet, and the elevation of the highest point in the watershed source area protection zone is Parrett Mountain at 1,247 feet.
- Sensitive areas include a 1,000-foot buffer zone along each side of the Willamette River and along each side of the tributaries. Additional sensitive areas were identified based on potential for severe erosion, high runoff, high permeability (and therefore higher potential for contaminant transport), and higher landslide/debris flow potential. Most of these sensitive soils areas are along slopes adjacent to the tributaries, especially north of the Willamette River.
- Land uses identified in the Drinking Water Protection Area include agricultural (primarily orchards, tree farms, livestock pasture, and irrigated crops), managed forestry, parks and recreation areas, rural residential, and some urban areas.
- 26 existing PCSs were identified within the Drinking Water Protection Area. Of these, 13 PCSs were identified in the delineated sensitive areas and include underground storage tanks, facilities which handle and store hazardous materials, solid waste transfer, sewage facilities, and a petroleum pipeline crossing under the Willamette River.
- Additional non-point sources for contamination were identified by land use but not quantified or differentiated by site. Each of the land uses identified has potential for non-point source contaminant runoff.
- Sensitive areas within the watershed's source area protection zones are generally moderately susceptible to contamination from erosion of sediments, fuel spills, hazardous material releases, pesticide or nutrient runoff from farmland, and biological contamination from livestock waste. Relatively high erosion potential exists on steeper slopes, particularly when disturbed by human activity and/or during intense precipitation events or flooding. Relatively high runoff potential exists during periods of intense precipitation. Susceptibility to potential contamination from accidental releases, improper management practices, or nonpoint source runoff is moderate except for PCSs involving storage and disbursement of fuel and/or solvents (all UST/LUST sites and the petroleum pipeline crossing).

This Source Water Assessment Report provides a tool for the City of Wilsonville to use in the future to review any potential impacts that might affect water quality and will serve as a foundation for development of a Drinking Water Protection Plan.

INTRODUCTION

In 1996, Congress amended the Safe Drinking Water Act, implemented some new requirements, and provided resources for state agencies to assist communities in protecting the sources of their public water supplies. The US Environmental Protection Agency (EPA) developed guidelines for implementing the new requirements to conduct "source water assessments" (EPA, 1997). In Oregon, the Oregon Health Division (OHD) and the Department of Environmental Quality (DEQ) are responsible for the source water assessments. The OHD is responsible for source water assessments for groundwater systems, and the DEQ is responsible for surface water assessments.

Moderate to large cities (greater than 10,000 population) are encouraged to participate in preparation of source water assessments. The City of Wilsonville, in an effort to proactively protect its current and future water supplies, has elected to prepare source water assessments for both its existing groundwater supply and its new surface water supply. The new surface water supply, which went online in April 2002, withdraws water from the Willamette River and treats the water for potable use. The City of Wilsonville desires to protect this new and valuable water supply as well as its groundwater supply, even though current regulations do not require preparation of a source area assessment for new water systems brought on line after implementation of the SWAP in 1999. Therefore the city has undertaken preparation of a source water assessment for both the surface and groundwater systems. The groundwater supply wellfield will be maintained as an emergency backup and supplemental system. A separate assessment is being prepared for the existing groundwater supply system.

The requirements for source area assessments include delineating the source area supplying the public water system, identifying areas "sensitive" to contamination, and conducting an inventory of potential contamination sources in the area. Using the results of the inventory and sensitive areas, the susceptibility of the public water system is determined.

Sources of information reviewed during this assessment included U.S. Geological Survey (USGS) documents/websites, Natural Resource Conservation Service (formerly Soil Conservation Service) documents/websites, DEQ reports, EPA and DEQ databases, and other readily accessible reports.

The procedures used to conduct and prepare this assessment were based upon State guidelines (Source Water Assessment Plan, 1999). Recognizing that no assessment can identify every potential contaminant source or problem, an effort has been made to identify those areas most sensitive to the possibility of contamination and those potential contaminant sources with the greatest possible impact. The report has been prepared following guidance and examples provided by DEQ (DEQ, 2000) and adapted to match the conditions of the Wilsonville surface water supply system.

Using the results of this assessment and the groundwater system assessment, the City of Wilsonville will voluntarily develop and implement a Drinking Water Protection Plan which will address both surface and groundwater protection. This plan will be designed to protect against potential contamination, raise awareness in the local community of the risks of drinking water contamination, and provide information to them about how they can help protect the system.

BACKGROUND

Wilsonville is located in Clackamas County, Oregon, about 12 miles south of Portland. As of April 2002, an intake on the Willamette River supplies the drinking water for Wilsonville. Prior to the surface water system, a wellfield consisting of 8 production wells provided the City's water supply. The wellfield is currently maintained as an emergency backup and supplemental water supply. The public water system serves approximately 15,000 citizens. The intake is located in the Willamette River watershed in the Middle Willamette sub-basin, Hydrologic Unit Code (HUC) # 17090007. The coordinates for the surface water intake are latitude 45.293611 N, longitude 122.782778 W.

The study area for evaluating the extent of the Wilsonville Drinking Water Protection Area (DWPA) was identified using DEQ's preliminary Geographic Information System (GIS) map of the Wilsonville watershed. US Geological Survey seamless 7 ¹/₂ minute quadrangle topographic maps on CD-ROM for the Wilsonville area (USGS, 2001) were used to refine the definition of the watershed.

Site Description

Wilsonville is located immediately north of the Willamette River and is bisected by Interstate 5. Most of the city is located on flat to moderately sloping ground and is adjacent to the Parrott Mountain area immediately to the west. The Willamette River flows on gently sloping river floodplain. South of the Willamette River, the terrain is defined by a flat to gently sloping terrace, with the most prominent relief defined by stream channel gulleys and one small but steep hill associated with the Parrott Mountain system across the Willamette River. The highest point in the subbasin is Parrott Mountain, at an elevation of 1,247 feet above mean sea level (MSL). The mean water elevation at the intake of the new water treatment plant is the lowest unsubmerged point in the subbasin at an elevation of approximately 59 feet MSL.

The climate in the Wilsonville area is characterized by moderate annual temperatures and substantial variation in precipitation. The average annual temperature is 52.1 degrees F for the period of 1961-1990, with a low monthly average of 39.2 degrees F in January and a high monthly average of 66.2 degrees F in August. Winters are cool and wet, with temperatures usually staying above freezing. The area gets an average of 3.2 inches of total snowfall per year, primarily at higher elevations within the watershed, but snowfall rarely accumulates to measurable depths in the lower elevations. Average annual precipitation is 41 inches per year, with most precipitation occurring as rainfall in winter (Oregon Climate Service, 2002).

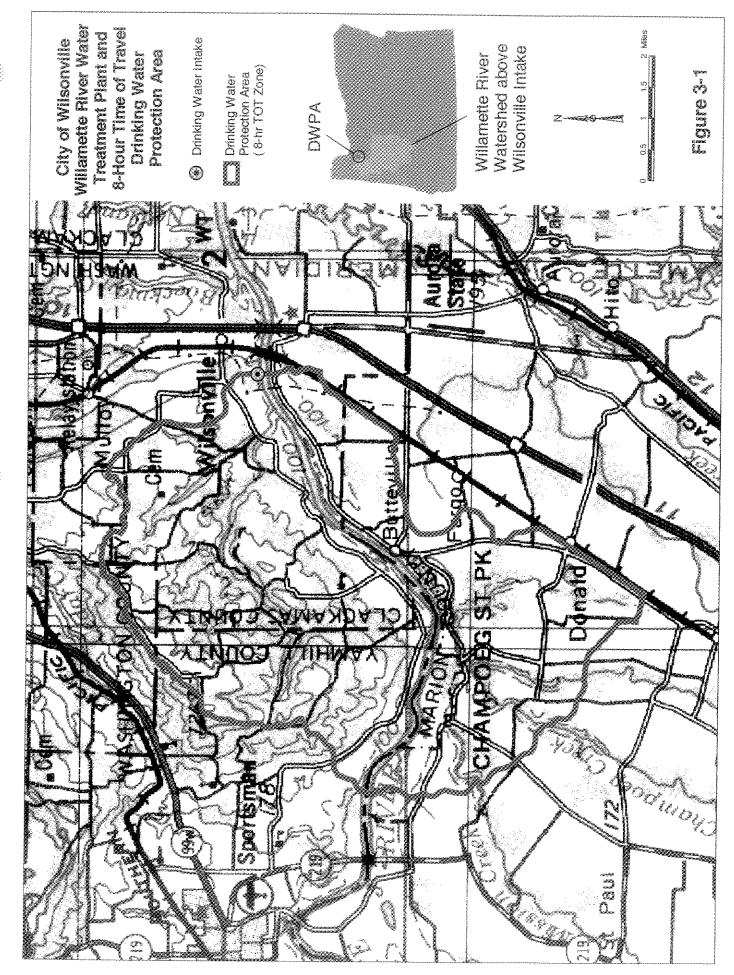
DELINEATION OF THE PROTECTION AREA

METHODOLOGY

The Willamette River Watershed incorporates an area of the Willamette Valley in west-central Oregon and includes an area of approximately 8,400 square miles. The Willamette River Watershed is shown in Figure 3-1 (inset).

Although the Willamette River Watershed constitutes the ultimate source area for the Wilsonville surface water system, the area is too large to be effectively managed or under the influence of the City. By agreement with DEQ and in compliance with the guidelines provided in the SWAP, a protection area was delineated by identifying an 8-hour time of travel (TOT) within the source area subbasin.

The 8-hour TOT Drinking Water Protection Area was developed by evaluating historic USGS flow and stage data for the Wilsonville gaging station, HUC 17090007 (USGS, 2002, and unpublished field records). This gaging station is no longer monitored by the USGS but was used from 1948 to 1973. Because this gage is the only gage in this reach of the Willamette River with adequate data to correlate flowrate, channel depth, and streamflow velocity, and because this reach of the river has not been significantly modified since the gaging station was decommissioned, it was considered to be the most representative measure of flow and stage data for this segment of the river. Using USGS reported flowrates and field measurements of water elevation, a stage-flowrate relationship was established for the Wilsonville gaging station. This provided sufficient data to calculate in-stream velocities at various flowrates. Velocities were then plotted against the flowrates and a linear regression curve was developed. At the mean flowrate of 28,585 cfs, the mean velocity of 1.44 ft/sec was identified. The data and graph used to develop the mean velocity are included in Appendix A. Using the mean velocity and an 8-hour TOT, a distance of 7.85 river miles upstream of the surface water intake was determined to be included in the Drinking Water Protection Area.


Tributaries to the Willamette River upstream of the intake within the 8-hour TOT were identified. Because all significant tributaries to the Willamette River on the north side of the river were within a few miles of the intake, the entire subbasin watershed contributing to those tributaries were included in the Drinking Water Protection Area. On the south side, large tributaries with relatively low stream gradients flow into the Willamette River near the upstream end of the 8-hour TOT. These include Mission, Champoeg, and Case Creeks, which coalesce into the Champoeg Creek channel; and Ryan Creek. No direct flow measurement data was available for these tributaries, but stream segment elevations from USGS topographic mapping showed that the slope of these tributary streams was little steeper than this segment of the Willamette River. Assuming therefore that the velocity of the tributary streamflow would not be much greater than flow in the Willamette River, a conservatively high velocity of 2.5 ft/sec was used to estimate the segments of these streams within the 8-hour TOT.

The watershed areas contributing to these 8-hour TOT flows was defined by identifying the topographic divides between tributary drainages within the range contributing to the 8-hour TOT in the stream channels. Areas contributing to runoff for the streamflows within the 8-hour TOT were then included in the Drinking Water Protection Area. The Drinking Water Protection Area falls within the watershed subdivisions defined by the State of Oregon as the fifth-field watersheds of 02 and 03 (i.e. HUCs 1709000702 and 1709000703).

RESULTS

The total area included in the Drinking Water Protection Area is 34.4 square miles. The Drinking Water Protection Area is shown in Figure 3-1.

1 & 3 Yo 4 & 1

IDENTIFICATION OF SENSITIVE AREAS

METHODOLOGY

After delineating the watershed Drinking Water Protection Area, the "sensitive areas" within the watershed were identified. The objective in determining the sensitive areas for surface water sources is to provide information to the community and public water system that is useful in developing and prioritizing protection strategies. Sensitive areas were determined using the guidelines developed by the DEQ advisory committee (SWAP, 1999). The sensitive areas within a drinking water watershed include both setbacks (land adjacent to stream) and other natural or manmade factors that increase the risk of contamination of the surface water. The result is an identification of a subset of the entire watershed. The sensitive areas are those where potential contamination sources or land use activities, if present, have a greater potential to impact the water supply.

There are five individual characteristics that determine the sensitivity of areas within the drinking water watersheds in the Source Water Assessment Plan (1999) procedures for Oregon water systems. Brief descriptions of the sensitive area characteristics and the sources of the GIS data are included below.

Sensitive Area Setbacks

The first sensitive area is a 1,000-foot setback from the Willamette River and perennial tributary streams. The sensitive area setbacks are intended to identify those areas where there are higher risks of contamination by spills or other releases, simply due to their proximity to the water body. Although the SWAP requires only a 1,000 foot setback from the centerline of the river, because of the width of the Willamette River in some places, a more conservative setback of 1,000 feet from each river bank was used. For the tributaries, a 1,000-foot setback from centerline was used.

High Soil Erosion Potential

The soil erosion potential is determined by combining the effects of slope and the soil erodibility factor ("K-factor"). Slopes within a watershed are evaluated using Natural Resources Conservation Service soil reports. The K-factor used is a weighted average of only the value for the surface layer of the map unit. In the watershed, only soils with "high" erodibility ratings were mapped as sensitive areas. Soils that classify as "high" include soil both with slopes greater than 30% and K-factors greater than 0.25. This rating system is based on the Revised Universal Soil Loss Equation from the USDA Agricultural Research Service as defined in the Washington's Standard Methodology for Conducting Watershed Analysis (Washington Forest Practices Board, 1993).

High Permeability Soils

Soils within the Drinking Water Protection Area which are identified in NRCS soil survey reports with moderately high permeability or greater are mapped as sensitive areas due to the higher potential for groundwater recharge adjacent to the stream. These areas may be very vulnerable to rapid infiltration of contaminants to groundwater and subsequent discharge to a stream.

High Runoff Potential Soils

The potential for high runoff rates was evaluated using NRCS soil survey reports. Soils classified as Hydrologic Group D soils, which are defined as soils with very slow infiltration rates, were mapped as sensitive areas within the boundaries of the drinking water protection area. Map units are assigned to hydrologic groups based on their majority component. A Group D soil is typified as clayey, has a high water table, or an impervious layer occurs at a shallow depth. Soils with these characteristics would have the potential for rapid runoff and subsequent transport of sediments and possible contaminants to the surface water body supplying the public water system.

Additional Sensitive Areas

The DEQ SWAP makes provision for including other areas within the designated sensitive areas. These designations would be based upon site-specific considerations, such as high landslide potential, high snow runoff snow zones, high-risk land use, high concentrations of potential contaminants adjacent to sensitive area setbacks, or other factors.

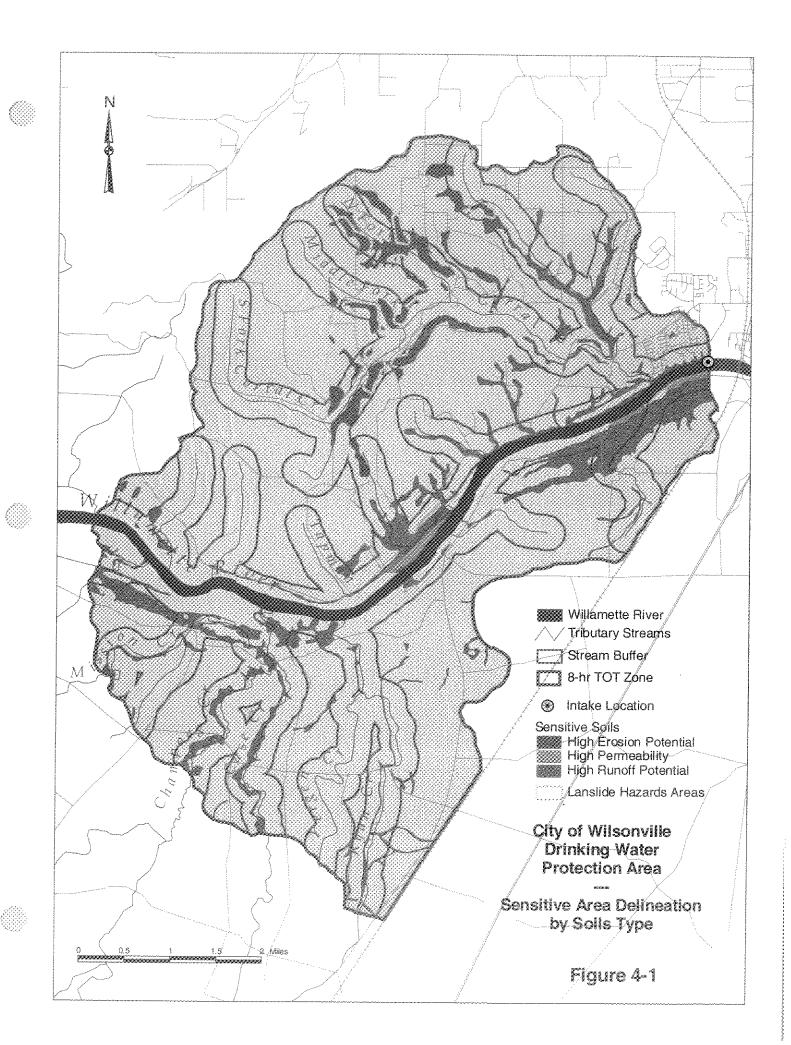
An investigation of landslide and debris flow risk was performed by inspecting Oregon Department of Forestry landslide and debris flow maps (Oregon Dept. of Forestry, 2000). The potential for landslide and debris flows within the Drinking Water Protection Area was scanned to identify potential areas of higher risk.

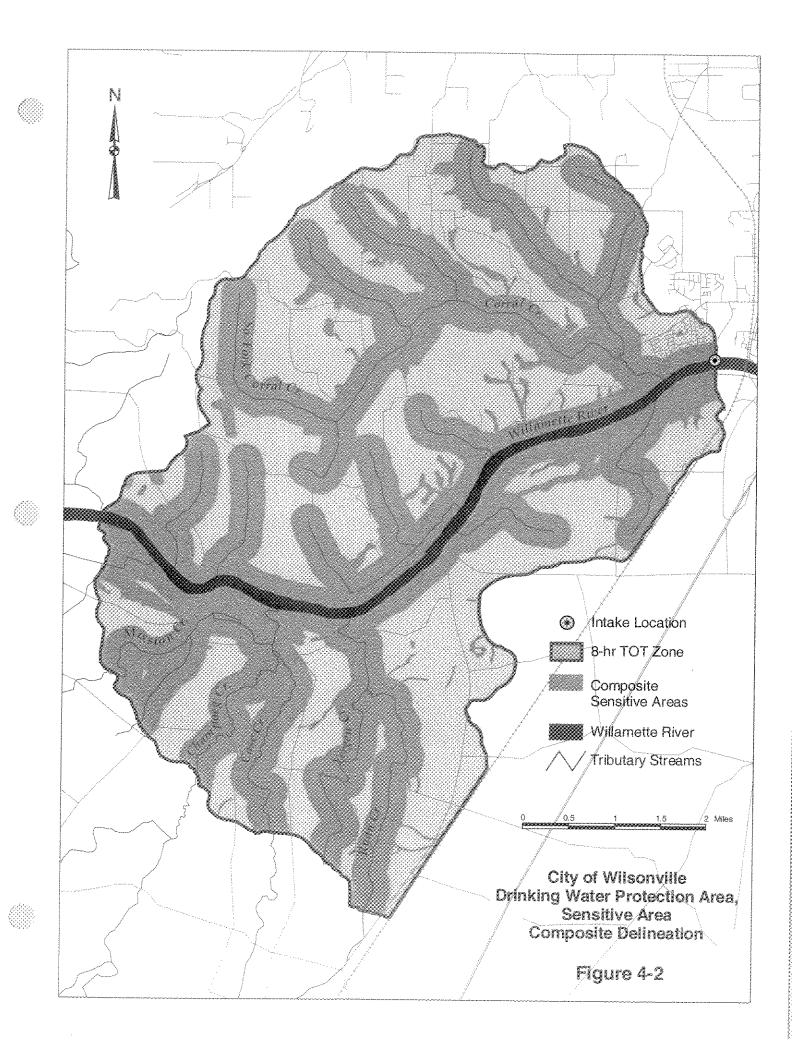
DEQ has provided a land use map which shows primary land uses for the Drinking Water Protection Area. This map was used to investigate areas of potential high-risk land use.

The potential contaminant source survey (see Section 5) was used to identify proximity of highrisk contaminants to potentially sensitive areas. Consideration was given to including areas of higher potential contamination risk within the sensitive areas if they were outside the sensitive area but within close proximity and if other conditions (slope, runoff patterns, etc.) warranted inclusion in the sensitive areas.

The final watershed map for the public water system intake includes a composite of all sensitive areas identified within the watershed. This composite or overlay will enable the communities and responsible agencies to focus future protection efforts in these sensitive areas.

RESULTS


Setbacks of 1,000 feet from each bank of the Willamette River and from the centerline of the tributaries were included as sensitive areas within the Drinking Water Protection Area. Areas where the surface soils were classified as having higher erosion potential, higher permeability, or higher runoff potential were also included in the sensitive areas. A list of these soils is included in Appendix B.


Oregon Climate Service records for the North Willamette Experimental Station for 1961 to 1990 show average annual accumulations of only about 3.2 inches of snow. It is apparent that risks associated with snow runoff are low. No snowpack runoff designations were included in the sensitive areas.

Although some identified land uses have the potential for medium to high risk, the identified land uses (discussed in Section 5) did not appear to warrant special consideration solely on that basis. No areas were included in the sensitive areas on the basis of land use.

The PCS inventory identified potential source areas within and without the designated sensitive areas associated with the other factors identified above. No PCS sites were identified which required modification of sensitive area delineation. The PCS inventory is discussed in greater detail below.

A map showing stream setbacks, sensitive soils, and potential landflow or debris flow areas within the Wilsonville Drinking Water Protection Area is shown in Figure 4-1. A composite map of all sensitive areas is shown on Figure 4-2. These include the setbacks from the main stem and all perennial tributaries, areas with high soil permeability, areas of high soil erosion potential, areas of high runoff potential, and areas of moderate landslide potential.

INVENTORY OF POTENTIAL CONTAMINANT SOURCES

METHODOLOGY

The primary intent of a PCS inventory is to identify and locate significant potential sources of any of the contaminants of concern within the Drinking Water Protection Area. Significant potential sources of contamination can be defined as any facility or activity that stores, uses, or produces the contaminants of concern and has a sufficient likelihood of releasing such contaminants to the environment at levels that could contribute significantly to the concentration of these contaminants in the source waters of the public water supply.

Inventories are focused primarily on the potential sources of contaminants regulated under the Federal Safe Drinking Water Act. This includes contaminants with a maximum contaminant level (MCL), contaminants regulated under the Surface Water Treatment Rule, and the microorganism Cryptosporidium. The sites identified in the PCS inventory were obtained from the DEQ "Facilities" and "Underground Injection Control" databases. The inventory was designed to identify several categories of potential sources of contaminants including microorganisms (i.e., viruses, *Giardia lambia, Cryptosporidium*, and fecal bacteria); inorganic compounds (i.e., nitrates and metals); organic compounds (i.e., solvents, petroleum compounds and pesticides) and turbidity/sediments. Contaminants can reach a water body (groundwater, rivers, lakes, etc.) from activities occurring on the land surface or below it. Contaminant releases to water bodies can also occur on an area-wide basis or from a single point source.

When identifying potential risks to a public water supply, it is necessary to make some "worstcase" assumptions to identify potential risks, not just probable risks. The worst-case assumption that is made when considering potential risks to water bodies is that the facility or activity is not employing good management practices or pollution prevention. Under today's regulatory standards and environmental awareness, the majority of the identified activities and land uses employ best management practices (BMPs) in handling contaminants or preventing water quality degradation from their operations. It is important to note that while this assessment will list all POTENTIAL risks, many of these do not present actual risks to the water system. Environmental contamination is not likely to occur when contaminants are handled and used properly, or when BMPs are employed. The day-to-day operating practices and environmental (contamination) awareness varies considerably from one facility or land use activity to another. In-depth analysis or research was not completed to assess each specific source's compliance status with local, state and/ or Federal programs or laws. Also, the inventory process did not include an attempt to identify unique contamination risks at individual sites such as facilities (permitted or not) that do not safely store potentially hazardous materials.

No attempt was made to infer possible PCS conditions other than those identified in the DEQ databases. However, the land use survey (discussed in Section 4) identified some land uses which are normally considered potential "non-point sources" for contamination. These land uses include various agricultural operations, managed forestry, rural residential, parks and recreation,

and urban activities. Various potential contaminants may be released from these land uses under some conditions. Potential contaminants include fuel spills and releases, solvents for equipment and paints, sediments from surface erosion, pesticides and herbicides, nutrients, and microbiological contaminants, among others.

Potential sources of contaminants were identified through a variety of methods and resources. In completing this inventory, readily available information was used, including review of DEQ, EPA, and other agencies' databases of currently listed sites, interviews with city personnel, and field observation as discussed below. The process for completing the inventory for Wilsonville's drinking water protection area included the following steps:

- 1. Collected relevant information as of March 2002 from applicable state and federal regulatory databases including the following lists:
 - DEQ Environmental Cleanup Site Information System (ECSI) which includes the U.S. EPA National Priorities List (NPL) and the U.S. EPA Comprehensive Environmental Response, Compensation and Liability Information System (CERCLA) list; -DEQ leaking underground storage tank (LUST) list;
 - DEQ registered underground storage tank (UST) list; -DEQ Active Solid Waste Disposal Permits list;
 - DEQ Dry Cleaners list; -DEQ Site Information System (SIS) which includes Water Pollution Control Facility (WPCF) and National Pollutant Discharge Elimination System (NPDES) permitted facilities;
 - DEQ Solid Waste Management Sites (SWMS) list;
 - DEQ Underground Injection Control (UIC) list.

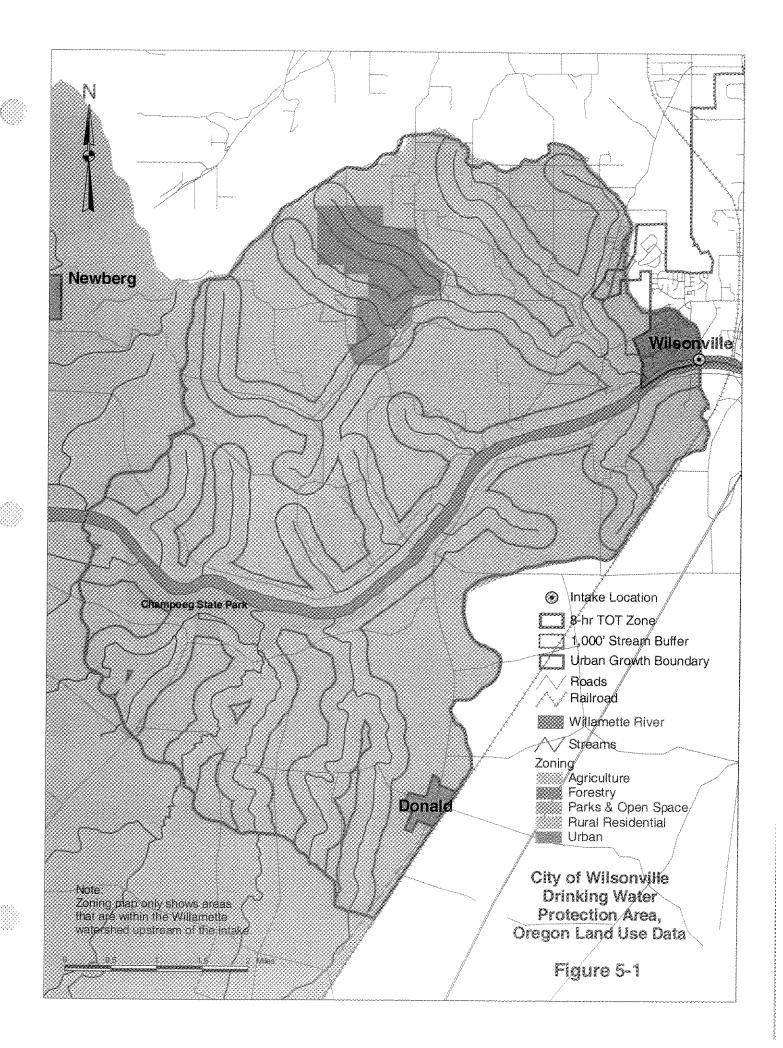
Because of the way various state and federal databases are set up, the specific locations of listed sites are not always given or accurate within the database. The presence and approximate location of several PCS sites and land uses within the drinking water protection area were verified by consulting with City of Wilsonville personnel and/or by driving through the area (windshield survey) as discussed below in subsequent inventory steps. Not all sites were located in the field. In these instances, the DEQ locations identified on the DEQ website "facility locator map" were accepted as accurate unless the database contained obvious location errors.

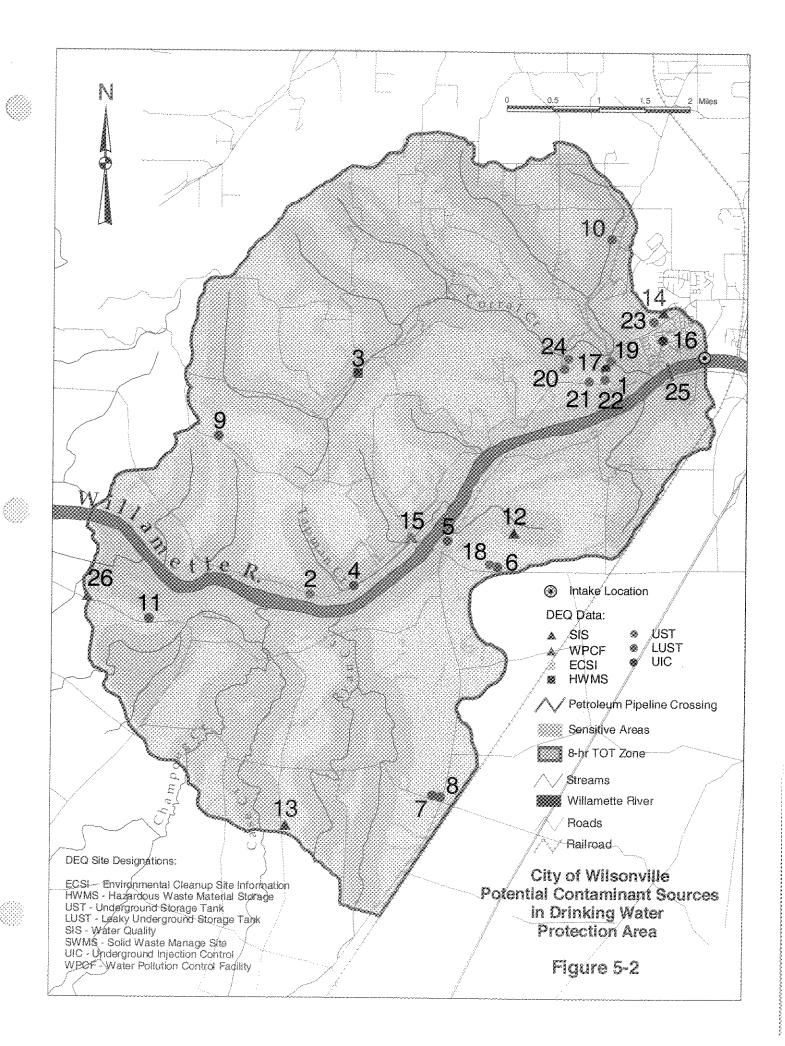
- 2. Conducted a windshield survey by driving through the Drinking Water Protection Area to field locate and verify major potential contaminant source activities. The windshield survey was conducted primarily in the sensitive areas near the Willamette River and within the City of Wilsonville. Access to outlying areas of the Drinking Water Protection Area was not practical within the constraints of this survey, and not all site locations were field-verified.
- 3. Assigned high, medium, or low risk ratings to each potential contaminant source based on the Oregon SWAP (1999).

4. Produced final summary of the inventoried sources and the GIS base map, which are presented in this report.

RESULTS

A summary of zoned land uses identified in the Drinking Water Protection Area is provided in Table 5-1. A list of potential contaminant sources by land use is found in Table 5-2. The PCS list in Table 5-2 is from DEQ's SWAP (1999). As shown on the land use map provided in Figure 5-1, most of the Drinking Water Protection Area land use is agriculture, forestry, parks, and rural residential, with much smaller areas where land use consists of urban residential/industrial. Table 5-1 shows various types of possible land uses for each of these general categories, together with the relative risk of each type of land use. As shown in Table 5-2, some higher-risk non-point source land uses are found in the Drinking Water Protection Area. These include (but are not necessarily restricted to) livestock grazing, stables, irrigated crops, and managed forest lands.


TABLE 5-1


SUMMARY OF ZONED LAND USES IN DRINKING WATER PROTECTION AREA

	Description
Agriculture	Irrigated crops; orchards; vineyards; tree farms; nurseries; dairies; livestock pasture and stables
Forestry	Timber growth and harvesting Non-urban residential; non-industrial businesses
Rural Residential Parks and Recreation	State parks
Urban	Single-family residential; multi-family residential; public facilities; commercial and industrial businesses

Table 5-3 shows the list of potential contaminant sources identified within the Drinking Water Protection Area. The locations of the potential contaminant sources are shown on Figure 5-2. A total of 26 potential contamination sources were identified from the database. These include underground storage tanks (both leaking and nonleaking), hazardous materials storage, sewage handling, and miscellaneous facilities. In addition, a petroleum pipeline crossing under the Willamette River was observed near the confluence of the Willamette River with Corral Creek.

5-3

TABLE 5-2

e Ç

POTENTIAL CONTAMINANT SOURCES BY LAND USES AND ACTIVITIES

ID	Type of Activity	Potential Water Quality Impacts	GW Risk	SW Risk
R01	Airport - Maintenance/Fueling Area	Spills, leaks, or improper handling of fuels, de- icers, and other chemicals during transportation, use, storage and disposal may impact the drinking water supply.	Η	M
R02	Apartments and Condominiums	Improper use, storage, and disposal of household and facility maintenance chemicals including cleaners, vehicle maintenance products, pool chemicals, pesticides and fertilizers may impact the drinking water supply. Stormwater run-off or infiltration may carry contaminants to drinking water supply.	L	L
R03	Campgrounds/RV Parks	Leaks or spills of automotive fluids or improperly managed septic systems and wastewater disposal may impact drinking water supply. Heavy usage along edge of waterbody may contribute to erosion, causing turbidity.	L	М
R04	Cemeteries - Pre-1945	Embalming fluids (for example, arsenic) and decomposition by-products may impact drinking water supply.	М	L
R05	Drinking Water Treatment Plants	Treatment chemicals and equipment maintenance materials may impact groundwater or surface water source.	М	M
R06	Fire Station	Spills, leaks, or improper handling of chemicals and other materials during transportation, use, storage and disposal may impact the drinking water supply.	L	
R07	Fire Training Facilities	Improper use of fuels and other chemicals during fire training may impact the drinking water supply.	М	M
R08	Golf Courses	Over-application or improper handling of pesticides or fertilizers may impact drinking water. Excessive irrigation may cause transport of contaminants to groundwater or surface water through runoff.	М	M

ID	Type of Activity	IDENTIAL / MUNICIPAL LAND USES Potential Water Quality Impacts	GW Risk	SW Risk
R09	Housing - High Density - > 1 House/0.5 Acres	Improper use, storage, and disposal of household chemicals including cleaners, vehicle maintenance products, pool chemicals, pesticides and fertilizers may impact the drinking water supply. Stormwater run-off or infiltration may carry contaminants to drinking water supply.	M	M
R10	Landfill/Dumps	Water percolating through the landfill waste material may transport contaminants to groundwater or surface water supply.	Н	H
R11	Lawn Care - Highly Maintained Areas	Over-application or improper handling of pesticides or fertilizers may impact drinking water. Excessive irrigation may cause transport of contaminants to groundwater or surface water through runoff.	М	M
R12	Motor Pools	Spills, leaks, or improper handling of fuels and other chemicals from vehicle service and parking areas may impact the drinking water supply. Stormwater run-off or infiltration may carry contaminants to drinking water.	М	M
R13	Parks	Over-application or improper handling of pesticides or fertilizers may impact drinking water. Excessive irrigation may cause transport of contaminants to groundwater or surface water through runoff. Heavy usage along edge of waterbody may contribute to erosion, causing turbidity.	Μ	M
R14	Railroad Yards/Maintenance/ Fueling Areas	Spills, leaks, or improper handling of fuels and other chemicals during transportation, use, storage and disposal may impact the drinking water supply.	Н	H
R15	Schools	Over-application or improper handling of cleaning products, pesticides or fertilizers used on the school grounds may impact drinking water. Vehicle maintenance wastes may contribute contaminants.	L	M
R16	Septic Systems - High Density - >1/Acre	If not properly sited, designed, installed, and maintained, septic systems can impact drinking water. Cumulative effects of multiple systems in an area may impact drinking water supply.	H	M

5-5

 $\mathbf{e} + \mathbf{e} = \mathbf{e}_i \mathbf{e} = \mathbf{e}_i \mathbf{e}_i$

ID	Type of Activity	Potential Water Quality Impacts	GW Risk	SW Risk
R17	Sewer Lines - Close Proximity to PWS	If not properly designed, installed, and maintained, sewer lines can impact drinking water, especially adjacent to a waterbody or within the 2-year time-of-travel zone for drinking water wells.	Н	M
R18	Utility Stations – Maintenance Transformer Storage	Spills, leaks, or improper handling of chemicals and other materials including PCBs during transportation, use, storage and disposal may impact the drinking water supply.	Н	H
R19	Waste Transfer/Recycling Stations	Improper management of water contacting waste material may impact the drinking water supply.	M	H
R20	Wastewater Treatment Plants/Collection Stations	Improper management of wastewater, treatment chemicals, or equipment maintenance materials may impact drinking water supply.	M	H
R50	Others (List)	The impacts to this potential contaminant source will be addressed during the enhanced inventory.		

COMMERCIAL/	INDUSTRIAL LAND	USES
-------------	-----------------	------

ID	Type Of Activity	Potential Water Quality Impacts	GW Risk	SW Risk
C01	Auto - Body Shops	Improper management of vehicle paints, thinners, and primer products may impact the drinking water supply.	Η	М
C02	Auto - Car Washes	Improper management of vehicle wash water may result in soaps, oils, greases, and metals impacting the drinking water supply.	М	M
C03	Auto - Gas Stations	Spills, leaks, or improper handling of fuels and other materials during transportation, transfer, and storage may impact the drinking water supply.	Н	M
C04	Auto - Repair Shops	Spills, leaks, or improper handling of automotive fluids, solvents, and repair materials during transportation, use, storage and disposal may impact the drinking water supply.	Н	M
C05	Boat Services/Repair/ Refinishing	Spills, leaks, or improper handling of fuels, septage, maintenance chemicals, sandblasting wastes, paints, and other materials during transportation, use, storage and disposal may impact the drinking water supply.	Η	H

COMMERCIAL / INDUSTRIAL LAND USES SW GW Potential Water Quality Impacts **Type Of Activity** Risk Risk ID Spills, leaks, or improper handling of chemicals Μ Μ Cement/Concrete Plants C06 and high turbidity wastewaters during transportation, use, storage and disposal may impact the drinking water supply. Spills, leaks, or improper handling of chemicals Η Η Chemical/Petroleum C07 and other materials during transportation, use, Processing/Storage storage and disposal may impact the drinking water supply. Η Μ Spills, leaks, or improper handling of dry C08 Dry Cleaners cleaning solvents and other chemicals during transportation, use, storage and disposal may impact the drinking water supply. Spills, leaks, or improper handling of chemicals Η Μ Electrical/Electronic C09 and other materials during transportation, use, Manufacturing storage, and disposal may impact the drinking water supply. Η Μ Spills, leaks, or improper handling of fuels, Fleet/Trucking/Bus C10 grease, solvents, and other materials from Terminals vehicle service, fueling, and parking areas may impact the drinking water supply. Spills, leaks, or improper handling of chemicals Μ M Food Processing C11 and other materials during transportation, use, storage and disposal may impact the drinking water supply. Μ Spills, leaks, or improper handling of hazardous M Furniture/Lumber/Parts C12 chemical products and other materials in Stores inventory during transportation, use, storage and disposal may impact the drinking water supply. Spills, leaks, or improper handling of chemicals Η H Home Manufacturing C13 and other materials during transportation, use, (modular) storage and disposal may impact the drinking water supply. Н Η Spills, leaks, or improper handling of Junk/Scrap/Salvage Yards C14 automotive chemicals, batteries, and other waste materials during storage and disposal may impact the drinking water supply. H Η Spills, leaks, or improper handling of solvents, Machine Shops C15 metals, and other chemicals or materials during transportation, use, storage and disposal may impact the drinking water supply. Spills, leaks, or improper handling of x-ray, L М Medical/Vet Offices C16 biological, chemical, and radioactive wastes and other materials during transportation, use, storage and disposal may impact the drinking water supply.

5-7

ID	Type Of Activity	Potential Water Quality Impacts	GW Risk	SW Risk
C17	Metal Plating/Finishing/ Fabrication	Spills, leaks, or improper handling of solvents and other chemicals during transportation, use, storage and disposal may impact the drinking water supply.	Η	Н
C18	Mines/Gravel Pits	Spills, leaks, or improper handling of chemicals and wastes generated in mining operations or from heavy equipment may impact the drinking water supply.	Н	H
C19	Office Buildings/Complexes	Spills, leaks, or improper handling of chemicals and other materials stored and used in maintenance or from parking areas may impact the drinking water supply.	L	L
C20	Parking Lots/Malls - > 50 Spaces	Spills and leaks of automotive fluids in parking lots may impact the drinking water supply.	Н	H
C21	Photo Processing/Printing	Spills, leaks, or improper handling of photographic chemicals during transportation, use, storage and disposal may impact the drinking water supply.	Н	H
C22	Plastic/Synthetics Producer	Spills, leaks, or improper handling of solvents and resins during transportation, use, storage and disposal may impact the drinking water supply.	Н	H
C23	Research Laboratories	Spills, leaks, or improper handling of laboratory chemicals and wastes during transportation, use, storage and disposal may impact the drinking water supply.	Н	H
C24	RV/Mini Storage	Spills, leaks, or improper handling of automotive fluids and other materials during transportation, storage and disposal may impact the drinking water supply.	L	L
C25	Wood/Pulp/Paper Processing and Mills	Spills, leaks, or improper handling of chemicals and other materials during transportation, use, storage and disposal may impact the drinking water supply.	Н	Н
C26	Wood Preserving/Treating	Spills, leaks, or improper handling of wood preservatives and other chemicals during transportation, use, storage and disposal may impact the drinking water supply.	H	H
C50	Others (List)	Spills, leaks, or improper handling of chemicals and other materials during transportation, use, storage, and disposal may impact the drinking water supply.		

AGRICULTURAL / FOREST LAND USES SW GW **Potential Water Quality Impacts** Risk Risk **Type Of Activity** ID Improper storage and management of animal Н Η Auction Lots A01 wastes and wastewater in areas of concentrated livestock may impact drinking water. Μ Н Improper storage and management of animal Boarding Stables A02 wastes and wastewater in areas of concentrated livestock may impact drinking water. H Improper storage and management of animal Η Confined Animal Feeding A03 wastes and wastewater in areas of concentrated Operations (CAFOs) livestock may impact drinking water. Over-application or improper handling of Η M* Crops - Irrigated - Berries, A04 pesticides or fertilizers may impact drinking Hops, Mint, Orchards, water. Excessive irrigation may cause transport Vinevards/Nurseries, of contaminants or sediments to Green Houses, Vegetables, groundwater/surface water through runoff. etc. NOTE: *Drip-irrigated crops such as vineyards and some vegetables, are considered to be a low risk. L L Over-application or improper handling of Crops - Nonirrigated -A05 pesticides or fertilizers may impact drinking Christmas Trees, Grains, water. Some agricultural practices may result in Grass Seeds, Hay, Pasture excess sediments discharging to surface waters, but non-irrigated crops are generally considered to be a low risk to groundwater and surface water. Spills, leaks, or improper handling of solvents Η Μ Farm Machinery Repair A06 and petroleum products during transportation, use, storage and disposal may impact the drinking water supply. H Improper storage and management of animal М Grazing Animals - > 5 A07 wastes may impact drinking water supply. Large Animals or Concentrated livestock may contribute to Equivalent/Acre erosion and sedimentation of surface water bodies. Improper seepage or overflows of liquid wastes Η Н Lagoons/Liquid Wastes A08 may impact the drinking water supply. Improper management of sludge and wastewater Η М Land Application Sites A09 may impact drinking water supply. Over-application or improper handling of L Μ Managed Forest Lands -A10 pesticides or fertilizers may impact the drinking Broadcast Fertilized Areas water source. Cutting and yarding of trees may contribute to Η М Managed Forest Lands -A11 increased erosion, resulting in turbidity and Clearcut Harvested - < 35 chemical changes in drinking water supply. VIS Over-application or improper handling of pesticides or fertilizers may impact drinking

water source.

AGRICULTURAL / FOREST LAND USES GW SW Potential Water Quality Impacts **Type Of Activity** ID Risk Risk Cutting and yarding of trees may contribute to Η М Managed Forest Lands -A12 increased erosion, resulting in turbidity and Partial Harvested - <10 yrs chemical changes (ex: nitrates) in drinking water supply. Over-application or improper handling of pesticides or fertilizers may impact drinking water source. Road building, maintenance, and usage may Μ Н Managed Forest Lands -A13 contribute to erosion and slope failure causing Road Density -> 2 mi/sq turbidity in drinking water supply. Vehicle mi usage increases the risks of leaks or spills of petroleum products and other hazardous materials. Н Н Leaks, spills and improper handling of Pesticide/Fertilizer/ A14 pesticides, fertilizers and petroleum products Petroleum Storage, may impact drinking water source. Handling, Mixing, & Cleaning Areas Vegetation removal by fire may increase surface L Η Recent Burn Areas - < 10 A15 erosion and sediment delivery rates, resulting in vrs high turbidity in drinking water source. The impacts of this potential contaminant Others (List) A50 source will be addressed during the enhanced inventory.

MISCELLANEOUS LAND USES				
ID	Type Of Activity	Potential Water Quality Impacts	GW Risk	SW Risk
M01	Above Ground Storage Tanks	Spills, leaks, or improper handling of stored materials may impact the drinking water supply.	М	M
M02	Channel Alterations - Heavy	Construction or maintenance of channel may cause erosion, resulting in increase in turbidity of surface water. Improper stream alterations may also contribute to increase in potential for flooding.	L	Н
M03	Combined Sewer Outfalls	Combined sewer overflows contribute untreated wastewater at the outfall.	L	H
M04	Stormwater Outfalls	Stormwater run-off may contain contaminants from residential (homesites and roads), commercial/industrial, and agricultural use areas.	L	Н
M05	Composting Facilities	Storage and improper handling of organic material, animal waste, and wastewater may impact drinking water.	М	H

5-10

1 2 · · · · ·		MISCELLANEOUS LAND USES Potential Water Quality Impacts	GW	SW
ID	Type Of Activity		Risk	Risk
M06	Historic Gas Stations	Historic spills, leaks, or improper handling of solvents and petroleum products may impact the drinking water supply. Abandoned underground storage tanks may be present.	Н	H
M07	Historic Waste Dumps/Landfills	Water percolating through old landfills or dumpsites may transport contaminants to groundwater or surface water supply.	Н	Н
M08	Homesteads - Rural - Machine Shops	Spills, leaks, or improper handling of solvents, fuels, and other materials or chemicals during transportation, use, storage and disposal may impact the drinking water supply.	Н	H
M09	Homesteads - Rural - Septic Systems <1/Acre	If not properly sited, designed, installed, and maintained, septic systems can impact drinking water. Use of drain cleaners and dumping household hazardous wastes can result in groundwater contamination.	L	L
M10	Injection Wells/Drywells/ Sumps - Class V UICs	Shallow injection wells may transport untreated wastewater (process or storm water) directly into groundwater and impact drinking water.	Н	M
M11	Kennels - > 20 Pens	Improper storage, management, and disposal of animal wastes and wastewater in areas of concentrated animals may impact drinking water	L	M
M12	Military Installations	Spills, leaks, or improper handling of chemicals and other materials during transportation, use, storage and disposal may impact the drinking water supply. May also contain ordnance or waste landfills/dump sites, as well as other potential contaminant sources.	Η	H
M13	Random Dumpsites	Illegal trash and debris containing chemicals and hazardous materials may cause contamination to groundwater or surface water supply.	М	H
M14	River Recreation - Heavy Use	Inadequate disposal of human wastes may contribute bacteria and nutrients to the drinking water supply. Heavy use may contribute to streambank erosion causing turbidity. Fuel spills and emissions may also contribute to contamination of the drinking water supply.	L	M
M15	Sludge Disposal Areas	Improper management of sludge and wastewater may impact drinking water supply.	М	H
M16	Stormwater Retention Basins	Stormwater run-off may contain a wide variety of contaminants from residential, commercial/ industrial, and agricultural use areas.	М	H

	•	HISCELLANEOUS LAND USES	GW	SW
ID	Type Of Activity	Potential Water Quality Impacts	Risk	Risk
M17	Transmission Lines - Right-of-Ways	Construction and corridor maintenance may contribute to increased erosion and turbidity in drinking water supply. Over-application or improper handling of pesticides or fertilizers may impact drinking water supply.	L	H
M18	Transportation Corridors - Freeways/State Highways	Vehicle usage increases the risks for leaks or spills of fuels and other hazardous materials that may impact drinking water. Road building, maintenance, and usage may contribute to increased erosion and slope failure causing turbidity in drinking water source. Over- application or improper handling of pesticides or fertilizers may impact the drinking water supply.	Μ	Н
M19	Transportation Corridors - Railroads	Rail transport increases the risks for leaks or spills of fuels and other hazardous materials that may impact drinking water. Installation and maintenance of tracks may contribute to increased erosion and slope failure causing turbidity in drinking water source. Over- application or improper handling of pesticides adjacent to tracks may impact the drinking water supply.	Μ	H
M20	Transportation Corridors - Right-of- Ways - Herbicide Use Areas	Over-application or improper handling of pesticides may impact drinking water supply.	М	Н
M21	Transportation Corridors – River Traffic - Heavy	Heavy river usage may contribute to riverbank erosion and increased turbidity in drinking water supply. Fuel and other chemical leaks, spills and emissions may also contribute to drinking water contamination.	L	H
M22	Transportation Corridors – Stream Crossing - Perennial	Road building, maintenance, and usage may contribute to erosion and slope failure causing turbidity in drinking water source. Vehicle usage increases the risks of leaks or spills of fuels and other chemicals in highly sensitive areas. Over application or improper handling of pesticides in right-of-way may also impact drinking water source.	L	H
M23	UST - Confirmed Leaking Tanks - DEQ List	Existing contamination from spills, leaks, or improper handling of stored materials may impact the drinking water supply.	H	M
M24	UST - Decommissioned	Historic spills or leaks may impact the drinking water supply.	jan	L
M25	UST - Non-Regulated Tanks - < 1,100 gals	Spills, leaks, or improper handling of stored materials may impact the drinking water supply.	H	M

ID	Type Of Activity	MISCELLANEOUS LAND USES Potential Water Quality Impacts	GW Risk	SW Risk
M26	UST - Not Yet Upgraded or Registered Tanks	Spills, leaks, or improper handling of stored materials may impact the drinking water supply.	Н	M
M27	UST - Upgraded and/or Registered - Active	Spills or improper handling during tank filling or product distribution may impact the drinking water supply.	L	L
M28	UST - Status Unknown	Spills, leaks, or improper handling of stored materials may impact the drinking water supply.	Н	M
M29	Upstream Reservoirs	During major storm events, reservoirs may contribute to prolonged turbidity for downstream intakes for drinking water. Construction, fluctuating water levels, and heavy waterside use can increase erosion and turbidity in reservoir/drinking water source.	L	M
M30	Wells/Abandoned Wells	Improperly installed or maintained wells and abandoned wells may provide a direct conduit for contamination to groundwater and drinking water source.	H	M
M31	Large Capacity Septic Systems –Class V UIC (serves >20)	If not properly sited, designed, installed, and maintained, septic systems can impact drinking water.	Н	M
M50	Others (List)	The impacts of this potential contaminant source will be addressed during the enhanced inventory.		

* * * * *

TABLE 5-3

Č

CITY OF WILSONVILLE POTENTIAL CONTAMINANT SOURCE LIST

Site No.	Site Name	Address	Lat	Long	Type ¹	Risk id ²	Risk Ranking	Remarks
	Trojan Enterprises Inc	Wilsonville	45.29050	45.29050 -122.80450	ECSI	CS0	High	Nature of contamination unknown; assume high risk because of cleanup
ci	Snowden, Julie	35960 NE Wilsonville Rd Newberg	45.25556	45.25556 -122.87056	HOT	M24	Low	Cleanup completed
ć	Ion Control	17817 SW Corral Creek Rd Sherwood	45.29083	45.29083 -122.86028	HWMS	R19	High	Trucking/garbage collection facility
4	Bishop, B.	36860 NE Wilsonville Road Wilsonville	45.25694	45.25694 -122.86083	HOT, LUST	M23	Medium	
5.	Broadacres Store	18536 Butteville Rd NE Aurora	45.26417	45.26417 -122.84000	LUST	M23	Medium	
0.	Chaffey & Sons, Inc.	23512 Schultz Road NE Aurora	45.26000	-122.82944	LUST	M23	Medium	
7.	Grossen, Gary	10691 Main St NE Donald	45.22361	45.22361 -122.84194	LUST	M24	Low	Cleanup completed
8.	Judy's Country Store	10650 Main St Donald	45.22361	45.22361 -122.84250	LUST	M24	Low	Cleanup completed
6	Porter Farm	33925 NE Kramien Road Newberg	45.28083	-122.89111	HOT, LUST	M23	Medium	Cleanup in process
10.	Task, Steven	12300 SW Moffitt Court Wilsonville	45.29000	45.29000 -122.76000	LUST	M23	Medium	

5-14

Site	Site Name	Address	Lat	Long	Type ¹	Risk id ²	Risk Ranking	Remarks
ź	Thompson, J.	7628 Champoeg Road NE Saint Paul	45.25167	-122.90639	HOT, LUST	M23	Medium	
2	Century Meadows Sanitary System, Inc.	11570 Blue Heron Lane NE Aurora	45.26556	-122.82528	SIS	R20	High	High risk because of potential for wastewater spill
new	Milky Way Dairy Inc.	19527 Case Rd. NE Aurora	45.21889	-122.87583	SIS	A07, A08	High	Dairy operation, assumed to have large grazing livestock and wastewater lagoons
and a second	Todd Construction	Wilsonville	45.30071	-122.79211	SIS	C50	Medium	Assumed medium risk because nature of site activities unknown
	Wil-View Farms	15135 SW Wilsonville Road Wilsonville	45.26472	45.26472 -122.84806	SIS, LUST	A04	High	Irrigated crops and trees
16,	City Of Wilsonville	30000 SW Town Center Loop E. Wilsonville	45.29403	45.29403 -122.77561	UIC	M10	Medium	Soccer field
17.	JB Short Stop	JB Short Stop Wilsonville	45.29160	-122.80490	UIC	M10	Medium	
18.	Chaffey & Sons, Inc.	23512 Schultz Road NE Aurora	45.26000	-122.82944	UST, LUST	M23	Medium	
.61	Chevron USA Inc.	1915 SE Harrison Wilsonville	45.29290	-122.80370	SU	M23	Medium	
20.	Living Enrichment Center	5100 Crater Lake Avenue Wilsonville	45.29298	-122.81396	UST	M27	Low	
21.	T W D Inc	9205 SE Holgate Wilsonville	45.28960		-122.80862 HWMS, UST	R50/M27	Medium	Nature of hazardous materials unknown; assume medium risk

5-15

						1		
Site	Site Name	Address	Lat	Long	Type ¹	Risk id ²	Kısk Ranking	Remarks
No.					TTTT A TTTTT	LCAMO2 G	Medium	Nature of hazardous
22.	Trojan Enterprises Inc	Jewell	45.28990	-122.80310	45.289900 -122.80510 HWMS, US1 122.80510	17MMCN		materials unknown;
		Wilsonville						assume medium risk
			100000 28	00092 001 00000 27	T211	M27	Low	
23.	West Linn Wilsonville School District	11265 SW Wilsonville Koad Wilsonville	000%2.04	1771-				
						VCYV	T OIL	Release cleanup
24.	William A Callahan	29500 SW Grahams Ferry Road	45.29306	45.29306 -122.81389	USU .	M124	r0w T	completed
								AT ATA Lat hut
25.	Northwest Pipeline	Wilsonville					High	Not on DEQ list out included due to
								location under
								Willamette River
وي المحمد ال								upstream of WTP
								DV/ novice and
, e	-	TACTO Chamacon Dood NH	45 25528	45 25528 -122.92028	WPCF	R03	Medium	K V parks and
20.		10/9 Champoeg Noau, 142						campsite sewer
	Recreation Department	Saint rau						systems

Notes:

I Oregon DEQ PCS Inventory Category:

ECSI = Environmental Cleanup Site Information System HWMS = Hazardous Waste Materials Storage

HOT = Heating Oil Tank

SIS = Water Quality

SWMS = Solid Waste Management Site

UIC = Underground Injection Control

WPCF = Water Pollution Control Facility

2 DEQ Risk Identification Number as identified in Table 5-2.

SUSCEPTIBILITY ANALYSIS

METHODOLOGY

Susceptibility can be defined as the potential for contamination in the drinking water protection area to reach the intake on the surface water body being used by a public water system for drinking water purposes. Whether or not a particular drinking water source becomes contaminated depends on three major factors: 1) the occurrence of a facility or land use that releases contamination, 2) the location of the release, and 3) the hydrologic and/or soil characteristics in the watershed that allow the transport of the contaminants to the surface water body.

A susceptibility analysis is performed by overlaying the results of the potential contaminant source inventory with the map of the designated sensitive areas. The results of the inventory are analyzed in terms of land uses; the potential contaminant source time-of-travel relationship or proximity to the intake site; and their associated risk rating.

When several high or medium risk sources are located within the sensitive areas, the public water system may also be said to have a high overall susceptibility to contamination. If a public water system's drinking water source is determined to be of high susceptibility, it is recommended that the system identify those condition(s) that lead to the high susceptibility and take steps to protect the resource (e. g., reducing soil erosion, working directly with facility operators to implement sound management practices, etc.). Water systems with a low susceptibility should consider all identified factors that could lead to higher susceptibility in the future and take action to prepare a strategy to protect the resource in the future.

RESULTS

(

The results of the potential contamination source inventory are combined with the locations of the sensitive areas to determine the most susceptible areas within Wilsonville's Drinking Water Protection Area. The total number and types of potential contaminant sources within the sensitive areas are summarized in Table 6-1.

TABLE 6-1

Description	Number Within Sensitive Areas	Number Outside of Sensitive Areas	Total Number Within Drinking Water Protection Area
Higher and medium risk PCS sites	10	10	20
Higher risk PCS sites	5	1	6
Medium risk PCS sites	5	9	14
Lower risk PCS sites	3	3	6
Total PCS sites identified	13	13	26

POTENTIAL CONTAMINANT SOURCES SENSITIVITY BY LOCATION

Those areas where the moderate-to higher-risk potential contaminant sources fall within the sensitive areas are the most vulnerable. In general, potential contaminant sources within the sensitive areas show that the City of Wilsonville's surface water supply is moderately susceptible to contamination from the identified PCS sites. Six of the 10 medium to high risk PCS sites in the sensitive areas are associated with underground storage tanks. If properly managed, the real risk to surface water quality is relatively small. These sites pose a greater threat to groundwater quality than to surface water quality. Because the dominant soil types in this area are fine-grained, the likelihood that groundwater contaminated from underground storage tank releases would result in surface water contamination is perhaps less than the susceptibility analysis procedure would suggest. Nonetheless, the susceptibility analysis provides the City water system managers with information on where the greatest risk occurs and where to focus resources for protection.

SUMMARY AND RECOMMENDATIONS

This assessment provides a basis for focusing limited resources within the community to protect the drinking water source. The delineation provides the community with information regarding the location of the land area that directly supplies the surface water intake, i.e., the Drinking Water Protection Area. The sensitive areas are those where potential contamination sources or land use activities, if present, have greater potential to have an impact on the water supply.

The results of this Source Water Assessment and the recommendations based on the results are summarized below.

- The City of Wilsonville's public water system historically produced groundwater from a wellfield. This wellfield now serves as an emergency backup and supplemental water system. A separate Source Water Assessment Report has been prepared for the groundwater supply wellfield.
- The new surface water system draws water from the Wilsonville River. The source of this water is the Willamette River Watershed. Wilsonville's Drinking Water Protection Area extends upstream a total of approximately 7.85 miles to include the area within the estimated 8-hour time of travel to the intake and encompasses a total area of approximately 34.4 square miles. Included in this area are all or portions of a number of tributaries to the main stem, including Corral, Mill, Spring Brook, Champoeg, Mission, Case, Ryan, and Yergen Creeks.
- Within the Wilsonville Drinking Water Protection Area, there are large areas identified as sensitive to contamination. Areas that are adjacent to the streams/river, areas that have high soil erosion potential, high runoff potential, high permeability, moderate to high landslide or debris flow potential, or higher-risk land uses associated with high potential contaminant source risk should all receive special considerations for protection.
- A review of the inventory and the sensitive areas indicates that the Wilsonville public water system has 26 identified potential contaminant sources within its Drinking Water Protection Area and 10 PCS sites identified as high or medium risk sources within the sensitive areas in the Drinking Water Protection Area.
- Due to the streamlined procedures for conducting the source water assessments, the results could potentially create a misperception that the "human activities" within the watersheds are higher risks than natural conditions or disturbances such as landslides and storm events. For example, it would be erroneous for communities to conclude that their source water was not at risk from natural conditions that produce sediments if there were no potential contamination sources identified within their watershed. It is recommended that the community take steps to ensure the natural conditions (both those identified in this

7-1

assessment and any other additional areas identified by the community) within the watershed are considered when developing strategies for protection.

• The primary intent of this source water assessment is to provide the background information for the community to use in developing a local Drinking Water Protection Plan. The City of Wilsonville intends to assemble a team to assist in the development and implementation of a Drinking Water Protection Plan.

* * *

SECTION 8

REFERENCES CITED

- Environmental Protection Agency, 1997. State Source Water Assessment and Protection Programs Guidance, US EPA Office of Water, EPA816-R-97-009, August 1997. http://www.epa.gov/ogwdw/swp.html
- Natural Resource Conservation Service (NRCS). Soil Survey Geographic Database (SURGGO), National Cartography and Geospatial Center, Fort Worth, Texas. http://www.ftw.nrcs.usda.gov/ssurgo.html
- Oregon Climate Service (OCS), 2002. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon. <u>http://www.ocs.orst.edu</u>
- Oregon Department of Environmental Quality, 2000. Source Water Assessment Report, Seaside Water Department, Oregon.
- Oregon Department of Forestry, 2000. Debris Flow Hazard Maps. http://www.odf.state.or.us/gis/debris/html
- Source Water Assessment Plan: Implementation of the Safe Drinking Water Act 1996 Amendments, 1999. Sheree Stewart, Oregon Department of Environmental Quality, and Dennis Nelson, Oregon Health Division, February 1999. http://www.waterquality.deq.state.or.us/wq
- US Department of Agriculture (USDA) Soil Conservation Service, 1979. Soil Survey of Clackamas County Area, Oregon. Prepared in cooperation with U.S. Department of the Interior, Bureau of Land Management, and the Oregon Agricultural Experiment Station.
- USDA Soil Conservation Service, 1972. Soil Survey of the Marion County Area, Oregon. Prepared in cooperation with the Oregon Agricultural Experiment Station.
- USDA Soil Conservation Service, 1974. Soil Survey of the Yamhill Area, Oregon. Prepared in cooperation with the Oregon Agricultural Experiment Station.
- USDA Soil Conservation Service, 1981. Soil Survey of the Washington County Area, Oregon. Prepared in cooperation with the Oregon Agricultural Experiment Station.
- US Geological Survey, Oregon Hydrologic Units. http://oregon.usgs.gov/data_dir/orehuclist.html
- US Geological Survey, 2002. Surface water data for Oregon, monthly streamflow data. http://waterdata.usgs.gov/or/nwis/monthly/?site_no=14198000&agency_cd=USGS

Washington Forest Practices Board. 1993. Standard Methodology for Conducting Watershed Analysis, Version 2.0, October 1993.

	~
4	*
	80
E	~
•	- GEV
÷	- N
	D
5	~ v~
,	· · ·
	\sim
	٤.
	۰Ŀ.,
E .	
	55.
and the second	. N.
	- C. 4
- 181 O C	Circa.
- £111	00 a
100	ંંગ્ર
	دسته ا
	62
	high-
·	
	-
-	5
N N	

CITED STATES " ARTMENT OF THE INTERIOR	VATER RESOURCES DIVISION)	Fortland SU District, Oreg
UNITED STATES 1 JAF	GEOLOGICAL SUR	Fortland SU

File No. (No. 4 - 19 80.00	19 101011 Uage Discharen Diffuture 10101 Uage Discharen Diffuture 1010 Frid Or Or 101 Frid Frid Or 101 Frid Or 102
ARTMENT OF THE INTERIOR VATER RESOURCES DIVISION) District, Oreg.	70m 1 Discharge Differ 2 2 000 010 2 2 200 20 2 2 2 3 20 2 2 2 00 2 2 2 00 2 2 2 00 2 2 0 00 2 0 00 0 00 000 0 000 000 0 000 000 0 000 00
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
<u>រ</u> ှိA :	Ken Ch Distribute Differ halight Distribute Differ Differ Fen Ch Ch Ch 55:00 23:00 35:0 20 23:00 35:0 20 23:00 35:0 20 24:00 37:0 20 24:00 37:0 20 24:00 37:0 20 24:00 37:0 20 26:00 37:0 20 26:00 39:0 20 27:00 39:0 21 25:00 39:0 21 27:00 39:0 22 28:0 28:0 20 27:00 39:0 21 27:00 39:0 22 37:0 39:0 24:0 27:00 39:0 26:0 27:00 39:0 28:0 27:00 39:0 29:0 29:00 39:0 20:0 29:00 29:0 20:0 29:00 29:0 20:0 29:00 20:0 20:0 29:00 20:0 20:0 29:00 20:0 20:0 20:0 20
GEON Williamette River at from Oct 1 10 62	Output Distance Offer Offer <thoffer< th=""> Offer Offer</thoffer<>
Raling table for	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
700 131	03/00/05 01:46 527 34/0 03/00/05 01:46 527 34/0

. .

Kaling table for		MIM	Willamerte	* e . F	RIVER	at Wilson Ville, Oreg.	W.15	an V.	Willson Ville, C	Oreg			4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3	5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1	4 2 1 1 1		
			, from	Oel 1	. / ·	19.6.2., 10			. 1		from	, , , , , , , , , , , , , , , , , , ,		., 19	, to.				_
Discharge	Differ- ence	Oage height	Discharge	Differ- euce	Gage beight	Discharge	Differ-	Oage height	Discharge	Differ-	Gage height	Discharge	Differ- ence	Onge height	Discharge	Differ- ence	Oage beight	Discharge	Differ-
Ċ	సి	Pid.	õ	ch	Pert	cł	5	Yeat	Š	5	Pret	ŝ	જ	Pad	5	5	Per	8	<u> </u>
6.2000	600 600	67.00	79,500	650	69.00	88 000	250	2/.8	103 000	800	73.00	000 611	800	75.00	135,000	800	77.00	151 500	Ţ
62600		01.	75,150	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ŝ	88,750	2 4 7 1	ġ.	123,800			119 800		QI .	135,800		78.0	160,000	· _ ·
002 69		. 20	75,800	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R	89,500	*	8	109 600	+ + + + + + + + + + + + + + + + + + +	*****	120,600	1	8	136600			169 000	
63,000		.30	76 450	f 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	R	80 250	f 1 1 1 1 1	Ŗ	105400		8	121400		R	137,400	-	80.0	170,000	
64, 400	1	0%.	77,100		Ş	61,000		ę.	106 200	1	ş	002 221	-	ę.	138 200		0.10	187,000	·
65,000		. 50	77,750		8	91,750		8	107 000	1	8	123,000		S.	139,000	1	82.0	197,000	
65,600		99'	78.400		8	92,500		S	107,800	2	8	123 800		- 99	139,800	1	83.0	207 000	 ! ح
66,700		. 70	7050		6	23,250		.10	108600	1	, 70	126600	-	2	140,600	1	84.0	217,000	<u>' ה</u>
66,800		QN.	79,700	1	.	94,000	*	8 .	109,400		8	125,400		8	141,400	*	65.0	227,000	
67,400	600	8.	80,350	650	8	24,750	750	8	110,200	800	8	166,200	800	ŝ,	142,200	800	86.0	86.0 237,000	00001
.68,000		68.00	81,000		70.00	25,500		72.00	000 111		74.00	000 227		76.00	143,000		87.0	247,000	
68.650		. 10	81,700		10	26,250		.10	111,800		.10	127,800		01.	143,850		88.0	250,000	
69,300		8	82,400	s F F F F F F F F F F F F F F F F F F F	8	97000		8	112,600		R	009 821		8	144,700			269 000	2000/1
62,250		æ.	83,100	1	×,	97.750		80	113,400		R	000 621		90	145,550	1		280,000	
79,600		. \$0	83,000		Ş	98.500	, , , ,	9	112,200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ş.	130,200		ę	146,400	1	91.0	292,000	
21,250		08.	89,500		\$	99,250		ŝ	115,000		8	131,000	-	- 93 -	147,250		92.0	304 000	
.24,800		8 9.	85,200		8	100,000		ŝ	115,800		ŝ	131,800	-	8	148100	1	93.0	316,000	
72,550	4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8	o	85,900		.70	10 100250		. 70	116,600		8.	132,600	T 5 5 7 8 8 8 8	.70	148,950		94.0	94.0 329 000	k.
23,200.		09 0	86,600		8	101,500	1 1 1 1 1 1 1 1 1 1 1 1	8	117400		ŝ	133 400		8	199,800		95.0	342 000	_ !
73,850	650	8.	87,300	700	8	105.250	750	8	118,200	800	8	134,200	800	8	150,650	850	•		4
uis table is	npplica	ble for	This table is applicable for open-channel conditions.	ael condi	tions.	It is based		đ	discharge measurements made during	Boureme	ints ma	de during .				1			1
今日日安安安安安县 王文县	4 # # # # # # # # # # # # # # # # # # #	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9 4 3 9 4	8 4 5 6 7 1	• • · · · · · · · · · · · · · · · · · ·	and	is		well	well defined between	l betwee		CIB	ofs and		ofs. Q	omp by	Comp by And-date 214-65	9
Extended	above		90.0 Ff	64 4	141	64 WAH 6-2-66		1 } 7 7 7 7 1 1	15		1	. 8 2 3 4 + 1 5 9 9 4 + -	3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 8 8 8 8 8 8 8 8	* * * *		> E	Tekle No	Man	12
2 ~ (•			j

14 V 14

RM= 7, 85 m. Station <u>14-19</u> BD.	during the		REMARKS					Cable meas.	i i								all a		-				U.S. GOVERNMENT PRINTING OFFICE : 1965 OF-151-053 1 7 7 7 9 17+893	Q 2 18557 × (R ² 0.11	
KM.	2,640 m	· · · · · · · · · · · · · · · · · · ·	Mear. rated		0	8 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5/4	Sp.	I I I I		৫	9			\$	Y	IT	V	1L	• • • • •	R			2 18	
(7		υ	- 	0.7	1	\$	1.7	6.7		8.7	, 4		1.5	1.6	1.7	1.6	1.5		1	2.0	ہ ز		Q	
OF THE INTERIOR			Gage height change	Feel	5	5 1 1 4 5 7 7 7	Ó	0			.07 1.8	* 0		21.07	ð tr	0	10-	20-	- 02		27 +01	27 - 05			
THE THE	INISION		Num- ber meas.	۲ م	5		2 7				42 4		4		22	26	26	27	2	+		•	卢	-	
Ğ	OURCES D		Method	N,	\$		N/ DO	} h	-		2.2	N/ X	4		00	N/si	2/8	4/20 /00	6.2.		8.	2.00		0,9836	
AENT	ATER RES		Percent diff.		51-10	- - - - - - - - - - - - - - - - - - -	-0'	0+0-1	0+1.7		+2.5	- 30 -0.9	()		0.2	0-0.0	0+0	0+0.0	-1.50 + 0.9	1 1 1 1	-1.00 + 1.6 2/8	50 - 0.8 .2/8	7	(K2 0.9836)	
EPA	RVEY (W	9342	Rating Shift adj.	1	-2,30		-/./~	1 2	К 		- 20				- 30	-/-/	-/.2	0-/-2	5. 1			1	10.46		
STATES DEPA	GEOLOGICAL SURVEY (WATER RESOURCES DIVISION) 1 comutil 7 d Orad	15X.4.4.4.4.	Discharge	Ś	7,440	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.540 -1.10 -0.9	1740050 + 0.6	17,600 - 50 +1.7		2.5.30020 +2.8 2	04/20		14,600 - 30 3.4	9310 -30 -0.2	7240 -1.10 -0.8	6 360 -1.20 + 0.3 · 2/8	16.300-1.20+0.6 :28 27-02	001 11		13, 100	24,200	Checked by WAH	0804.1	
TED ST	. Wilso	78440	Gage height	Frei	55.64	1	.57 55.16	97 56.74	56.74		1.3758.22			57.33	54.26	5435	.40 54.10	.90 57.15	•		56.07	58.47	6	, ° •	
UNITED	101 101	27F 6	Mcan	Fbs	044		.57	97	.98		ь. Т.			1.07	58	45	40			1	%L ·	1.30	· · · · · · · · · · · · · · · · · · ·	, b73	
00	© © Willsmatta Rivar at Wilsonville Oraș		Ares	Salt	17.000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16.600	17.900	18,000		18.500		antor "	18,400 1.07	16,100	16.200	16,100	18.200	17 200		17,300	18,600	Computed by	H= 52, 673	
098'82	0 1 2 2		Width	Freel	665		650				6 70	263	64.00	6/0	650	660	660	680	660		650	675	Compu		
Q = 7			Made by	H:5 k	Word	9 4 4 3 3 3 4 3 4 3 4 3 3 4 3 4 3 4 3 4	Swith Word	Kraus 4 Laenen	hee	-			Kraus +	Calline	Reraus Smith	Gall: 40 Jun: 16	N I		- C.	a de s = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	Lystrom & Hart	Q.B. Swith	÷ 1 1 3 4 4 4 4 4		
		Ducharge measurements of	Date 96.7		×44. 14	5 * 2 5 # 2 5 # 2 # 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4	Dek 9	NoV.29	Nov. 2.9	1962	`	24		1.1.0. Mar.2.1	121 Nas 8	0;	-	A U.9.24	Se ert. 18		0.1.2	061.31	Copied by Crew		
9-207 (Rev. (-65)		LUSCINA	ź		200	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	165	166	167		16 5	And and a second second second		1.10.1	LTL.	772	173	174	175	÷ 1 1 4 4	176		Copie		
								÷	~~~~ ** **	~ ~~		~~				∩ <i>1</i> ₩©	107	ene:	0.	95	: /.∩	Z0/9	30/00		14 11 1 4 4 4 4 4 4 4

6

ischarge meas	Discharge measurements ofWI	liamet	WILLEWELLE KIVET	AUOSTIM JE	TRACT	11777 N768	Б					*******		an guring to	during the year ending Sept. 30, 13
No. Date		Width	Arca	Mcan velocity	Gage	Discharge	Rating - Shift adj.	Percent diff.	Method	Num- ber ber sec- tions	Gage Gage height change	Time N	Mear. rated		REMARKS
175 Septula	Kielhorn, 18. Hart	Fee 6.60	59,10 Fpr Fur 17,200, 0.65 56.00	Fp1 0.65	Fut 56.00		Fut -/.50	70.9	3.	2.7 Feet	Fort	1.5	N.		
176 Octe	Lystrom	650	650 17,300 .76 56.07	.76		13,100 -1,00 +1.6 38 27 tol 2.0 6.	-/.00	+ 1.6	(2)	27	t. 0/	2.0	Ś		
127 042.21		675	675 18,600 1.20 58.47	1.30		24,200-50 0.8	150		28 27 .05 1.5 6.	27	05	12 m	e		2月上四寺之弟子— 下是若道言之语 卡坦 月之 隆帝之月 10 天
17.8. Dec.6		*	28,200	3.65	71.63	715 28,200 3.65 71.63 103,000 - 50 1.0	- 50		28 29 +13 2.0 E.	29	£/3	2.0	4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
1969	Xie				2 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				, r	2 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4	3 5 5 2 4 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
117 1 reb. 5. 180 Mar. 12	Kielkorn + Kielkorn +	640	690 20,700 1.84 60.85 665 18 100 1.12 5702	1.12		38,100 20 300	3	-0.3 .48 -0.5 48	1	2 28	0 + 03		ও ও	50	50 c - cable
181 Apr. 25		660	18.000 1.10 57.04	1.10		19,800	Ì	3. 4. 5	1	27		1	4	30C	
182 Junes.	6.8. Smith	660	17,600 1.02 56.20	1.02		18,000	1	<i>ب</i> 10		27		14	(~	300	,
183 July 16	Gallino +	660	16,700 .52 55.31	52		8,640-1,50 2.9	-1,50		0). (0)	27	27 0 1.2 6.	1.2.		30	30 C.
4 /1429	184 Aug 29 Laenen	655	16,500.59 54.87	.59	18:45	9,750 - 80 + 0,9	80	+0.9	13 8%	27	0	<i>/</i> .4 <i>G</i> .	in .	306	
185 Octa	Hubbardt	650	17,300 .77	.77.	55.98	13,400-80 4.8	-80		4/2	27			C.	300	<i>c</i> .
				3 5 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		3 3 8 8 9 1 3 3 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8									
· · · · · · · · · · · · · · · · · · ·	2 5 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7				; 1 1 1 1 1 1		4 5 7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 6 5 5 7 8 5 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 8 5						• • • •	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 . 1 . 4 . 5 . 5 . 7 . 7 . 7

AND OK DIPL +++ WWW WERE AND AND STATE

AAA PA

Q203 521 3450

20/90/20

91:70

٤,

No. Date (9/f) Math by- field Math by- by- (9/f) Math by- field Math by- field <th></th>	
Fin 5,1 Fr Fr Ch Fr Ch Fr Fr 5,15 16,500 0.5954.87 9,750 - 80 709 2.8 650 17,300 17,55.98 13,400 - 80 7,1 28 665 17,900 299 57,11 17,800 - 80 7,1 28 80 17,800 143 58,62 25,400 - 40 0.4 78 80 17,800 17,900 24,600 7,1 28 650 15,000 139 25,500 - 40 0.4 78 650 15,000 143 58,62 25,400 - 40 0.4 78 80 17,900 139 25,500 - 40 0.4 78 80 17,900 139 25,500 - 40 0.4 78 80 17,900 139 25,500 - 80 7.2 78 610 17,400 139 54,00 - 13,400 57 610 17,400 13 400 71 25,500 7,80 57 610 17,400 70 56 83,40 57 610 17,400 70 56 83,400 7,13,400 57 610 17,400 70 56 83,400 7,13,400 7,8	Gage height Time Meas. REMARKS change
650 17,300 17 55.98 13,400 - 80 70.8 28 665 17,900 .99 57,11 17,800 - 80 1,1 2.8 700 24,600 .43 58.62 25,400 - 40 0,4 78 700 24,600 139 25,400 - 40 0,4 78 700 24,600 139 25,500 - 80 7.2 78 650 15,000 14 7 12,000 - 80 7.2 78 650 15,900 0,40 6,420 5,500 7.8 6420 1,39 5,500 0,40 6,420 5,500 1,2 8 6420 1,39 5,500 0,40 5,500 5,500 1,2 8 6420 1,39 5,500 0,40 5,5000 5,500 5,5000 5,500 5,500 5,5000 5,5000 5,500 5,500 5,500 5	Fut 1# 0 1.4 6.
665 17,900 .99 57.11 17,800 -80 1.1 38 80 17,800 143 58.62 25,400 -40 0.4 78 700 24,600 3,25 68.65 79,900 -80 1.2 38 650 15,900 139 25,500 -80 1.2 38 650 15,900 0.40 6,420 5,73,900 -80 1.2 38 6,420 1,39 25,500 -80 1.2 38 6,420 1,39 1.3,400 5,12 13,400 5,13	
Remillard bB.C 17,800 143 58.62 25,40040 0.4 78 21 Kielhorn bB.C 17,800 143 58.62 25,40040 0.4 78 21 Kielhorn bS.C 17,800 17 12,00080 1.2 78 28 6 cline bS.C 18400 139 255 68.65 79,90080 1.2 78 27 Fallino bS.C 18400 139 25,50080 7.2 78 27 Fallino bS.C 18,900 0.40 6,420 5,50 26 Kielhorn bS.C 15,900 0.40 6,420 5,50 26 Kenillard bS.C 15,900 0.40 6,420 5,50 27 Kenillard bS.C 15,900 0.40 8,420 5,50 27 Kenillard bS.C 15,900 0.40 5,50 8,340 5,50 27 Kenillard bS.C 15,900 0.40 5,50 8,340 5,50 5,50 5,50 5,50 5,50 5,50 5,50 5,	27.02 1.5 6.
Kielhorn Kielhorn <th< td=""><td>1</td></th<>	1
6 cilline 6 Stol 15 (cold) 77 72,000 77 72,000 8 sinth 6 Stol 15 (cold) 79 25,500 73 73 8 sinth 6 Stol 15 (cold) 73 75 75 75 8 sinth 6 Stol 15 (cold) 73 75 75 75 8 sinth 6 Stol 15 (cold) 74 74 74 75 8 sinth 6 Stol 15 (cold) 44 74 74 75 8 sinth 6 Stol 15 (cold) 44 74 74 75 8 sinth 6 Stol 15 (cold) 45 74 74 75 8 sinth 16 (cold) 17 400 .71 56 8 7 7 8 sinth 16 (cold) 17 400 .71 56 8 17 7 7 8 sinth 16 (cold) 17 400 .71 56 8 3 2 7	2 5 5 1 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5
Hubbert Hubbert BS 18400 139 25,500 f Smith b B5 18400 139 25,500 Gallino 650 15,900 0.40 6420 Kiethon b 600 16,000 46 Kiethon b 60 16,100 46 Kiethon b 60 16,100 46 B 5mith b 10 17,400 56,12 B 5mith b 10 17,400 31 G 5. G. Smith b 10 17,400 31	5
Galino 650 15,900 0.40 6.420 6.420 7,8 Kielhorn 660 16,100 46 7,480 6.420 7,480 7,480 7,480 7,480 6.8 Kemillard 665 16,400 150 8340 7,480 7,8 b.B.Smith 600 17,400 37 5612 13,400 7,8	
Kielhorn f Smith blo (belo 16,100 46 7,480 2,6 Rewillord ble S (b,400 150 8340 7,780 78 b.B.Smith boto 17,400 77 5612 13,400 78	1.5 15/0
Remillard 1. 400 .50 B340 .50 B340 .58 B340 .58 6.6. 5.5 mith 670 17,400 .77 56.12 13,400 .3.8	
6. B. Smith 1070 17,400 .77 56.12 13,400 .78	
	04 2.2 6 New site

ana fik

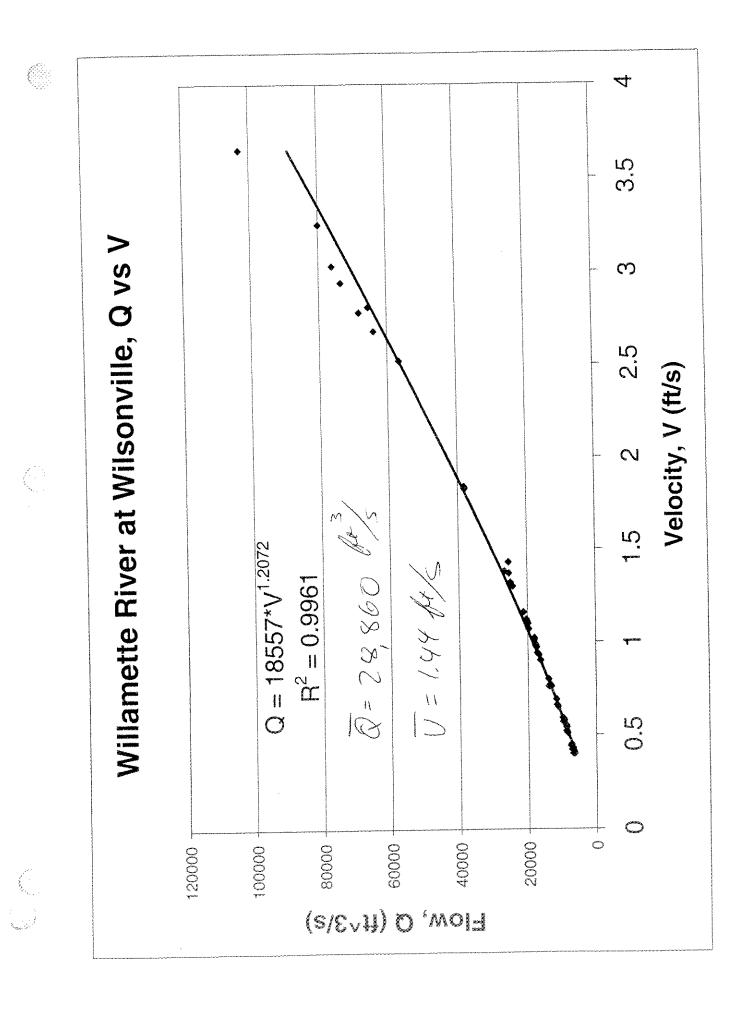
* * * * * * * * * * * *

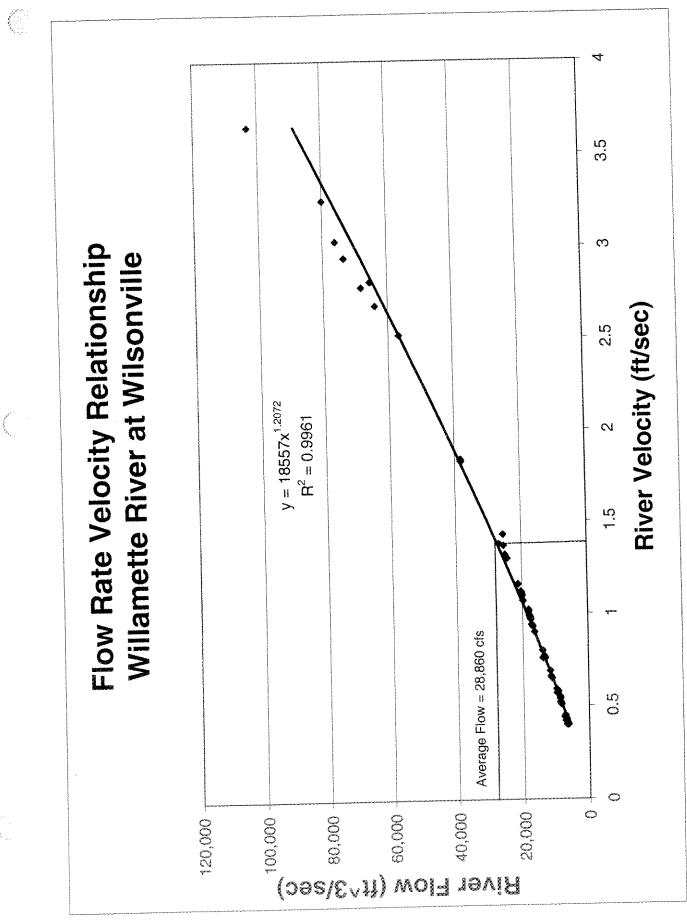
No. Pare Made by- Width Area Mean Game 19.3 59.97.53 55.0174 Fm 59.9 Fm Fm	Width Arra Mean Carr Discharge For Sq. Fran Carr Cr Fran Sq. Fran Cr La, 4.00 0.5/54.9 a. 3.40 La, 4.00 a. 77 56. /2 13, 4.00 700 25, 100 3.03 67.55 74,000	G	Jain artrancerta de tatter statut	Jreg.	5 2 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	sonville, Oreg.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			during the year ending Serie 30.1
Smith + Smith + Smith Kielhorn Kielhorn Gallino + Gallino + Gallino + Smith Smith Smith Smith Smith Smith Smith Smith	84) Fp 6,4-20 0.5, 4-20 11 7,4-00 11 5,100 3.03	·	Dircharge	1 1	2 Percent Me	Method meas.	m. Gage Pei, height	Tune	Mcai	REMARKS
Smith Kielkorn Kielkorn Gallino + Gallino + Gallino + Smith Smith Smith Smith Smith Smith Smith Smith	1100 303	Fui Fui	s. 340.	Feel.	and the second	1011 1011		3 #	1	
Callino + 100 Callino + 100 Smith 695 Smith 695 Kielhom + 675 Kielhom + 650 Smith 650 Smith 650 Andrea Andrea Andrea Andrea	5,100 3.03	5 le. 12	13,400	7.0.2			2.7 .04 2.2	6.0	6/	
Callino + Smith Smith Smith Kielum f Kielum f Bell f Bell f Bell f Andresou	6400		76,000		2.2	7.8	20 + 08 *		2	
Nu buctiss Nu buct Saith Kieluum f Ball f Suith Andresu	2000 2000		56,600		t3. 12	(10) [0]	28 28 ±02 16	1.6	6.	Hill W. W
Kielhom (675 Kielhom (655 Bell f Smith (650 Andreson 650 Andreson 650	23,000 2,68 65.53		63900	1	2.0 2	N N Q	2/:	ی - -	9	77 - 777 97 7° 78 - 98 - 7°
Bell F 665 Ball F 665 Smith 650 Andrea 650 Andrea 650	19400 1:38. 58.87.		26,700	.30 -1.1	1.1 2,		0	1.2	9	* 1 2 3 3 2 7 3 5 5 5 3 3 3 3 3 4 4 4 5 5 5 5 5 5 5 5
Smith 650 Anorison 650 Anorison 650	18,100 1,01	56,83	18100	.30	1.6		N O I	ŝ	Ċ	
Andreson 650 Estanth 650	16,000 055	54.40	8,770	65 0	1. 6. 12 0. 6			L 7	34	1 2 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7
\$ Simit 650	16,000 0.54	0.54 54.39	8,680	.65 0.2	2 28			1.2	40	
	16,000 0.43 54.45		6.880	1.40	t.1 38		N 0, +	د. ب	s/a	2) 1) 1) 1) 1) 1) 1) 1) 1) 1) 2) 1) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2
203 Rug 10 do 650 16	16,100 0.41 54.94		······	1.40	3,1 :2			8.1	J. L.	4 1 4 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
670	16,900 0.69 55.71		112600	7.20 t5	ci/se	·····	0	17	6	
205 Oct 6 \$ Smith 675 17	17,300 0.80	56.75	13,900	-/20	0, 4 0, 4	12	در 0	- - -	5	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							1	7 2 2 4 4 4 5 2 4 6 4 7 7 7 8 7 8 7 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 8

(P. (

chary	de meanrei	Discharge measuremeans of Wills, we the	S.M.C. HS.	Liyer	and the		Wilsenville + Uneg.	K-+-K		*******	* # ? * 3 4 8 6	********	********			outing the year church why was not	Sept. Ju, 12.
, d 2.		Made by-	Width		g.g	294	Discharge	Raúng Shíft adí,	Percent diff.	Method	Num. ber mcas.	Gage hcight change	Time	M cas.	H L'H	H200 REMARKS	SX
+	1247	Curtiss	Fort	Sq J?	Fbi	Feat	, ch	Fuel		3		Feel	44	6			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.04 Sept. 1	& Sourth	670	16, 200	0.69	54.76	11,600	1	10.5	×9	2	0	NY	4	1		
S 0	006 6	Anderson 8 Surson	کا د د	/ 7 305	0	56.75	12,900	- /3	-1328	N. bo	62	2 2	1.2	\$			
	No. 23	0	6 25		14	58.85	24,900	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10.8	NO	22	+.06		C			
	Dec. 20	40	¢ ¢		8.5		65400		10	20	27	8	14	9	1           	H.M.M. = 72.2.2	2.22
	Feb. 9	do	675		1.83		38100		t.0.2		27	Ę,	1.4	6		H.M.M. = 80.48	30.48
Č.		Muddand Saith.	695	24 500	67.5	6.5.46	68.200		to	N/90	N	60.1	۲.5				\$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
0		Andoresian &	0 60 73	20,700 1,83	1, 83	61.02			16	N/90	2	+00+	1.6	હ		• • • • • • • • • • • • • • • • • • •	\$ 1 6 a a a a a a a a a a a a
1	<u>i</u>	board	670		////	57.18			14	·	2.7	0	1.2	i.			6 5 3 1 7 1 9 5 8 8 7 1 8 8
2		Anderson + Tippett	650		42	55.40	2110-22	1 1	1	2/00	27	10-	1.8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 § 7 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
(7)	Septid	213 Septil + Galling	655		.66			41-0	t 1.8		27	0	1.4	Ċ	1 		, , , , , , , , , , , , , , , , , , ,
~	214 Octas	Bjorff, Y Smith, Y Lakers.	665		.54	(6,800 . 57 55.48	9,640-1.4 0.5	4.1	0.5	9/20	2.7	0	1.9	Ö			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					6 2 2 4 4 8 1 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 5 7 7 8 7 8									
<b>.</b>									1 5 5 6 7	/ / 1 } ; ;	 } & # # # # # # # # # # # # # # # # # #						,
	2 0 1 2 0 1 1 1 5 3 3 2 2 2 4 4 4 4 4	《子录言言》: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					****	· · · · · · · · · · · · · · · · · · ·	+ 7 + + + + + + + + + +	1 1 1 1 1		- - - - - - - - - - - - - - - - - - -					

· - ~


AILA TAN AAA 🕅


rge measur Dae 1972 Sept. 6	of	1 9 9 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8			DISCHA	AGE MEAS	DISCHARGE MEASUREMENT SUMMARY SHEET	SUMMAR	N AREA	ن. س				
Discharge measurements of No. Date Made 1972 Anderso 2/3 Sept. 6	of									5.1				
Dave 1972 Sept. 6		WILLAN	Willamette River	ver at.	. Wilse	Wilsonville, Oreg.	Oreg	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	* # # # # # # # # #					during the year ending Sept. 30, 19.73
Sept. 6	Made by	Width	Area	Mean velocity	Guge beight	Discharge	Rating Rating Chift Peri	2 Percent diff.	Num- ber wee- tions	Gage height change	Trac	Mea	Air	Hz 0 REMARKS
	derson Saltino	Fart La 55	59 A	44 0.66	Fut 55.97	CA 11,400	-14 t	t.8 %	1	Far O	# 1.4	৩	n constant Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Normality Norma	
ZIN Det. 20 Ande	Flowers Egerk	6.45	16, 200	57	.57 55.48	9,640	-1.4 0.5	N N N	27	0	e-	C		54
215 Dec. 1	Smith	465			76 5715	13,800	-1.8 0.7	.7 6	27		<b>&gt;</b>	৩	f	
216 Jan 16 501.17	2	700	25,000		2.94 67.26	73,400	73,400 0.4 0.3		2	Ç.	1.5	9		
; ;	40	1		el:	57.00	16,800	0.9 0	N/0	27	4 7	1.3	v		
210 Apr. 5 do	90	665	10100	46.	57.01	00121	-0.9 71.8	1,8 1,8	92	20	1.2	5		
218 Nay 15	5 m; -14	660	16,100		42 54.24	1,840	6840 -1.2 +1.0	100		22 +11 1.7	1.7	)\u		
220 July 20 + Gallino.	;	660	16,700.	40	54.70	6,760	16,700 .40 54.70 6,760 -1.6 1.7 .8	7 :8	27	0	1.46.	6		
2	1	sta	tion a	1500	ntinu	ed July	Station discontinued July 31, 1972.	2	8 3 1 5 6 6 8	2 7 8 1 7 8	2 5 7 8 8 8 8			
				1	1 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 3 4 5 1 1 2 9 5	1 1 1 1 1 1 1 1	9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 2 3 7 4	1		
	5 8 8 10 40 17 17 10 10 10 10 10 10 10 10 10 10 10 10 10		5 5 5 1 1 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	k 1 1 3 3 3 4		1111			t 1 2 3 4 4 5	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	4 5 6 8 3		1	
			1 5 5 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			,								
						, , , , , , , , , , , , , , , , , , ,		)   	4 1 1 1	4 4 3 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
and the second				1	£	6 8 6 9 2 % 6 9 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		, , , , , , , , , , , , , , , , , , ,		7 1 1 1 1 1 1 1 1				

and a second second

Lupman wind

FORM





Sensitive Soils	with	High	Erosion	Potential	(Sorted	by Soil	Type)

Soil Type Description	County	Area (m^2)	Area (mi^2)	Area (acre)
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Washington	18,943	0.007	4.68
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Washington	106,571	0.041	26.33
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	64,742	0.025	16.00
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	65,323	0.025	16.14
JOBY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	117,249	0.045	28.97
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	39,569	0.015	9.78
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	39,541	0.015	9.77
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	136	-	0.03
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	8,908	0.003	2.20
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	93,745	0.036	23.16
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	195,178	0.075	48.23
LAURELWOOD SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	18,538	0.007	4.58
LAURELWOOD SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	17,808	0.007	4.40
LAURELWOOD SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	248,641	0.096	61.44
LAURELWOOD SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	103,620	0.040	25.60
LAURELWOOD SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	97,058	0.037	23.98
LAURELWOOD SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	32,169	0.012	7.95
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	105,072	0.041	25.96
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	58,137	0.022	14.37
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	146,240	0.056	36.14
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	72,664	0.028	17.96
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Ciackamas	65,467	0.025	16.18
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	50,842	0.020	12.56
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	501,418	0.194	123.90
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	101,817	0.039	25.16
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	71,336	0.028	17.63
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	44	-	0.01
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	109,141	0.042	26.97
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	16,442	0.006	4.06
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Ciackamas	12,528	0.005	3.10
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	28,111	0.011	6.95
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	98,472	0.038	24.33
	Tota	2,705,468	1.041	668.52

Sensitive Soils with H	High Runoff Potential	(Sorted by Soil Type)

Soil Type Description	County	Area (m^2)	Area (mi^2)	Area (acre)
COVE SILTY CLAY LOAM	Clackamas	74,095	0.03	18.31
COVE SILTY CLAY LOAM	Clackamas	63,320	0.02	15.65
COVE SILTY CLAY LOAM	Clackamas	546,438	0.21	135.03
COVE SILTY CLAY LOAM	Clackamas	105,371	0.04	26.04
DAYTON SILT LOAM	Clackamas	15,656	0.01	3.87
DAYTON SILT LOAM	Clackamas	44,392 5	0.02	10.97
AMITY SILT LOAM	Clackamas Clackamas	5 279		0.07
AMITY SILT LOAM	Clackamas	799	_	0.20
AMITY SILT LOAM	Clackamas	27,530	0.01	6.8
AMITY SILT LOAM	Clackamas	9,412	0.00	2.3
AMITY SILT LOAM	Clackamas	7,598	0.00	1.8
AMITY SILT LOAM AMITY SILT LOAM	Clackamas	40,469	0.02	10.0
AMITY SILT LOAM	Clackamas	57,519	0.02	14.2
AMITY SILT LOAM	Clackamas	29,660	0.01	7.3
AMITY SILT LOAM	Clackamas	247,627	0.10	61.1
AMITY SILT LOAM	Clackamas	24,094	0.01	5.9
AMITY SILT LOAM	Clackamas	104,083	0.04	25.7
HUBERLY SILT LOAM	Clackamas	56,228	0.02	13.
HUBERLY SILT LOAM	Clackamas	70,804	0.03	17.
HUBERLY SILT LOAM	Clackamas	45,632	0.02	11.2 13.1
HUMAQUEPTS, PONDED	Clackamas	53,333	0.02	44.8
HUMAQUEPTS, PONDED	Clackamas	17,346	0.07	44.
HUMAQUEPTS, PONDED	Clackamas	83,523	0.01	20.0
HUMAQUEPTS, PONDED	Clackamas	334,584	0.13	82.
MCBEE VARIANT LOAM	Clackamas	92,087	0.04	22.
MCBEE VARIANT LOAM WAPATO SILTY CLAY LOAM	Clackamas	127.344	0.05	31.
WAPATO SILTY CLAY LOAM WAPATO SILTY CLAY LOAM	Clackamas	49,577	0.02	12.2
WAPATO SILTY CLAY LOAM	Clackamas	42,610	0.02	10,
WAPATO SILTY CLAY LOAM	Clackamas	17,505	0.01	4.:
WAPATO SILTY CLAY LOAM	Clackamas	13,873	0.01	3.
XEROCHREPTS AND HAPLOXEROLLS, VERY STEEP	Clackamas	2,071	0.00	0.
XEROCHREPTS AND HAPLOXEROLLS, VERY STEEP	Clackamas	778,299	0.30	192.
XEROCHREPTS AND HAPLOXEROLLS, VERY STEEP	Clackamas	90,751	0.04	22.
XEROCHREPTS AND HAPLOXEROLLS, VERY STEEP	Clackamas	76,708	0.03	18. 9.
XEROCHREPTS AND HAPLOXEROLLS, VERY STEEP	Clackamas	40,180	0.02	9. 253.
XEROCHREPTS AND HAPLOXEROLLS, VERY STEEP	Clackamas	111,962		233.
XEROCHREPTS AND HAPLOXEROLLS, VERY STEEP	Clackamas	267,056	1	65.
XEROCHREPTS AND HAPLOXEROLLS, VERY STEEP	Clackamas	57,905	0.02	14.
XEROCHREPTS AND HAPLOXEROLLS, VERY STEEP XEROCHREPTS AND HAPLOXEROLLS, VERY STEEP	Clackamas	143,627	0.06	35.
AMITY SILT LOAM	Yamhill	20,630		5.
AMITY SILT LOAM	Yamhill	21,366	0.01	5.
AMITY SILT LOAM	Yamhill	49,754	0.02	12.
AMITY SILT LOAM	Yamhili	12,113	5	2.
BASHAW CLAY	Marion	408,102	1	100.
DAYTON SILT LOAM	Marion	120,521	0.05	29.
DAYTON SILT LOAM	Marion	40,550	1	10.
DAYTON SILT LOAM	Marion	17,758	1	4.
DAYTON SILT LOAM	Marion	58,731	0.02	14.
DAYTON SILT LOAM	Marion	6,337	í	1. 10.
DAYTON SILT LOAM	Marion	42,824	1	2.
DAYTON SILT LOAM	Marion	13,914	1	3.
DAYTON SILT LOAM	Marion Marion	16,764	1	4
DAYTON SILT LOAM	Marion	11,553	1	2.
DAYTON SILT LOAM	Marion	22,550		5.
DAYTON SILT LOAM	Marion	21,648	1	5.
DAYTON SILT LOAM	Marion	14,319	ŧ	3.
DAYTON SILT LOAM DAYTON SILT LOAM	Marion	136,195	1	33.

6 * 4 * * * * * * *,*,*,*,*,*,*,*,*,*,*

Soil Type Description	County	Area (m^2)	Area (mi^2)	Area (acre)
	Marion	8,823	0.00	2.18
DAYTON SILT LOAM	Marion	10,597	0.00	2.62
DAYTON SILT LOAM	Marion	13,297	0.01	3.29
DAYTON SILT LOAM	Marion	1,442	0.00	0.36
DAYTON SILT LOAM	Marion	63,279	0.02	15.64
HOLCOMB SILT LOAM	Marion	19,946	0.01	4.93
LABISH SILTY CLAY LOAM	Marion	34,483	0.01	8,52
SEMIAHMOO MUCK	Marion	83,337	0.03	20.59
WAPATO SILTY CLAY LOAM	Marion	27,277	0.01	6.74
WAPATO SILTY CLAY LOAM	Marion	28.309	0.01	7.00
WAPATO SILTY CLAY LOAM	Marion	5,220	0.00	1.29
WAPATO SILTY CLAY LOAM	Marion	6,758	0.00	1.67
WAPATO SILTY CLAY LOAM	Marion	73.636	0.03	18.20
WAPATO SILTY CLAY LOAM	Marion	39,278	0.02	9.7
WAPATO SILTY CLAY LOAM	Marion	52,139	0.02	12.8
WAPATO SILTY CLAY LOAM	Marion	925,644	0.36	228.7
WAPATO SILTY CLAY LOAM	Maríon	399,959	0.15	98.8
WAPATO SILTY CLAY LOAM	Marion	55,581	0.02	13.7
WAPATO SILTY CLAY LOAM	Marion	238,801	0.09	59.0
WAPATO SILTY CLAY LOAM	Marion	116,408	0.05	28.7
WAPATO SILTY CLAY LOAM	Marion	214,216	0.08	52.9
WAPATO SILTY CLAY LOAM	Yamhili	5,688	0.00	1.4
WAPATO SILTY CLAY LOAM	Yamhill	54,287	0.02	13.4
WAPATO SILTY CLAY LOAM	Yamhill	131,723	0.05	32.5
WAPATO SILTY CLAY LOAM	Totals		and the second design of the	2,182.7

*******

, Ali

## Sensitive Soils with High Permeability

4

Soil Type Description	County	Area (m^2)	Area (mi^2)	Area (acre)
NEWBERG FINE SANDY LOAM	Clackamas	81,423		20.12
NEWBERG FINE SANDY LOAM	Clackamas	44,116	0.017	10.90
CANDERLY SANDY LOAM, 0 TO 3 PERCENT SLOPES	Clackamas	172,198	0.066	42.55
	Total:	297,737	0.11	73.57

*******

Soil Type Description	County	Area (m^2)	Area (mi^2)	Area (acre)
JORY SILTY CLAY LOAM, 2 TO 7 PERCENT SLOPES	Washington	0.6	0.000	0.00
JORY SILTY CLAY LOAM, 2 TO 7 PERCENT SLOPES	Washington	3,141.0	0.001	0.78
JORY SILTY CLAY LOAM, 7 TO 12 PERCENT SLOPES	Washington	13.4	0.000	0.00
HELVETIA SILT LOAM, 3 TO 8 PERCENT SLOPES	Clackamas	4,098.8	0.002	1.01
HELVETIA SILT LOAM, 3 TO 8 PERCENT SLOPES	Clackamas	1,408.2	0.001	0.35
HELVETIA SILT LOAM, 8 TO 15 PERCENT SLOPES	Clackamas	4,429.3	0.002	1.09
HELVETIA SILT LOAM, 8 TO 15 PERCENT SLOPES	Clackamas	2,190.1	0.001	0.54
HEI VETIA SILT LOAM, 8 TO 15 PERCENT SLOPES	Clackamas	52,120.3	0.020	12.88
HEI VETIA SILT LOAM, 8 TO 15 PERCENT SLOPES	Clackamas	4,462.2	0.002	1,10 0.90
HEI VETIA SILT LOAM, 15 TO 30 PERCENT SLOPES	Clackamas	3,644.9	0.001 0.014	9.18
LIOBY SILTY CLAY LOAM, 8 TO 15 PERCENT SLOPES	Clackamas	37,153.2	0.014	7.51
LOBY SILTY CLAY LOAM, 8 TO 15 PERCENT SLOPES	Clackamas	30,379.4	0.012	3.30
LIOBY SILTY CLAY LOAM, 8 TO 15 PERCENT SLOPES	Clackamas	13,368.8	0.000	0.08
JOBY SILTY CLAY LOAM, 15 TO 30 PERCENT SLOPES	Clackamas	16,367.6	0.000	4.04
JORY SILTY CLAY LOAM, 15 TO 30 PERCENT SLOPES	Clackamas	0.4	0.000	0.0
JORY SILTY CLAY LOAM, 15 TO 30 PERCENT SLOPES	Clackamas Clackamas	64,742.3	0.025	16.0
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	117,248.7	0.045	28.9
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	39,569.1	0.015	9.7
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	135.9	0.000	0.0
JORY SILTY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	1,585.5	0.001	0.3
LAURELWOOD SILT LOAM, 8 TO 15 PERCENT SLOPES	Clackamas	18,538.3	0.007	4.5
LAURELWOOD SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	248,640.6	0.096	61.4
LAURELWOOD SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	103,619.9	0.040	25.6
LAURELWOOD SILT LOAM, 30 TO 60 PERCENT SLOPES NEKIA SILTY CLAY LOAM, 2 TO 8 PERCENT SLOPES	Clackamas	17,151.0	0.007	4.2
NEKIA SILTY CLAY LOAM, 2 TO 8 PERCENT SLOPES	Clackamas	13,184.2	0.005	3.2
NEKIA SILTY CLAY LOAM, 8 TO 15 PERCENT SLOPES	Ciackamas	65,379.8	0.025	16.1
SALEM SILT LOAM, 0 TO 7 PERCENT SLOPES	Clackamas	2,787.0	0.001	0.6
SALEM SILT LOAM, O TO A LINELIN SLOPES	Clackamas	11,136.3	0.004	1
SAUM SILT LOAM, 3 TO 8 PERCENT SLOPES	Clackamas	3,451.0	0.001	
SAUM SILT LOAM, 3 TO 8 PERCENT SLOPES	Clackamas	12,651.0	0.005	
SAUM SILT LOAM, 3 TO 8 PERCENT SLOPES	Clackamas	26,367.9	0.010	
SAUM SILT LOAM, 3 TO 8 PERCENT SLOPES	Clackamas	3,603.9	1	1
SAUM SILT LOAM, 8 TO 15 PERCENT SLOPES	Clackamas	10,155.5		
SAUM SILT LOAM, 8 TO 15 PERCENT SLOPES	Clackamas	44,232.4	0.017	1
SAUM SILT LOAM, 8 TO 15 PERCENT SLOPES	Clackamas	36,411.2		1
SAUM SILT LOAM, 15 TO 30 PERCENT SLOPES	Clackamas	9,584.0	•	1
SAUM SILT LOAM, 15 TO 30 PERCENT SLOPES	Clackamas	474.3	1	
SAUM SILT LOAM, 15 TO 30 PERCENT SLOPES	Clackamas			
SAUM SILT LOAM, 15 TO 30 PERCENT SLOPES	Clackamas	)	1	1
SAUM SILT LOAM, 15 TO 30 PERCENT SLOPES	Clackamas Clackamas		1	
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas		1	-
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas			1
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	1		
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	· · · · ·		t
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas			1
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas	1	1	3 4.
SAUM SILT LOAM, 30 TO 60 PERCENT SLOPES	Clackamas		1	1 0.
XEROCHREPTS AND HAPLOXEROLLS, VERY STEEP	Clackamas		1	18.
XEROCHREPTS AND HAPLOXEROLLS, VERY STEEP	Yamhill	2,198.	0.00	1 0.
JORY CLAY LOAM, 2 TO 7 PERCENT SLOPES	Yamhill	31,249.0	0.01:	2 7.
JORY CLAY LOAM, 2 TO 7 PERCENT SLOPES JORY CLAY LOAM, 2 TO 7 PERCENT SLOPES	Yamhill	37,377.2	2 0.01	4 9.
JORY CLAY LOAM, 2 TO 7 PERCENT SLOPES	Yamhill	637.3	3 0.00	1
JORY CLAY LOAM, 2 TO 7 PERCENT SLOPES	Yamhili	2,462.4	0.00	
JORY CLAY LOAM, 2 TO 7 PERCENT SLOPES	Yamhill	8,734.9	9 0.00	\$
JORY CLAY LOAM, 2 TO 7 PERCENT SLOPES	Yamhili	1,674.		1
JORY CLAY LOAM, 2 TO 7 PERCENT SLOPES	Yamhill	10,819.4	1 0.00	
JORY CLAY LOAM, 2 TO 7 PERCENT SLOPES	Yamhill	14,891.3	1	1
JORY CLAY LOAM, 7 TO 12 PERCENT SLOPES	Yamhill	613.	5 0.00	o  0.

## Areas of Moderate Landslide Hazard (Sorted by Soil Type)

Soil Type Description	County	Area (m^2)	Area (mi^2)	Area (acre)
Soll Type Description		10,475.7	0.004	2.59
JORY CLAY LOAM, 7 TO 12 PERCENT SLOPES	Yamhill	4,356.8	0.002	1.08
JORY CLAY LOAM, 7 TO 12 PERCENT SLOPES	Yamhill	i I	0.000	0.23
JORY CLAY LOAM, 7 TO 12 PERCENT SLOPES	Yamhill	941.0	0.000	0.10
JORY CLAY LOAM, 7 TO 12 PERCENT SLOPES	Yamhill	423.7	0.0001	0.81
JORY CLAY LOAM, 7 TO 12 PERCENT SLOPES	Yamhill	3,278.4	1	0.30
JORY CLAY LOAM, 7 TO 12 PERCENT SLOPES	Yamhill	1,207.5	0.000	6.61
JORY CLAY LOAM, 7 TO 12 PERCENT SLOPES	Yamhill	26,742.9	0.010	
JORY CLAY LOAM, 12 TO 20 PERCENT SLOPES	Yamhill	35,781.7	0.014	8.84
JORY CLAY LOAM, 12 TO 20 PERCENT SLOPES	Yamhill	1,055.5	0.000	0.26
LIOPY CLAY LOAM 12 TO 20 PERCENT SLOPES	Yamhill	26,334.9	0.010	6.51
LOPY CLAY LOAM 12 TO 20 PERCENT SLOPES	Yamhill	952.3	0.000	0.24
LIOPY CLAY LOAM 12 TO 20 PERCENT SLUPES	Yamhill	8,826.8	0.003	2.18
LODY CLAVIOAM 12 TO 20 PERCENT SLOPES	Yamhill	15,811.0	0.006	3.91
LODY CLAVI DAM 12 TO 20 PERCENT SLOPES	Yamhill	1	0.016	10.50
LIOPY CLAY LOAM, 12 TO 20 PERCENT SLOPES	Yamhill		0.002	1.0
LODY CLAVIOAM 12 TO 20 PERCENT SLOPES	Yamhil	1	0.003	1.9
LIOPY OF AVE DAM 12 TO 20 PERCENT SLOPES	1	1 00 070 7	0.009	5.6
JORY CLAY LOAM, 12 TO 20 PERCENT SLOPES	Yamhil	~	1	1.5
JORY CLAY LOAM, 12 TO 20 PERCENT SLOPES	Yamhil	00000	1	0.1
JORY CLAY LOAM, 12 TO 20 PERCENT SLOPES	Yamhil		1	1
JORY CLAY LOAM, 12 TO 20 PERCENT SLOPES	Yamhil		· •	1
JORY CLAY LOAM, 12 TO 20 PERCENT SLOPES	Yamhi	1,700.7		1
JORY CLAY LUAM, 20 TO 30 PERCENT SLOPES	Yamhi			•
JORY CLAY LOAM, 20 TO 30 PERCENT SLOPES	Yamhi	1 10 100 7	1	1
JORY CLAY LOAM, 20 TO 30 PERCENT SLOPES	Yamhi	1	1	ļ
JORY CLAY LOAM, 20 TO 30 PERCENT SLOPES	Yamhi		1	1
JORY CLAY LOAM, 20 TO 30 PERCENT SLOPES	Yamhi		1	
JORY CLAY LOAM, 20 TO 30 PERCENT SLOPES	Yamhi	ແ 810.		1
JORY CLAY LOAM, 20 TO 30 PERCENT SLOPES	Yamhi			i
JORY CLAY LOAM, 20 TO 30 PERCENT SLOPES	Yamh			5.
LODV CLAVI CAM 20 TO 30 PERCENT SLOPES	Yamh			1
LODY CLAVICAM 20 TO 30 PERCENT SLUPES	Yamh	iii 7,656.		
TOBY CLAVIOAM 20 TO 30 PERCENT SCOPES	Yamh	ili 1,549.	7 0.00	1
LOPY CLAY LOAM 20 TO 30 PERCENT SLOPES	Yamh	ili 4.		
LODY CLAY LOAM 20 TO 30 PERCENT SLOPES	Yamh		7 0.00	
LOPY CLAY LOAM 20 TO 30 PERCENT SLOPES	Yamt		.1 0.00	
LIDBY CLAY LOAM 20 TO 30 PERCENT SLOPES	Yamt			
LOPY CLAY LOAM 20 TO 30 PERCENT SLOPES	Yamt	1	.3 0.00	
LOPY CLAVI DAM 20 TO 30 PERCENT SLOPES	Yamt			
LIGOV OLAVIOAM 20 TO 30 PERCENT SLUPES	Yami		1	0 0
LIDBY CLAY LOAM 20 TO 30 PERCENT SLOPES	Yami			1 1
LIGDV CLAVIOAM 20 TO 30 PERCENT SLOPES	Yami			3 1
LIDDY OLAVIOAM 20 TO 30 PERCENT SLUPES				54 34
JORY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Yam	1 000		
JORY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Yam	···· }		
JORY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Yam	400		
JORY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Yam	1050	1 .	
JORY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Yam			
JORY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Yam			· · •
JORY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Yam			•••}
JORY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Yam			
JORY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Yam			1
JORY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Yam			1
JORY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Yam			1
LIOPY OLAY LOAM 30 TO 60 PERCENT SLOPES	Yam	hill 3,30		}
LIGBY OLAY LOAM, 30 TO 60 PERCENT SLUPES	Yam		1.9 0.0	
LOPY OLAVIOAM 30 TO 60 PERCENT SLOPES	Yan		0.6 0.0	E E
JORY CLAY LOAM, 30 TO 60 PERCENT SLOPES	Mar	0.00	1	
LUCREE ON TY CLAY LOAM	Yan		1	01
NEWLA OLAY LOAM 2 TO 7 PERCENT SLUPES	1			1
NEKIA CLAY LOAM, 2 TO 7 PERCENT SLOPES	Yan			010
NEKIA CLAY LOAM, 7 TO 20 PERCENT SLOPES	Yan			06
NEKIA CLAY LOAM, 7 TO 20 PERCENT SLOPES	Yan			006
NEKIA CLAY LUAW, 7 TO 20 PERCENT SLOPES	Yan	1 00.00	1	031 1
NEKIA CLAY LOAM, 7 TO 20 PERCENT SLOPES	Yar	1		)26 1
NERIA OLAY LOAM, 7 TO 20 PERCENT SLOPES NEKIA CLAY LOAM, 7 TO 20 PERCENT SLOPES	Yar	nhill 66,81	0.2 1 0.1	15.01

Soil Type Description	County	Area (m^2)	Area (mi^2)	Area (acre)
	Yamhill	17,541.3	0.007	4.33
NEKIA CLAY LOAM, 7 TO 20 PERCENT SLOPES NEKIA CLAY LOAM, 7 TO 20 PERCENT SLOPES	Yamhill	4,824.5 8,345.7	0.002 0.003	1.19 2.06
NERIA CLAVIOAN 7 TO 20 PERCENT SLOPES	Yamhill Yamhill	8,095.4	0.003	2.00
NEKIA CLAY LOAM, 7 TO 20 PERCENT SLOPES	Yamhill	230.8	0.000 0.000	0.06 0.04
STONY LAND	Yamhill Yamhill	177.5 22,237.4	0.000	5.49
STONY LAND STONY LAND	Yamhili	14,377.0	0.006	
STONY LAND	Yamhill	8,669.8 151,327.2	0.003	1
STONY LAND TERRACE ESCARPMENTS	Marion Marion	6,758.1	0.003	1.67
WARATO OUTY CLAVIOAM	Marion	2,786.0	0.001	
WAPATO SILT FOLAT LOSAN WOODBURN SILT LOAM, 3 TO 12 PERCENT SLOPES WOODBURN SILT LOAM, 12 TO 20 PERCENT SLOPES	Marion Marion	64.2 54.006.1	0.021	1
WOODBURN SILT LOAM, 12 TO 20 PERCENT SLOPES	Yamhill	770.5	and the second se	the second s
WOODBURN SILT LOAM, 12 TO 20 PERCENT SLOT CO YAMHILL SILT LOAM, MODERATELY SHALLOW, 7 TO 20 PERCENT SLOPES	Total Area:	3,715,116.4	1.43	918.04