Appendix D
SEISMIC EVALUATION

City of Wilsonville Wastewater Treatment Plant Master Plan

Technical Memorandum 1 SEISMIC EVALUATION

FINAL | July 2022

City of Wilsonville Wastewater Treatment Plant Master Plan

Technical Memorandum 1 SEISMIC EVALUATION

FINAL | July 2022

Contents

Technical Memorandum 1 - Seismic Evaluation	
1.1 Introduction	1-1
1.2 Background Information	1-2
1.3 Seismic Evaluation Criteria	1-4
1.3.1 Performance Objective	1-4
1.3.2 Performance Level	1-5
1.3.3 Seismic Hazard Level	1-6
1.3.4 Selection of Performance Objectives	1-8
1.4 Seismic Evaluation and Analysis	1-8
1.4.1 Data Collection and Review	1-9
1.4.2 Site Visit	1-9
1.4.3 Analysis Procedures	1-10
1.4.4 Acceptance Criteria	1-10
1.5 Evaluation Findings	1-10
1.6 Recommendations for Mitigation	1-12
1.6.1 Load Path / Transfer to Shear Walls	1-12
1.6.2 Narrow Wood Shear Walls	1-14
1.7 Cost Estimates	1-14
1.8 Conclusion	1-15
1.9 References	1-15
1.9.1 Standards	1-15
1.9.2 Reports	1-15

Appendices

Appendix A	Site Visit Photographs
Appendix B	ASCE 41-17 Tier 1 Checklists and Calculations / Tier 2 Calculations
Appendix C	Seismic Retrofit Cost Estimate
Appendix D	Geotechnical Memorandum

«carollo

Tables

Table 1.1	List of Structures Evaluated	1-1
Table 1.2	Detailed Structural Information for Structures Evaluated	1-3
Table 1.3	BSE-1E Seismic Parameters	1-7
Table 1.4	BSE-2E Seismic Parameters	1-7
Table 1.5	CSZ Seismic Parameters	1-8
Table 1.6	Material Properties	1-9
Table 1.7	Load Intensities and Material Unit Weights	1-10
Table 1.8	List of Deficiencies	1-11
Table 1.9	Summary of Retrofit Cost Estimate	1-15
Figures		
Figure 1.1	Aerial View of the Structures Evaluated	1-2
Figure 1.2	Operations Building - Collector Beam Locations and Anchorage	
	Deficiencies	1-13

Figure 1.3 Process Gallery - Collector Beam Location and Anchorage Deficiency 1-13

Abbreviations

AACEI	Association for the Advancement of Cost Engineering
ACI	American Concrete Institute
ACCU	Air Cooled Condensing Unit
AISC	American Institute of Steel Construction
ASCE	American Society of Civil Engineers
ASCE 41-17	ASCE Standard Seismic Evaluation and Retrofit of Existing Buildings
ASTM	American Society for Testing and Materials
BPOE	Basic Performance Objective for Existing Buildings
BSE-1E	Basic Safety Earthquake-1 for use with existing buildings
BSE-2E	Basic Safety Earthquake-2 for use with existing buildings
С	Soil Site Class Type
Carollo	Carollo Engineers, Inc.
CMU	Concrete Masonry Wall
CSZ	Cascadia Subduction Zone
D	Soil Site Class Type
DCR	Demand to Capacity Ratio
E	East
f'c	Concrete Compressive Strength
F _a	Factor to Adjust Spectral Acceleration in the short period range for Site Class
Fv	Factor to Adjust Spectral Acceleration at 1 Second for Site Class
f _y	Yield Strength of Rebar
Fy	Yield Strength of Steel
g	acceleration due to Gravity
M9.0	Magnitude 9.0
Ν	North
OSSC	Oregon Structural Specialty Code
pcf	pounds per cubic foot
Plant	Wilsonville Wastewater Treatment Plant
psf	pounds per square foot
psi	pounds per square inch
RAS	Return Activated Sludge
S	South
S ₁	Spectral Response Acceleration Parameter at a 1 Second Period for any Seismic Hazard Level and any Damping, Adjusted for Site Class
S _{1, 5/50}	Spectral Response Acceleration Parameter at a 1 Second Period for any Seismic Hazard Level and any Damping, Adjusted for Site Class

S _{1, 20/50}	Spectral Response Acceleration Parameter at a 1 Second Period for any Seismic Hazard Level and any Damping, Adjusted for Site Class
Ss	Spectral Response Acceleration Parameter at Short Periods for CSZ Seismic Hazard Level and any Damping, Adjusted for Site Class
S _{S, 5/50}	Spectral Response Acceleration Parameter at Short Periods for BSE-1E Seismic Hazard Level and any Damping, Adjusted for Site Class
S _{S, 20/50}	Spectral Response Acceleration Parameter at Short Periods for any Seismic Hazard Level and any Damping, Adjusted for Site Class
S _{X1, BSE-1E}	Spectral Response Acceleration Parameter at a 1 Second Period for BSE-1E Seismic Hazard Level and any Damping, Adjusted for Site Class
S _{X1, BSE-2E}	Spectral Response Acceleration Parameter at a 1 Second Period for BSE-2E Seismic Hazard Level and any Damping, Adjusted for Site Class
S _{X1, CSZ}	Spectral Response Acceleration Parameter at a 1 Second Period for CSZ Seismic Hazard Level and any Damping, Adjusted for Site Class
S _{XS, BSE-1E}	Spectral Response Acceleration Parameter at Short Periods for BSE-1E Seismic Hazard Level and any Damping, Adjusted for Site Class
S _{XS, BSE-2E}	Spectral Response Acceleration Parameter at Short Periods for BSE-2E Seismic Hazard Level and any Damping, Adjusted for Site Class
S _{XS, CSZ}	Spectral Response Acceleration Parameter at Short Periods for CSZ Seismic Hazard Level and any Damping, Adjusted for Site Class
USGS	United States Geological Survey
W	West

Technical Memorandum 1 SEISMIC EVALUATION

1.1 Introduction

The City of Wilsonville retained Carollo Engineers, Inc. (Carollo) to perform a seismic evaluation of five of their existing structures located at the Wastewater Treatment Plant (Plant) in Wilsonville, Oregon.

The Plant is comprised of several buildings and process structures that include water-bearing basins, channels, and clarifiers. The scope of work, however, is limited to the evaluation of five structures. Much of the Plant was recently upgraded and expanded in 2014 and included new buildings such as the Headworks and Solids Drying Building. These newer facilities were designed in accordance with the 2010 Oregon Structural Specialty Code (OSSC) and should meet modern seismic design and detailing. These newer structures were also designed to a higher performance level than typical commercial facilities. Therefore, these structures were not included in the scope of work and should have a relatively low risk of poor seismic performance.

The Plant does have some older structures that were considered for inclusion in this evaluation, but by the nature of their design are considered to be inherently resilient. After a review of the record drawings for the various facilities and a site visit to the Plant, five existing structures were selected for inclusion in this seismic evaluation. The list of existing structures evaluated in this study are shown in Table 1.1. An aerial view of these structures is shown on Figure 1.1.

Structure Name	Туре	Approximate Date Built
Operations Building	Building	1995
Process Gallery	Building	1995
Workshop	Building	1979
Aeration Basins and Stabilization Basins	Water-bearing Basin	1993
Sludge Storage Basins and Biofilter	Water-bearing Basin	1979

Table 1.1 List of Structures Evaluated

The purpose of the evaluation was to identify seismic vulnerabilities and deficiencies to consider for enhancement of plant resiliency. The seismic evaluation was performed using the procedures established by American Society of Civil Engineers (ASCE) Standard: Seismic Evaluation and Retrofit of Existing Buildings 41-17 (ASCE 41-17). The standard prescribes a three-tiered approach for the seismic evaluation: Tier 1 - Screening, Tier 2 - Deficiency-based evaluation and retrofit and Tier 3 - Systematic evaluation and retrofit. For this evaluation, analysis procedures were limited to the Tier 1 level and Tier 2 level as required. The balance of this report presents background information, a description of seismic evaluation criteria and procedures used, findings, mitigation recommendations, including conceptual level mitigation cost estimates.

Geo-seismic site hazards were assessed as part of this study and findings are summarized in a technical memorandum prepared by Northwest Geotech, Inc. that is presented in Appendix D. Non-structural components were also evaluated in accordance with the Tier 1 procedures set forth in ASCE 41-17 for each of the five structures as well as the overall plant as part of this study.

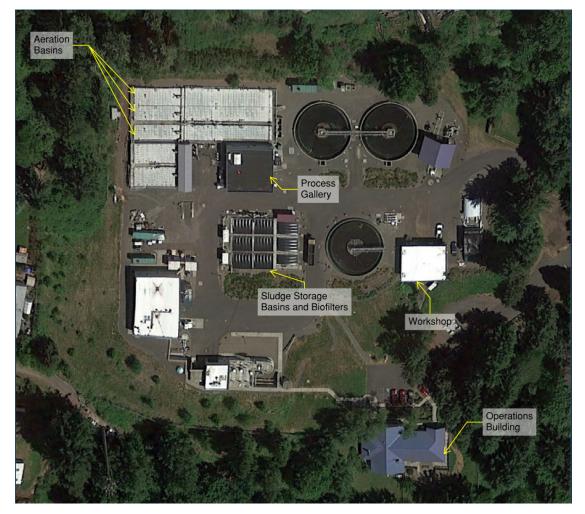


Figure 1.1 Aerial View of the Structures Evaluated

1.2 Background Information

The required information for this evaluation was obtained by reviewing the existing record drawings and by performing a site visit. The typical structures are one-story tall except for the process gallery, which has a below grade basement. The structural systems consisted of reinforced concrete masonry (CMU) shear walls, cast-in-place concrete shear walls, or wood framed shear walls with wood or metal deck roof diaphragms. Table 1.2 provides detailed information about the structural systems for the structures that were evaluated.

Detailed Structural Information for Structures Evaluated		
Operations Building		
No. of Stories	One-Story	
Vertical Seismic System	Reinforced CMU Shear Walls	
Vertical Gravity System	Reinforced CMU Walls and Tube Steel Columns	
Roof Gravity System	Steel Open-Web Joists and Steel Beams	
Roof Diaphragm	Steel Roof Decking	
Foundation System	Shallow Spread and Wall Footings	
Process Gallery		
No. of Stories	One-story above grade + basement	
Vertical Seismic System	Reinforced CMU Shear Walls + Cast-in-Place Concrete Shear Walls	
Vertical Gravity System	Reinforced CMU Walls, Concrete Walls, and Concrete Columns	
Gravity System	Steel Beams at Roof, concrete slab and concrete beams at grade level	
Roof Diaphragm	Steel Roof Decking	
Foundation System	Mat Slab	
Workshop		
No. of Stories	One-Story	
Vertical Seismic System	Wood Framed Shear Walls	
Vertical Gravity System	Wood Framed Walls and Tube Steel Columns	
Gravity System	Wood Joists and Glulam Beams	
Roof Diaphragm	Plywood Sheathing	
Foundation System	Shallow Spread and Wall Footings	
Aeration and Stabilizatio	n Basins	
No. of Stories	One-Story (partially buried)	
Vertical Seismic System	Cantilevered Concrete Walls	
Vertical Gravity System	Concrete Walls	
Roof Gravity System	N/A	
Roof Diaphragm	N/A	
Foundation System	Mat Slab	
Solids Storage and Biofilter Basins		
No. of Stories	One- Story (mostly buried)	
Vertical Seismic System	Cantilevered Concrete Walls	
Vertical Gravity System	Concrete Walls	
Roof Gravity System	N/A	
Diaphragms	N/A	
Foundation System	Mat Slab	
Notes: Abbreviations: No number; N/A -	not applicable.	

Table 1.2 Detailed Structural Information for Structures Evaluated

Modifications were made to some of the structures after their original construction. The aeration basins were modified in 2014 by adding a third basin to the east of basin No. 1 as well as two stabilization basins to the west of basin No. 2 and a blower canopy. The sludge storage and biofilter basins were modified in 2014 to include a concrete wall within the biofilter.

1.3 Seismic Evaluation Criteria

Seismic evaluation of the buildings was performed using the ASCE 41-17 prescribed Tier 1 screening evaluation. The purpose of Tier 1 screening is to efficiently identify potential deficiencies or identify the need for additional investigation. Tier 1 screening is performed using checklists and quick procedure calculations. The Tier 1 evaluation requires selection of a Performance Objective using the Structural Performance Levels and Seismic Hazard Levels defined within ASCE 41-17.

The results obtained from the above two-stage analysis for the performance objective selected is presented in this report. After Tier 1 evaluation, there are two additional evaluations: Tier 2 - Deficiency based and Tier 3 - Systematic Evaluation. In the Tier 2 evaluation, the deficiencies observed in Tier 1 can be further evaluated by performing more detailed analysis and calculations, while the Tier 3 evaluation involves performing detailed linear and non-linear finite element mathematical models for the buildings. The Tier 2 evaluation was performed for items deemed deficient from Tier 1 while Tier 3 evaluation was not considered as part of this study.

Since a portion of the structures included in the scope of work are non-building structures with structural systems and load paths that are not similar to buildings, for the seismic evaluation we chose to apply the relevant design standard, which is American Concrete Institute (ACI) 350.3-06, "Seismic Design of Liquid-Containing Concrete Structures and Commentary," recognizing that no relevant seismic evaluation guides or standards are available for existing concrete tanks.

1.3.1 Performance Objective

The performance objective is typically a two-fold objective that establishes building performance levels for different seismic hazards. For example, a typical performance objective for a non-essential building might be meeting the life safety performance level when subjected to an earthquake having a return period of 225 years and meeting the collapse prevention performance level when subjected to an earthquake having a return period of 975 years.

Structures that are considered to have an elevated or essential function to society are expected to have relatively higher structural performance levels. To address this need, the 2019 OSSC classifies structures into Risk Categories. Essential facilities, such as fire stations, emergency response centers, reservoirs, pump stations and intake structures are typically classified as Risk Category IV structures and are evaluated with stringent performance objectives, since an interruption in the operation of these facilities can result in a significant and immediate hazard to the general public. Risk Category III structures are generally considered to serve an important role, but their structural performance requirements after a major seismic event are less stringent than that of a Risk Category IV structure.

The structures evaluated in this study were classified as Risk Category III based on the functionality. As prescribed by ASCE 41-17 a performance objective of Basic Performance Objective for Existing Buildings (BPOE) was selected for these Risk Category III structures. The concrete tanks were also considered to be Risk Category III structures and an importance factor of 1.25 was used in the evaluation.

1.3.2 Performance Level

Building performance levels include both structural and non-structural performance levels. The structural performance levels defined in ASCE 41-17 are as follows:

- S-1: Immediate Occupancy.
- S-2: Damage Control.
- S-3: Life Safety.
- S-4: Limited Safety.
- S-5: Collapse Prevention.
- S-6: Not Considered.

Non-structural performance levels defined in ASCE 41-17 are as follows:

- N-A: Operational.
- N-B: Position Retention.
- N-C: Life Safety.

The performance level of a structure can be described in terms of:

- 1. Safety of the building occupants during and after a seismic event.
- 2. Cost of restoring the building to its pre-event condition.
- 3. Length of time the building is removed from service, i.e., not occupiable.

To help provide some perspective, the definitions of the S-1 and S-3 structural performance levels are as followS:

S-1: Immediate Occupancy: "Immediate Occupancy" refers to the post-earthquake damage state in which only very limited structural damage has occurred. The basic vertical- and lateral-force resisting systems of the building retain almost all their pre-earthquake strength and stiffness. The risk of life-threatening injury from structural damage is very low, and although some minor structural repairs might be appropriate, these repairs would generally not be required before re-occupancy. Continued use of the building is not limited by its structural condition but might be limited by damage or disruption to nonstructural elements of the building, furnishings, or equipment and availability of external utility services.

S-3: Life Safety: "Life Safety" refers to the post-earthquake damage state in which significant damage to the structure has occurred but some margin against either partial or total structural collapse remains. Some structural elements and components are severely damaged, but this damage has not resulted in large falling debris hazards, either inside or outside the building. Injuries might occur during the earthquake, however, the overall risk of life-threatening injury as a result of structural damage is expected to be low. It should be possible to repair the structure, however, for economic reasons, this repair might not be practical. Although the damaged structure is not an imminent collapse risk, it would be prudent to implement structural repairs or install temporary bracing before re-occupancy.

The tanks do not have an associated structural performance level but are expected to sustain similar damage levels as those described for buildings.

1.3.3 Seismic Hazard Level

The seismic hazard level quantifies the magnitudes of spectral response accelerations the structures will experience in an earthquake. Per ASCE 41-17 two levels of seismic hazards should be considered when using the BPOE performance objective defined above for existing buildings. These are Basic Safety Earthquake-1 for use with existing buildings (BSE-1E) and Basic Safety Earthquake-2 for use with existing buildings (BSE-2E). These seismic hazards quantify the probabilistic magnitude of ground shaking that might occur at the project site. The BSE-1E and BSE-2E are defined as follows:

- BSE-1E: Taken as a seismic hazard with a 20 percent probability of exceedance in 50 years. This ground motion has an approximate return period of 225 years.
- BSE-2E: Taken as a seismic hazard with a 5 percent probability of exceedance in 50 years. This ground motion has an approximate return period of 975 years.

The BSE-1E and BSE-2E seismic hazards result in smaller forces in the structures than those compared to the forces obtained when designing a new building per the ASCE 7-16 load criteria. The reduced seismic hazard used in this evaluation is justified for existing buildings because the remaining service life for the existing building is less than that for new buildings and thus the magnitude of earthquakes experienced by existing buildings are likely to be smaller, given the reduced exposure period.

This evaluation also considered a single seismic hazard associated with a magnitude 9.0 (M9.0) scenario earthquake originating on the Cascadia Subduction Zone (CSZ). A geotechnical memorandum was prepared (Northwest Geotech, Inc., 2021) that provided estimates of the spectral acceleration and geologic hazards associated with the M9.0 CSZ scenario earthquake. Refer to Appendix D for the geotechnical memorandum.

The ASCE 41-17 BSE-1E and the BSE-2E seismic hazards used in this seismic evaluation are summarized in Tables 1. 3 and 1.4. The ground motion is based upon the seismic data obtained from the United States Geological Survey (USGS). The CSZ seismic hazard used in the seismic evaluation is summarized in Table 1.5.

Value
45.29 N
122.77 W
0.223 g
0.082 g
C
1.3
1.5
0.291 g
0.123 g

Table 1.3 BSE-1E Seismic Parameters

Notes:

Abbreviations: N – north; W – west; g – acceleration due to Gravity; C – Soil Site Class Type; S_{5, 20/50} – Spectral Response Acceleration Parameter at Short Periods for any Seismic Hazard Level and any Damping, Adjusted for Site Class; S_{1, 20/50} – Spectral Response Acceleration Parameter at a 1 Second Period for any Seismic Hazard Level and any Damping, Adjusted for Site Class; Adjusted for Site Class;

Fa - Factor to Adjust Spectral Acceleration in the short period range for Site Class;

Fv – Factor to Adjust Spectral Acceleration at 1 Second for Site Class;

S_{XS, BSE-1E} – Spectral Response Acceleration Parameter at Short Periods for BSE-1E Seismic Hazard Level and any Damping, Adjusted for Site Class;

Sx1, BSE-1E – Spectral Response Acceleration Parameter at a 1 Second Period for BSE-1E Seismic Hazard Level and any Damping, Adjusted for Site Class.

Table 1.4BSE-2E Seismic Parameters

Parameter	Value
Latitude	45.29 N
Longitude	122.77 W
S _{5, 5/50}	0.598 g
S _{1, 5/50}	0.27 g
Site Class	C
Fa	1.265
Fv	1.5
S _{XS, BSE-2E}	0.744 g
S _{X1, BSE-2E}	0.405 g

Notes:

Abbreviations: S_{5, 5/50} – Spectral Response Acceleration Parameter at Short Periods for any Seismic Hazard Level and any Damping, Adjusted for Site Class;

S_{1,5/50} – Spectral Response Acceleration Parameter at a 1 Second Period for any Seismic Hazard Level and any Damping, Adjusted for Site Class;

S_{X5, BSE-2E} – Spectral Response Acceleration Parameter at Short Periods for BSE-2E Seismic Hazard Level and any Damping, Adjusted for Site Class;

Sx1, BSE-2E – Spectral Response Acceleration Parameter at a 1 Second Period for BSE-2E Seismic Hazard Level and any Damping, Adjusted for Site Class.

Parameter	Value
Latitude	45.29 N
Longitude	122.77 W
Ss	0.343 g
S1	0.221 g
Site Class	C
Fa	1.3
Fv	1.5
S _{XS, CSZ}	0.446 g
S _{X1, CSZ}	0.332 g

Table 1.5 CSZ Seismic Parameters

Notes:

Abbreviations: S_5 – Spectral Response Acceleration Parameter at Short Periods for any Seismic Hazard Level and any Damping, Adjusted for Site Class;

S1 – Spectral Response Acceleration Parameter at a 1 Second Period for any Seismic Hazard Level and any Damping, Adjusted for Site Class;

S_{xS, csz} – Spectral Response Acceleration Parameter at Short Periods for CSZ Seismic Hazard Level and any Damping, Adjusted for Site Class;

S_{XI, CSZ} – Spectral Response Acceleration Parameter at a 1 Second Period for CSZ Seismic Hazard Level and any Damping, Adjusted for Site Class.

1.3.4 Selection of Performance Objectives

Taking into account the performance levels and seismic hazards described above, per ASCE 41-17 Risk Category III existing structures were evaluated for Damage Control (S-2) at the BSE-1E seismic hazard level and Limited Safety (S-4) at the BSE-2E seismic hazard level. From Table 1.5 above, the CSZ seismic hazard is greater than those for the BSE-1E seismic hazard level. Our analysis replaced the BSE-1E seismic hazard for the higher seismic ground motions associated with the CSZ seismic hazard. For Tier 1 analyses the performance objectives are deemed to be satisfied if the analysis is performed for BSE-2E using Limited Safety Structural Performance parameters and Position Retention Non-Structural Performance parameters provided in ASCE 41-17. However, because the CSZ hazard exceeds that of the BSE-2E, the Tier 1 checks were explicitly evaluated at the CSZ hazard level.

1.4 Seismic Evaluation and Analysis

The buildings were evaluated using the Tier 1 and Tier 2 procedures set forth in ASCE 41-17. The seismic evaluation and analysis comprised of data collection and review, a site visit, completion of Tier 1 checklists and calculations, and Tier 2 calculations based on the deficiencies found in the Tier 1 evaluation.

Similarly, the basins were evaluated using ACI 350-06 and ACI 350.3-06 with the same seismic hazard levels as the buildings, but the following adjustments were made to adapt the use of ACI 350-06 and ACI 350.3-06 for seismic evaluation, rather than design:

- Importance factor = 1.25.
- Load factors were limited to 1.0 for load combinations.
- Capacity-reduction factors were set equal to 1.0.

1.4.1 Data Collection and Review

To obtain data and information necessary for performing the seismic evaluation, the following construction documents and reports were reviewed:

- City of Wilsonville, Oregon Sewage Treatment Plant Phase III Expansion, prepared by CH2M Hill, dated August 1979.
- City of Wilsonville Wastewater Treatment Plant, prepared by CH2M Hill, dated December 1995.
- City of Wilsonville Wastewater Treatment Plant Improvements DBO, prepared by CH2M Hill, dated June 2012.
- Technical Memorandum, prepared by Northwest Geotech, Inc., dated June 2021.

The material properties used in this evaluation are listed in Table 1.6. These properties were determined based on information shown in the record drawings. For the properties that could not be obtained from the record drawings, the values were obtained from the default historical material properties prescribed in ASCE 41-17, Chapter 4.

Table 1.6 Material Properties

Material and Mechanical Property	Value
Concrete Compressive Strength	f′ _c = 4,000 psi
Reinforcing Steel (ASTM A615 G60) Yield Strength	f _y = 60,000 psi
Steel Framing (ASTM A36) Yield Strength	F _y = 36,000 psi
Corrugated Steel Roof Deck (ASTM A446) Yield Strength	F _y = 50,000 psi
Notes:	

Abbreviations: ASTM – ASTM International; f'_c – Concrete Compressive Strength; f_y – Yield Strength of Rebar; F_y – Yield Strength of Steel; psi - pounds per square inch.

1.4.2 Site Visit

A site visit was conducted by James Doering, S.E., and Brian Stuetzel, E.I.T., of Carollo on June 16 and 17, 2021. The site visit included review of both interior and exterior spaces with access gained to the basement and ground floor levels. Access to the roof levels was not available. The buildings were in full operation at the time of the site visit.

The site visit objectives included:

- Verification that the structures are generally configured and constructed in accordance with the record drawings.
- Completion of Tier 1 checklist items that required visual verification.
- Identification of additional loads that are to be included in the seismic analysis, such as equipment, piping, and ceilings.
- Structural condition assessment of visual portions of the structures.
- Non-Structural items within the structures and around the plant.

Observations made during the site visits were collected using an Apple iPhone and a digital camera. Photographs collected during the site visit are included in Appendix A for reference.

1.4.3 Analysis Procedures

Analysis procedures followed those set forth in ASCE 41-17, ACI 350-06, and ACI 350.3-06. For the most part, the structures did not have any significant irregularities.

The analysis included the structure above grade and those portions of the structure below grade that are within the seismic load path for lateral load resistance. Loads applied to the structure include dead loads, live loads, inertial seismic loads, and hydrodynamic loads where applicable. Load combinations analyzed were limited to those that include seismic loads. Load intensities and material unit weights assumed for the evaluation are presented in Table 1.7.

Refer to Appendix B for the Tier 1 checklists and calculations.

Table 1.7 Load Intensities and Material Unit Weights

Load/Material	Value
Unit Weight of Concrete	150 pcf
Unit Weight of Steel	490 pcf
Roof Live Load	20 psf
Roof Snow Load	25 psf
Floor Live Load	250 psf
Notes:	

Abbreviations: pcf - pounds per cubic foot; psf - pounds per square foot.

1.4.4 Acceptance Criteria

The analysis involves the estimation of seismic load and deformation demands placed upon structural members. These demands are compared against their estimated capacity, which is a function of the member proportions, material properties, and desired performance level. The metric used in this evaluation to quantify the degree of distress of an existing member or connection is referred to as the demand to capacity ratio (DCR):

$$DCR = \frac{Load \ Demand}{Available \ Capacity}$$

DCR values that exceed 1.0 are typically considered to have exceeded their capacity for the evaluated performance level and are considered deficient.

The estimated capacity is a function of the material properties. For this evaluation, the material properties have been obtained from the record construction documents. For Tier 2 investigations and beyond, ASCE 41-17 requires that a knowledge factor be applied to the material property depending on which type of construction documents served as the source for the material information. Since the information for materials is provided on the construction documents, the knowledge factor has been assumed to be 0.90.

1.5 Evaluation Findings

The results from review of the record drawings, site visit and structural calculations are presented in this section. The structural members and connection capacities were checked against the demands imposed by the prescribed seismic loads as described in previous sections to obtain corresponding DCRs. DCR values that exceed 1.0 indicate a deficiency with respect to the evaluated performance level. The members and connections that were found to be deficient for each building are listed in Table 1.8.

Table 1.	6 List of Deficiencies			
No.	Deficiency	Description		
Operations Building				
S1	Load path / Transfer to Shear Walls	No drag connections to transfer diaphragm forces into shear walls where those walls are discontinuous within the plan of the building.		
S2	Plan Irregularities	No diaphragm ties in the N-S direction to transfer diaphragm forces into shear walls.		
NS1	Edge Clearance	The ceiling edges do not have a sufficient gap between the enclosing walls and this could cause damage due to restraint.		
NS2	Lens Covers	Lens covers over lights lack safety device.		
NS3	Overhead Glazing	Windows above entrance appear to lack proper restraint in frame if cracked or damaged.		
NS4	Tall Narrow Contents	Storage racks lack restraint to structure. Also, the refrigerator in laboratory appears to lack restraint if wheels are locked.		
NS5	Fall-Prone Contents / Suspended Equipment	The laboratory hoods could not be determined if adequate lateral bracing is attached back to structure. In addition, the air handler unit lacks anchorage to support structure.		
Process Gallery				
S1	Load path / transfer to shear walls	The roof beam aligned with interior shear wall lacks ability to transfer seismic loads into the shear wall.		
NS1	In-line Equipment	Air handling unit lacks anchorage along channel support. Also, the aeration blower pumps in basement lack proper anchorage back to structure.		
NS2	Fluid and Gas Piping	Multiple pipes lack restraint to Unistrut support below. In addition, the compression struts for RAS piping lack diagonal bracing back to structure.		
Works	hop			
S1	Narrow Wood Shear Walls	The shear wall segments along the east elevation cannot develop the overturning forces due to a lack of holdowns at the ends of each shear wall segment.		
S2	Narrow Wood Shear Walls	The shear wall segments along the east elevation do not have sufficient shear capacity to resisting the in-plane seismic loads.		
S3	Narrow Wood Shear Walls	The shear wall segments along the east elevation do not have adequate sill bolt anchorage for resisting the in-plane seismic loads.		
NS1	Tall Narrow Contents	The storage racks within building lack restraint back to the structure. In addition, the shelving unit along south elevation lacks anchorage across entire length.		

Table 1.8List of Deficiencies

No.	Deficiency	Description		
Stabilization Basins				
S1	Freeboard	The longitudinal sloshing direction results in a freeboard deficit of about 1.2 feet. The aluminum covers can be damaged by sloshing water.		
Sludge Storage Basins				
S1	Freeboard	The longitudinal sloshing direction results in a freeboard deficit of about 1.6 feet. The membrane covers can be damaged by sloshing water.		
Overall Plant Structures				
NS1	Tall Narrow Contents	Storage racks within the Headworks building lack anchorage back to structure.		
NS2	In-Line Equipment	Recirculation pump at Disk Filters lacks restraint against overturning.		
NS3	Heavy Equipment	ACCU units near the aeration basins lack anchorage to structural pads.		
Notes: Abbreviations: ACCU - air cooled condensing unit; RAS - return activated sludge.				

Based on the observed deficiencies, mitigation methods are outlined in the following section along with a planning level cost estimates to mitigate these deficiencies.

1.6 Recommendations for Mitigation

In this section mitigation measures to address the structural deficiencies are presented. The observed structural deficiencies can be mitigated by performing reasonable retrofit and strengthening of the existing buildings. Following is a detailed discussion for each of the observed structural deficiencies and potential mitigation strategies.

1.6.1 Load Path / Transfer to Shear Walls

There needs to be a direct load path for the seismic forces to be transferred from the roof level down to the foundation level. The loads will eventually need to be transferred into the shear walls, and one way to ensure transfer into the shear wall system is through collector beams. To mitigate this issue, adding collector beams and associated connections to the shear walls will allow for the seismic loads to transfer into the lateral load resisting system.

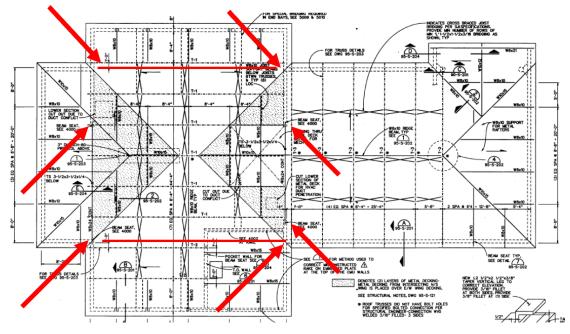


Figure 1.2 Operations Building - Collector Beam Locations and Anchorage Deficiencies

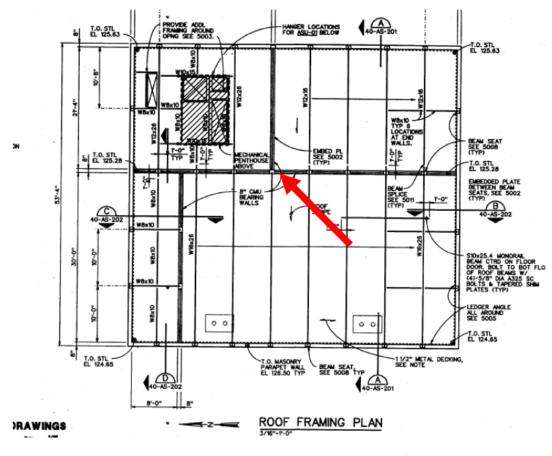


Figure 1.3 Process Gallery - Collector Beam Location and Anchorage Deficiency

1.6.2 Narrow Wood Shear Walls

Narrow wood shear walls tend to have reduced shear strength and overturning capacity to resist lateral forces. Since the wall height tends to be significantly larger than the wall length, the overturning forces on the wall can cause damage at the wall base and render it less effective at resisting shear forces. A Tier 2 evaluation for the east shear wall segments was performed and the overturning capacity, shear capacity, and shear anchorage to the foundation were found to be deficient. The following mitigation is recommended for the east wall of the workshop:

- Provide holdown anchorage for each end of the middle (2) shear wall segments.
 Holdown anchorage is typically comprised of a prefabricated metal connector with a post-installed anchor into the building foundation/footing.
- Enhance the shear strength of the middle (2) shear wall segments by providing a plywood overlay at the interior side of the wall.
- Enhance the shear anchorage capacity at the sill plate connection to the foundation/footing by providing additional sill plate anchors to reduce the overall spacing of sill bolts to no more than 24 inches. Sill plate anchorage should be comprised of a post-installed anchor into the foundation/footing and associated plate washer on top of the sill plate.
- Provide top plate straps where splices occur in the stud wall top plates. Because only the middle (2) shear wall segments are considered to be effective in resisting in-plane seismic loads, the top plates will be required to transmit diaphragm loads to the middle (2) shear walls and the configuration of the top plates may require supplemental ties to ensure seismic loads can be effectively transmitted to the middle (2) shear walls.

1.7 Cost Estimates

To assist the City of Wilsonville with their planning efforts to improve reliability of these buildings, we have developed a rough order of magnitude of cost associated with mitigating the seismic deficiencies identified. The construction cost estimate includes direct and indirect costs. Direct costs include materials, labor, and construction equipment required for the retrofit. This cost also includes removal and re-installation of the interior finishes to allow access to perform recommended mitigation. Various indirect cost and non-construction cost factors that have been included in the total estimated project cost are identified in Appendix C.

Cost estimates provided in this evaluation/study are considered to be a Class 5 estimate as defined in "Recommended Practice 18R-97 Cost Estimate Classification System for the Process Industries," published by the Association for the Advancement of Cost Engineering (AACEI). These costs are anticipated to have an accuracy range of +50 percent to -30 percent and are intended for planning purposes. The unit costs in Appendix C are derived from RS Means and Carollo's cost estimate database.

A summary of the cost estimate is provided in Table 1.9. The detailed breakdown of the cost estimate is provided in Appendix C. The total estimated cost for mitigating all the seismic deficiencies identified is \$810,400.

Table 1.9 Summary of Retrofit Cost Estimate

Structure	Cost Estimate
Operations Building	\$646,900
Process Gallery	\$44,800
Workshop	\$114,400
Overall Plant (Non-Structural)	\$4,300
TOTAL	\$810,400

1.8 Conclusion

The goal of the seismic evaluation was to identify specific seismic vulnerabilities and deficient structural conditions for the purpose of improving the overall reliability of the subject buildings. Our findings presented in this report identify numerous seismic vulnerabilities and deficient conditions that warrant retrofit. Mitigation strategies for retrofit were developed and presented in this report along with cost estimates.

1.9 References

1.9.1 Standards

- American Society of Civil Engineers (ASCE). (2017). "Seismic Evaluation and Retrofit of Existing Buildings." ASCE/SEI 41-17.
- American Society of Civil Engineers (ASCE). (2016). "Minimum Design Loads for Buildings and other Structures," ASCE/SEI 7-16.
- American Concrete Institute (ACI). (2014), "Building Code Requirements for Structural Concrete." ACI 318-14, Farmington Hills, MI.
- AISC (2005), "Specification for Structural Steel Buildings." American Institute of Steel Construction, Inc., Chicago, IL.
- American Forest & Paper Association/American Wood Council (2018), ANSI/AF&PA National Design Specification for Wood Construction.

2019 Oregon Structural Specialty Code.

2018 International Building Code.

1.9.2 Reports

Technical Memorandum, prepared by Northwest Geotech, Inc., dated June 25, 2021.

Appendix A SITE VISIT PHOTOGRAPHS

Figure 1 Operations Building - East Elevation View

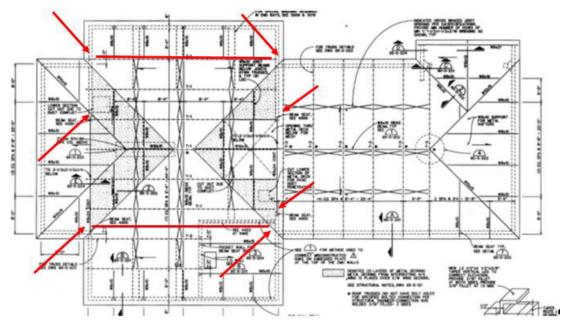


Figure 2 Operations Building - Roof Joist Framing

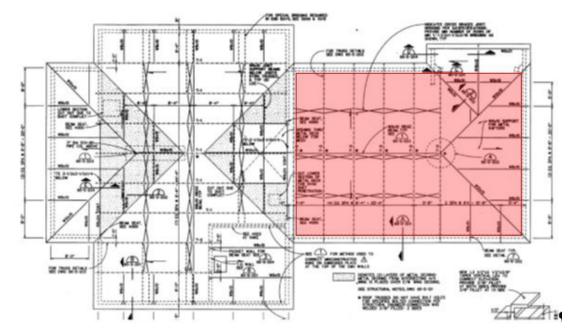


Figure 5Operations Building - Diaphragm Span Location Exceeding 40 feet Deficiency

Figure 6 Operations Building - Ceiling Clearance to Wall

Figure 7 Operations Building - Lens Cover Lacks Safety Device

Figure 8 Operations Building - Window Above Entrance Appears to Lack Special Treatment to Limit Damage

Figure 9 Operations Building - Collector Beam Connection to CMU Wall

Figure 10 Process Gallery - South Elevation

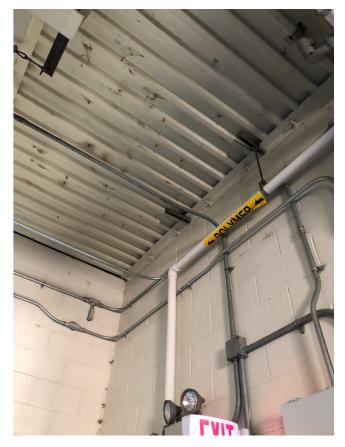


Figure 11 Process Gallery - Wall Anchorage

Figure 12 Process Gallery - Beam Anchorage

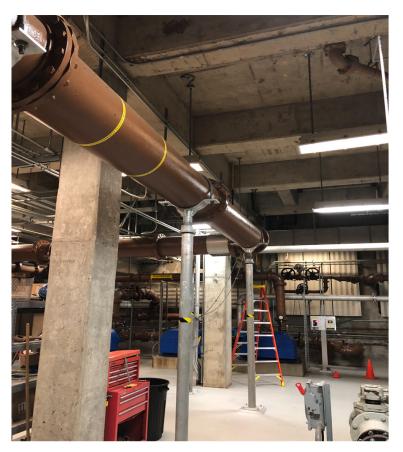


Figure 13 Process Gallery - Basement Interior View

Figure 14Process Gallery - Air Handling Unit Lacking Anchorage

Figure 15 Process Gallery - Blower Equipment with Missing Nuts

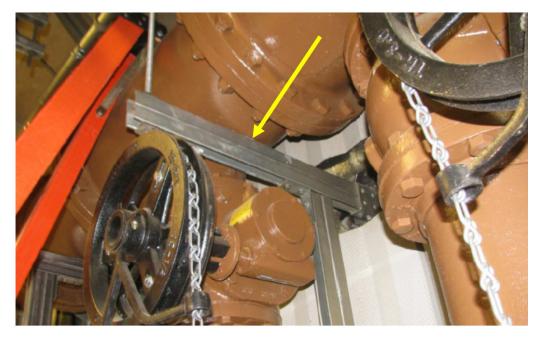


Figure 16 Process Gallery - Piping Lacks Connection Back to Supports Below

Figure 17 Process Gallery - RAS Piping Lacks Lateral Bracing Along Length at Compression Struts

Figure 18 Workshop - North Elevation

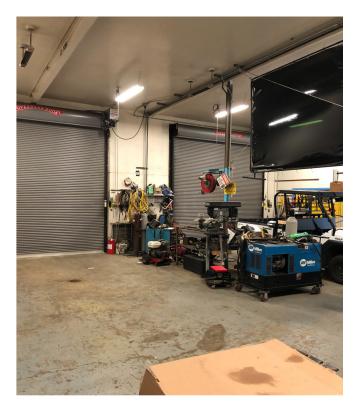


Figure 19 Workshop - Interior View

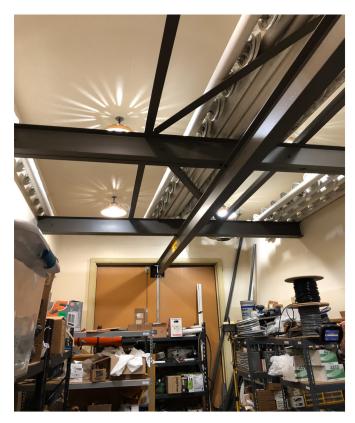


Figure 20 Workshop - Storage Room Interior View

Figure 21 Workshop - East Elevation Shear Walls are Considered Narrow and Could Limit Strength

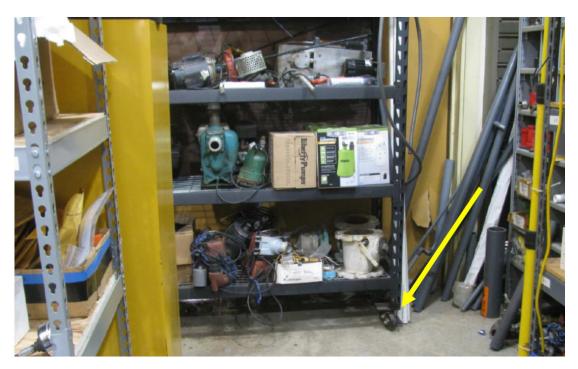


Figure 22 Workshop - Storage Shelving Lacks Restraint to Structure

Figure 23 Workshop - Storage Shelves on South Wall Missing Anchorage

Figure 24 Aeration Basin - Top View

Figure 25 Stabilization Basin - Top View

Figure 26 Stabilization Basin - Walkway with Piping and Support

Figure 27 Sludge Storage and Biofilter Basins - Top View

Figure 28 Sludge Storage and Biofilter Basins - Pump Equipment

Figure 29 Headworks Building - Shelving Lacks Anchorage to Structure

Figure 30 Disk Filters - Recirculation Pump Lacking Resistance to Overturning

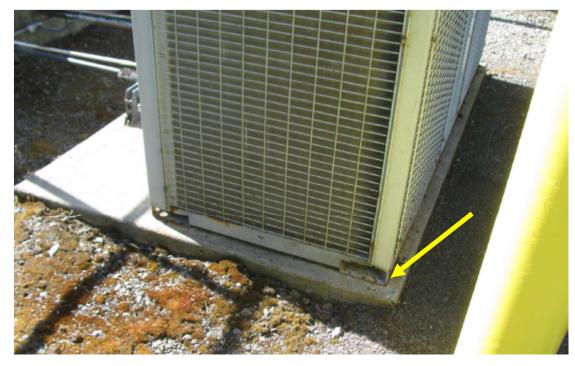


Figure 31 Aeration Basins Canopy - ACCU Units Lacking Anchorage To Concrete Pad

Appendix B ASCE 41-17 TIER 1 CHECKLISTS AND CALCULATIONS / TIER 2 CALCULATIONS

FINAL | JULY 2022

City of Wilsonville Wastewater Treatment Plant Structural Checklists & Calculations

Table of Contents

Operations Building – Tier 1	pg. 01
Process Gallery – Tier 1	pg. 89
Workshop – Tier 1	pg. 180
Aeration and Stabilization Basins – Tier 1	pg. 245
Sludge Storage and Biofilter Basins – Tier 1	pg. 334
Overall Plant Non-Structural Checklist – Tier 1	pg. 408
Tier 2 Calculations	pg. 434

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Operations Building
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	07/01/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-2. Collapse Prevention Basic Configuration Checklist

Very Low Seismicity
Structural Components

BSE-2E Seismic Check at Limited Safety

<i>รแ น</i> ต	lurai	Comp	onei	าเร	
RA	TING			DESCRIPTION	COMMENTS
C	NC	N/A	U	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There are no diaphragm ties in the N-S direction where perimeter CMU shear walls stop. The diaphragm at these locations will lack the ability to transfer diaphragm forces into the shear walls.
C	NC	N/A	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	Roof joist bearing anchorage DCR = 0.23(OK) E-W beam bearing anchorage DCR = 0.55 (OK) N-S beam bearing anchorage DCR = 0.24 (OK)

Low Seismicity

Building System

G	e	n	e	ra	al	

RA	TING			DESCRIPTION	COMMENTS
C	NC	N/A	U	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There are no diaphragm ties in the N-S direction where perimeter CMU shear walls stop. The diaphragm at these locations will lack the ability to transfer diaphragm forces into the shear walls.
C	NC	N/A X	U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement need not apply for the following building types: W1, W1A, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)	
C		N/A	U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)	

Building Configuration

RA	FING			DESCRIPTION	COMMENTS	
С	NC	N/A	U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in	Building is a one-story structure.	
		X		each direction is not less than 80% of the strength		
				in the adjacent story above. (Commentary: Sec.		
				A2.2.2. Tier 2: Sec. 5.4.2.1)		
C	NC	N/A	U	SOFT STORY: The stiffness of the seismic-force-	Building is a one-story structure.	
		×		resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in		
				an adjacent story above or less than 80% of the		
				average seismic-force-resisting system stiffness of		
				the three stories above. (Commentary: Sec.		
				A.2.2.3. Tier 2: Sec. 5.4.2.2)		
С	NC	N/A	U	VERTICAL IRREGULARITIES: All vertical elements in		
				the seismic-force-resisting system are continuous		
X				to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)		
				2. 560. 5.4.2.5)		
С	NC	N/A	U	GEOMETRY: There are no changes in the net	Building is a one-story structure.	
				horizontal dimension of the seismic-force-	building is a one story structure.	
$ \sqcup $		×		resisting system of more than 30% in a story		
				relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec.		
				A.2.2.5. Tier 2: Sec. 5.4.2.4)		
				, , , , , , , , , , , , , , , , , , ,		

Project Name City of Wilsonville - Or Project Number 11962A.00

c	NC	N/A	U	MASS: There is no change in effective mass more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	Building is a one-story structure.
c	NC	N/A X	U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	Torsion check applies for structures with rigid diaphragms, not for flexible diaphragms.

Moderate Seismicity

Geologic Site Hazards

RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.
C	NC	N/A	U	SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)	Slope failure has been determined to not be an issue per NGI technical memorandum.

Project Name City of Wilsonville - Opp Project Number 11962A.00

C X	NC	N/A	U	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)	Surface fault rupture has been determined to not be an issue per NGI technical memorandum.

High Seismicity

Foundation Configuration

RA	TING		J	DESCRIPTION	COMMENTS
C	NC	N/A	U	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/ height) is greater than 0.6S _a . (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	Height = 10.25ft Base = 58ft Sa = 0.744 B/H = 58ft / 10.25ft = 5.66 0.6*Sa = 0.6 * 0.744 = 0.45 5.66 > 0.45 (OK)
C	NC	N/A	U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)	

6

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Operations Building
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	07/01/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-33. Collapse Prevention Structural Checklist for Building Types RM1 and RM2

Low and Moderate Seismicity

	Seismic-Force-Resisting System							
	TING			DESCRIPTION	COMMENTS			
C		N/A	U	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1)				
C		N/A	U	SHEAR STRESS CHECK: The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than 70 lb/in. ² . (Commentary: Sec. A.3.2.4.1. Tier 2: Sec. 5.5.3.1.1)	West wall line DCR = 0.06 (OK) East wall line DCR = 0.08 (OK) North wall line DCR = 0.46 (OK) South wall line DCR = 0.45 (OK)			
C	NC	N/A	U	REINFORCING STEEL: The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in., and all vertical bars extend to the top of the walls. (Commentary: Sec. A.3.2.4.2. Tier 2: Sec. 5.5.3.1.3)	Horiz steel = $#5@48"$ Vert steel = $#6@32"$ Horiz ratio = $0.31/(7.625*48) = 0.0008 >$ 0.0007 (OK) Vert ratio = $0.44 / (7.625*32) = 0.0018 > 0.0007$ (OK) Combined = $0.0018 + 0.0008 = 0.0026 > 0.002$ (OK) Horizontal reinforcing is spaced at 48in, and this is not less than 48in spacing so NC.			

9 Project Name City of Wilsonville - Or Project Number 11962A.00

Stiff Diaphragms

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	TOPPING SLAB: Precast concrete diaphragm	
		X		elements are interconnected by a continuous reinforced concrete topping slab. (Commentary: Sec. A.4.5.1. Tier 2: Sec. 5.6.4)	

Connections

001111	Unitections						
RA	TING			DESCRIPTION	COMMENTS		
C	NC	N/A	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	Roof joist bearing anchorage DCR = 0.23 (OK) E-W beam bearing anchorage DCR = 0.55 (OK) N-S beam bearing anchorage DCR = 0.24 (OK)		
C		N/A X		WOOD LEDGERS: The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Commentary: Sec. A.5.1.2. Tier 2: Sec. 5.7.1.3)			
C	NC	N/A	U	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of seismic forces to the shear walls. (Commentary: Sec. A.5.2.1. Tier 2: Sec. 5.7.2)	There are no diaphragm ties in the N-S direction where perimeter CMU shear walls stop. The diaphragm at these locations will lack the ability to transfer diaphragm forces into the shear walls.		

C	NC	N/A	U	TOPPING SLAB TO WALLS OR FRAMES: Reinforced concrete topping slabs that interconnect the precast concrete diaphragm elements are doweled for transfer of forces into the shear wall or frame elements. (Commentary: Sec. A.5.2.3. Tier 2: Sec. 5.7.2)	
	NC	N1 / A		FOUNDATION DOWELS: Wall reinforcement is	
C	NC	N/A	U	doweled into the foundation. (Commentary: Sec.	
x				A.5.3.5. Tier 2: Sec. 5.7.3.4)	
С	NC	N/A	υ	GIRDER-COLUMN CONNECTION: There is a	
				positive connection using plates, connection	
×				hardware, or straps between the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2: Sec. 5.7.4.1)	

High Seismicity

Stiff Diaphragms

	<u> </u>	n agin			
RA	TING			DESCRIPTION	COMMENTS
C		N/A X	U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3)	

11Project NameCity of Wilsonville - OppProject Number11962A.00

С	NC	N/A	U	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to	
		x		exterior masonry shear walls are not greater than	
				8 ft long. (Commentary: Sec. A.4.1.6. Tier 2: Sec.	
				5.6.1.3)	

Flexible Diaphragms

RA	TING			DESCRIPTION	COMMENTS
с	NC	N/A	U	CROSS TIES: There are continuous cross ties	
X				between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2)	
				A.4.1.2. Hel 2. Sec. 5.0.1.2)	
<u> </u>				OPENINGS AT SHEAR WALLS: Diaphragm	
C	NC	N/A	U	openings immediately adjacent to the shear walls	
		X		are less than 25% of the wall length.	
				(Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3)	
С	NC	N/A	U	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS:	
		X		Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than	
				8 ft long. (Commentary: Sec. A.4.1.6. Tier 2: Sec.	
				5.6.1.3)	

		1			
с	NC	N/A	υ	STRAIGHT SHEATHING: All straight sheathed	
				diaphragms have aspect ratios less than 2-to-1 in	
		X		the direction being considered. (Commentary:	
				Sec. A.4.2.1. Tier 2: Sec. 5.6.2)	
C	NC	N/A	U	SPANS: All wood diaphragms with spans greater	
		x		than 24 ft consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2.	
				Tier 2: Sec. 5.6.2)	
С	NC	N/A	υ	DIAGONALLY SHEATHED AND UNBLOCKED	
			I U .		1
				DIAPHRAGMS: All diagonally sheathed or	
		x		DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms	
				DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect	
				DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary:	
				DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect	
				DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary:	
				DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary:	
				DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary:	
				DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary:	
		X		DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)	
C	NC		U	DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) OTHER DIAPHRAGMS: The diaphragm shall not	
		X		DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)	
C		X		DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) OTHER DIAPHRAGMS: The diaphragm shall not consist of a system other than wood, metal deck,	
C		X		DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) OTHER DIAPHRAGMS: The diaphragm shall not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary:	
C		X		DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) OTHER DIAPHRAGMS: The diaphragm shall not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary:	
C		X		DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) OTHER DIAPHRAGMS: The diaphragm shall not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary:	
C		X		DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) OTHER DIAPHRAGMS: The diaphragm shall not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary:	
C		X		DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) OTHER DIAPHRAGMS: The diaphragm shall not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary:	
C		X		DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) OTHER DIAPHRAGMS: The diaphragm shall not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary:	

13Project NameCity of Wilsonville - Op+Project Number11962A.00

Connections

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	STIFFNESS OF WALL ANCHORS: Anchors of	
		×		concrete or masonry walls to wood structural elements are installed taut and are stiff enough to	
				limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. before engagement of the anchors. (Commentary: Sec. A.5.1.4. Tier 2: Sec. 5.7.1.2)	

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Administration and Operations Building
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	07/01/2021
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-38. Nonstructural Checklist

The Performance Level is designated LS for Life Safety or PR for Position Retention. The level of seismicity is designated as "not required" or by L, M, or H, for Low, Moderate, and High.

All Seismicity Levels

For BSE-1E Tier 1, use PR (Position Retention)

	ife Safety Systems							
RA	TING			DESCRIPTION	COMMENTS			
С	NC	N/A	U	LS-LMH; PR-LMH. FIRE SUPPRESSION PIPING: Fire suppression piping is anchored and braced in accordance with NFPA-13. (Commentary: Sec. A.7.13.1. Tier 2: Sec. 13.7.4)				
c	NC	N/A	U	LS-LMH; PR-LMH. FLEXIBLE COUPLINGS: Fire suppression piping has flexible couplings in accordance with NFPA-13. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.4)				
с		N/A	U	LS-LMH; PR-LMH. EMERGENCY POWER: Equipment used to power or control life safety systems is anchored or braced. (Commentary: Sec. A.7.12.1. Tier 2: Sec. 13.7.7)				
c		N/A	U	LS-LMH; PR-LMH. STAIR AND SMOKE DUCTS: Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Commentary: Sec. A.7.14.1. Tier 2: Sec. 13.7.6)				

Project Name City of Wilsonville Project Number 11962A.00

C	NC	N/A	U	LS-MH; PR-MH. SPRINKLER CEILING CLEARANCE: Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.4)	
C		N/A	U	LS-not required; PR-LMH. EMERGENCY LIGHTING: Emergency and egress lighting equipment is anchored or braced. (Commentary: Sec. A.7.3.1. Tier 2: Sec. 13.7.9)	

Hazardous Materials

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-LMH; PR-LMH.	
		X		HAZARDOUS MATERIAL EQUIPMENT: Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Commentary: Sec. A.7.12.2. Tier 2: 13.7.1)	
С	NC	N/A	U	LS-LMH; PR-LMH.	
		$\left \times \right $		HAZARDOUS MATERIAL STORAGE: Breakable containers that hold hazardous material,	
				including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods.	
				(Commentary: Sec. A.7.15.1. Tier 2: Sec. 13.8.4)	

Project Name Project Number 11962A.00

					-		
c		N/A	U	LS-MH; PR-MH. HAZARDOUS MATERIAL DISTRIBUTION: Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and 13.7.5)			
C	NC	N/A	U	LS-MH; PR-MH. SHUT-OFF VALVES: Piping containing hazardous material, including natural gas, has shut-off valves or other devices to limit spills or leaks. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.3 and 13.7.5)			
C	NC	N/A	U	LS-LMH; PR-LMH. FLEXIBLE COUPLINGS: Hazardous material ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec. A.7.15.4, Tier 2: Sec.13.7.3 and 13.7.5)			
C	NC	N/A	U	LS-MH; PR-MH. PIPING OR DUCTS CROSSING SEISMIC JOINTS: Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A.7.13.6. Tier 2: Sec.13.7.3, 13.7.5, and 13.7.6)			

Project Name City of Wilsonville Project Number 11962A.00

Partitions

RATING DESCRIPTION COMMENTS LS-LMH; PR-LMH. С NC N/A U UNREINFORCED MASONRY: Unreinforced $\left| \times \right|$ masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft in Low or Moderate Seismicity, or at most 6 ft in High Seismicity. (Commentary: Sec. A.7.1.1. Tier 2: Sec. 13.6.2) LS-LMH; PR-LMH. U С NC N/A HEAVY PARTITIONS SUPPORTED BY CEILINGS: The \times tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2) LS-MH; PR-MH. С NC N/A U DRIFT: Rigid cementitious partitions are detailed $\left| \times \right|$ to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Commentary A.7.1.2 Tier 2: Sec. 13.6.2) LS-not required; PR-MH. С NC N/A U LIGHT PARTITIONS SUPPORTED BY CEILINGS: The \times tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)

Project Name Project Number City of Wilsonville 11962A.00

С	NC	N/A	U	LS-not required; PR-MH. STRUCTURAL SEPARATIONS: Partitions that cross	
		\times		structural separations have seismic or control joints. (Commentary: Sec. A.7.1.3. Tier 2. Sec.	
				13.6.2)	
C	NC	N/A	U	LS-not required; PR-MH. TOPS: The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft. (Commentary: Sec. A.7.1.4. Tier 2. Sec. 13.6.2)	Partition walls appear to be anchored to be attached to bottom chord of truss members.

Ceilings

Com	.9°				
RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LS-MH; PR-LMH. SUSPENDED LATH AND PLASTER: Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft ² of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)	
C	NC	N/A	U	LS-MH; PR-LMH. SUSPENDED GYPSUM BOARD: Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft ² of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)	

Project Name Project Number City of Wilsonville 11962A.00

C ×		N/A		LS-not required; PR-MH. INTEGRATED CEILINGS: Integrated suspended ceilings with continuous areas greater than 144 ft ² , and ceilings of smaller areas that are not surrounded by restraining partitions, are laterally restrained at a spacing no greater than 12 ft with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Commentary: Sec. A.7.2.2. Tier 2: Sec. 13.6.4) LS-not required; PR-MH.	
c	NC	N/A		EDGE CLEARANCE: The free edges of integrated suspended ceilings with continuous areas greater than 144 ft ² have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in.; in High Seismicity, 3/4 in. (Commentary: Sec. A.7.2.4. Tier 2: Sec. 13.6.4)	Ceiling edges are placed next to partitions and exterior framing. No gap is provided between.
C	NC	N/A	U	LS-not required; PR-MH. CONTINUITY ACROSS STRUCTURE JOINTS: The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Commentary: Sec. A.7.2.5. Tier 2: Sec. 13.6.4)	
C	NC	N/A	U	LS-not required; PR-H. EDGE SUPPORT: The free edges of integrated suspended ceilings with continuous areas greater than 144 ft ² are supported by closure angles or channels not less than 2 in. wide. (Commentary: Sec. A.7.2.6. Tier 2: Sec. 13.6.4)	

Ceiling supported off wall. There is no gap between ceiling channel edge and wall.

Project Name City of Wilsonville Project Number 11962A.00

|--|

Light Fixtures

	iyin rixtures									
RA	TING			DESCRIPTION	COMMENTS					
C		N/A	C	LS-MH; PR-MH. INDEPENDENT SUPPORT: Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Commentary: Sec. A.7.3.2. Tier 2: Sec. 13.6.4 and 13.7.9)						
c		N/A		LS-not required; PR-H PENDANT SUPPORTS: Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigid supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Commentary: Sec. A.7.3.3. Tier 2: Sec. 13.7.9)						
C	NC	N/A	U	LS-not required; PR-H. LENS COVERS: Lens covers on light fixtures are attached with safety devices. (Commentary: Sec. A.7.3.4. Tier 2: Sec. 13.7.9)	There appears to be a lack of safety devices on lights.					

Lens covers within building lack safety devices. The covers currently can swing open without a latch.

Cladding and Glazing

24 Project Name City of Wilsonville Project Number 11962A.00

	RATING DESCRIPTION COMMENTS									
с		N/A	U	LS-MH; PR-MH. CLADDING ANCHORS: Cladding components weighing more than 10 lb/ft ² are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft. (Commentary: Sec. A.7.4.1. Tier 2: Sec. 13.6.1)						
C	NC	N/A	U	LS-MH; PR-MH CLADDING ISOLATION: For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.3. Tier 2: Sec. 13.6.1)						
c		N/A X	U	LS-MH; PR-MH MULTI-STORY PANELS: For multi-story panels attahed at more than one floor level panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.4. Tier 2: Sec. 13.6.1)						
C	NC	N/A X	U	LS-MH; PR-MH THREADED RODS: Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and for Position Retention in any seismicity. (Commentary: Sec. A.7.4.9. Tier 2: Sec. 13.6.1)						

Project Name Project Number 11962A.00

C	NC	N/A X	U	LS-MH; PR-MH. PANEL CONNECTIONS: Cladding panels are anchored out-of-plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Commentary: Sec. A.7.4.5. Tier 2: Sec. 13.6.1.4)	

Project Name Project Number 11962A.00

C		N/A	U	LS-MH; PR-MH. BEARING CONNECTIONS: Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Commentary: Sec. A.7.4.6. Tier 2: Sec. 13.6.1.4)	
с	NC	N/A	U	LS-MH; PR-MH. INSERTS: Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Commentary: Sec. A.7.4.7. Tier 2: Sec. 13.6.1.4)	
				Sec. 7.7.4.7. Her 2. Sec. 15.0.1.4)	
c	NC	N/A	U	LS-MH; PR-MH. OVERHEAD GLAZING: Glazing panes of any size in curtain walls and individual interior or exterior panes over 16 ft ² in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Commentary: Sec. A.7.4.8: Tier 2: Sec. 13.6.1.5)	Windows are assumed to lack proper restraint in frame if cracked or damaged.

Masonry Veneer

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-LMH; PR-LMH. TIES: Masonry veneer is connected to the backup	
		X		with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft ² , and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in.; for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (Commentary: Sec. A.7.5.1. Tier 2: Sec. 13.6.1.2)	

Exterior windows do not appear to meet requirements of heat laminated or have restraint to remain within frame if cracked.

Project Name City of Wilsonville Project Number 11962A.00

c	NC	N/A		LS-LMH; PR-LMH. SHELF ANGLES: Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Commentary: Sec. A.7.5.2. Tier 2: Sec. 13.6.1.2)	
С	NC	N/A	U	LS-LMH; PR-LMH. WEAKENED PLANES: Masonry veneer is anchored	
		\times		to the backup adjacent to weakened planes, such as at the locations of flashing. (Commentary: Sec. A.7.5.3. Tier 2: Sec. 13.6.1.2)	
С	NC	N/A	U	LS-LMH; PR-LMH. UNREINFORCED MASONRY BACKUP: There is no	
		X		unreinforced masonry backup. (Commentary: Sec. A.7.7.2. Tier 2: Section 13.6.1.1 and 13.6.1.2)	
С	NC	N/A	U	LS-MH; PR-MH STUD TRACKS: For veneer with cold-formed	
		\times		steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. on center. (Commentary: Sec. A.7.6.1. Tier 2: Sec. 13.6.1.1 and 13.6.1.2)	

Project Name Project Number 11962A.00

C	NC	N/A	U	LS-MH; PR-MH. ANCHORAGE: For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Commentary: Sec. A.7.7.1. Tier 2: Section 13.6.1.1 and 13.6.1.2)	
с	NC	N/A	U	LS-not required; PR-MH.	
C	ne		U	WEEP HOLES: In veneer anchored to stud walls,	
		\times		the veneer has functioning weep holes and base flashing. (Commentary: Sec. A.7.5.6. Tier 2: Section 13.6.1.2)	
с	NC	N/A	U	LS-not required; PR-MH	
				OPENINGS: For veneer with cold-formed	
		\times		-steel stud backup, steel studs frame window and door openings. (Commentary: Sec. A.7.6.2. Tier 2: Sec. 13.6.1.1 and 13.6.1.2)	

Parapets, Cornices, Ornamentation, and Appendages

RA	TING			DESCRIPTION	COMMENTS
С		N/A	U	LS-LMH; PR-LMH. URM PARAPETS OR CORNICES: Laterally unsupported unreinforced masonry parapets or cornices have height-to-thickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Commentary: Sec. A.7.8.1. Tier 2:	
				Sec. 13.6.5)	

Project Name City of Wilsonville Project Number 11962A.00

C	NC	N/A	U	LS-LMH; PR-LMH. CANOPIES: Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft; for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft. (Commentary: Sec. A.7.8.2. Tier 2: Sec. 13.6.6)	
C		N/A	U	LS-MH; PR-LMH. CONCRETE PARAPETS: Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Commentary: Sec. A.7.8.3. Tier 2: Sec. 13.6.5)	
C		N/A	U	LS-MH; PR-LMH. APPENDAGES: Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft. This checklist item does not apply to parapets or cornices covered by other checklist items. (Commentary: Sec. A.7.8.4. Tier 2: Sec. 13.6.6)	Vent stact for the laboratory hoods on roof is restrained with (3) cables.

Masonry Chimneys

RA	TING		Ĵ	DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-LMH; PR-LMH.	
		\mathbf{X}		URM CHIMNEYS: Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Commentary: Sec. A.7.9.1. Tier 2: 13.6.7)	

Project Name City of Wilsonville Project Number 11962A.00

С	NC	N/A	U	LS-LMH; PR-LMH. ANCHORAGE: Masonry chimneys are anchored at	
		\times		each floor level, at the topmost ceiling level, and	
				at the roof. (Commentary: Sec. A.7.9.2. Tier 2: 13.6.7)	

Stairs

Stant					
RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-LMH; PR-LMH.	
		$\left \times \right $	\square	STAIR ENCLOSURES: Hollow-clay tile or unreinforced masonry walls around stair	
				enclosures are restrained out-of-plane and have	
				height-to-thickness ratios not greater than the	
				following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High	
				Seismicity and for Position Retention in any	
				seismicity, 12-to-1. (Commentary: Sec. A.7.10.1.	
				Tier 2: Sec. 13.6.2 and 13.6.8)	
C	NC	N/A	U	LS-LMH; PR-LMH STAIR DETAILS: The connection between	
	\square	$\left \times \right $	\square	the stairs and the structure does not rely on	
				post-installed anchors in concrete or	
				masonry, and the stair details are capable of accommodating the drift calculated using the	
				Quick Check procedure of Section 4.4.3.1 for	
				moment-frame structures or 0.5 in. for all other structures without including any lateral	
				stiffness contribution from the stairs.	
				(Commentary: Sec. A.7.10.2. Tier 2: Sec.	
				13.6.8)	

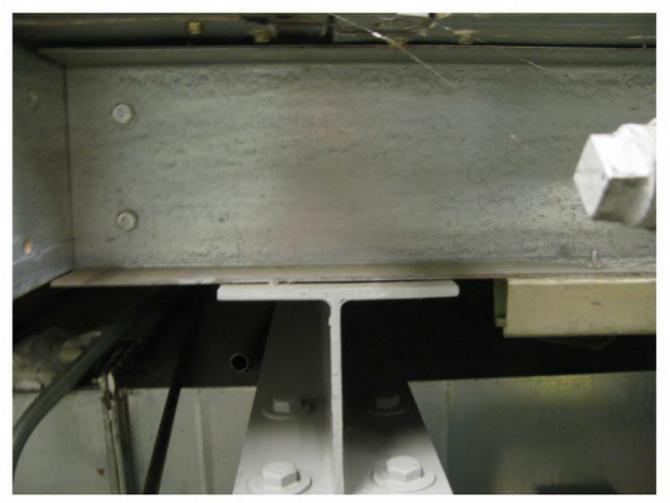
Contents and Furnishings

R	RATING DESC				DESCRIPTION	COMMENTS
С	N	: N	I/A	U	LS-MH; PR-MH.	
			\times		INDUSTRIAL STORAGE RACKS: Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/MH 16.1 as modified by ASCE 7 Chapter 15. (Commentary: Sec. A.7.11.1. Tier 2: Sec. 13.8.1)	

c	NC	N/A		LS-H; PR-MH. TALL NARROW CONTENTS: Contents more than 6 ft high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Commentary: Sec. A.7.11.2. Tier 2: Sec. 13.8.2)	Storage racks lack restraint to structure in storage room. Refrigerators in laboratory are on rollers which can be locked in place. If set in locked position, there is potential for it to overturn.
C	NC	N/A	U	LS-H; PR-H. FALL-PRONE CONTENTS: Equipment, stored items, or other contents weighing more than 20 Ib whose center of mass is more than 4 ft above the adjacent floor level are braced or otherwise restrained. (Commentary: Sec. A.7.11.3. Tier 2: Sec. 13.8.2)	We could not determine/identify whether the laboratory hoods are laterally braced to structure. The equipment is suspended from the roof framing above the ceiling. Our assumption is there is no lateral bracing to support these equipment.
c		N/A	U	LS-not required; PR-MH. ACCESS FLOORS: Access floors more than 9 in. high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.8.3)	
с	NC	N/A	U	LS-not required; PR-MH. EQUIPMENT ON ACCESS FLOORS: Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Commentary: Sec. A.7.11.5. Tier 2: Sec. 13.7.7 and 13.8.3)	

Storage racks in storage room don't appear to be restrained laterally.

Refrigerator doesn't appear to be restrained laterally. There are rollers, but if set in lock position, there is potential for overturning.



The laboratory hood equipment is assumed to be seismically unbraced.

C	NC	N/A	U	LS-not required; PR-H. SUSPENDED CONTENTS: Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Commentary. A.7.11.6. Tier 2: Sec. 13.8.2)	There is a gap between the laboratory hoods and ceiling to allow for some movement, but gap might not be adequate.
---	----	-----	---	---	--

Mechanical and Electrical Equipment

RA	RATING DESCRIPTION COMMENTS					
C	NC	N/A	U	LS-H; PR-H. FALL-PRONE EQUIPMENT: Equipment weighing more than 20 lb whose center of mass is more than 4 ft above the adjacent floor level, and which is not in-line equipment, is braced. (Commentary: A.7.12.4. Tier 2: 13.7.1 and 13.7.7)	We could not determine/identify whether the laboratory hoods are laterally braced to structure. The equipment is suspended from the roof framing above the ceiling. Our assumption is there is no lateral bracing to support these equipment. In addition, the air handlers in mechanical room lack anchorage to the support structure below.	
С	NC	N/A	U	LS-H; PR-H. IN-LINE EQUIPMENT: Equipment installed in-line		
				with a duct or piping system, with an operating weight more than 75 lb, is supported and laterally braced independent of the duct or piping system. (Commentary: Sec. A.7.12.5. Tier 2: Sec. 13.7.1)		
С	NC	N/A	U	LS-H; PR-MH. TALL NARROW EQUIPMENT: Equipment more	The air handlers in mechanical room lack	
	X			than 6 ft high with a height-to-depth or height-to- width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Commentary: Sec. A.7.12.6. Tier 2: Sec. 13.7.1 and 13.7.7)	anchorage to the support structure below.	

The HVAC equipment in Mechanical Room doesn't appear to be anchored to supporting structure framing below.

Project Name City of Wilsonville Project Number 11962A.00

C		N/A	U	LS-not required; PR-MH. MECHANICAL DOORS: Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Commentary: Sec. A.7.12.7. Tier 2: Sec. 13.6.9)	
c	NC	N/A	U	LS-not required; PR-H. SUSPENDED EQUIPMENT: Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Commentary: Sec. A.7.12.8. Tier 2: Sec. 13.7.1 and 13.7.7)	We could not determine/identify whether the laboratory hoods are laterally braced to structure. The equipment is suspended from the roof framing above the ceiling. Our assumption is there is no lateral bracing to support these equipment.
c	NC	N/A	U	LS-not required; PR-H. VIBRATION ISOLATORS: Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1)	
C	NC	N/A	U	LS-not required; PR-H. HEAVY EQUIPMENT: Floor-supported or platform- supported equipment weighing more than 400 lb is anchored to the structure. (Commentary: Sec. A.7.12.10. Tier 2: 13.7.1 and 13.7.7)	The air handling unit within mechanical room lacks connection to the supporting frame structure it is located on.

С	NC	N/A	U	LS-not required; PR-H. ELECTRICAL EQUIPMENT: Electrical equipment is	
\mathbf{X}				laterally braced to the structure. (Commentary:	
				Sec. A.7.12.11. Tier 2: 13.7.7)	
C	NC	N/A	U	LS-not required; PR-H. CONDUIT COUPLINGS: Conduit greater than 2.5	
		\times		in. trade size that is attached to panels, cabinets,	
				or other equipment and is subject to relative	
				seismic displacement has flexible couplings or connections. (Commentary: Sec. A.7.12.12. Tier 2:	
				13.7.8)	

Piping

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-not required; PR-H.	
		\times		FLEXIBLE COUPLINGS: Fluid and gas piping has flexible couplings. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.3 and 13.7.5)	
C	NC	N/A	U	LS-not required; PR-H. FLUID AND GAS PIPING: Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and 13.7.5)	

Project Name City of Wilsonville Project Number 11962A.00

C	NC	N/A	U	LS-not required; PR-H. C-CLAMPS: One-sided C-clamps that support piping larger than 2.5 in. in diameter are restrained. (Commentary: Sec. A.7.13.5. Tier 2: Sec. 13.7.3 and 13.7.5)	
с	NC	N/A	U	LS-not required; PR-H. PIPING CROSSING SEISMIC JOINTS: Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A7.13.6. Tier 2: Sec.13.7.3 and Sec. 13.7.5)	

Ducts

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-not required; PR-H. DUCT BRACING: Rectangular ductwork larger than	
		$\left \times \right $	\square	6 ft ² in cross-sectional area and round ducts larger	
				than 28 in. in diameter are braced. The maximum	
				spacing of transverse bracing does not exceed 30	
				ft. The maximum spacing of longitudinal bracing does not exceed 60 ft. (Commentary: Sec. A.7.14.2.)	
				Tier 2: Sec. 13.7.6)	
С	NC	N/A	U	LS-not required; PR-H.	
_			0	DUCT SUPPORT: Ducts are not supported by	
$ $ \times				piping or electrical conduit. (Commentary: Sec.	
				A.7.14.3. Tier 2: Sec. 13.7.6)	

C	NC	N/A	U	LS-not required; PR-H. DUCTS CROSSING SEISMIC JOINTS: Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A.7.14.5. Tier 2: Sec. 13.7.6)	

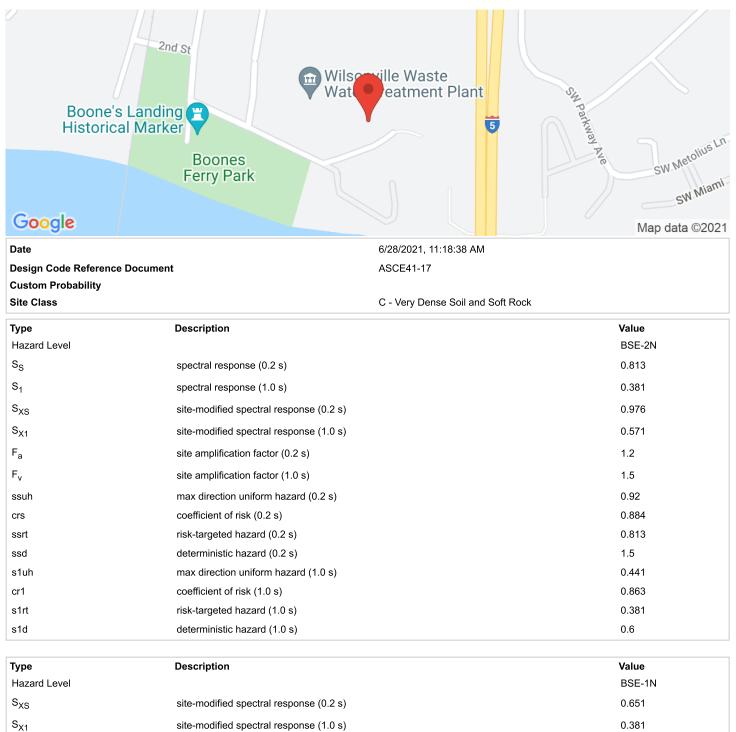
Elevators

RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LS-H; PR-H. RETAINER GUARDS: Sheaves and drums have cable retainer guards. (Commentary: Sec. A.7.16.1. Tier 2: 13.8.6)	
с	NC	N/A	U	LS-H; PR-H. RETAINER PLATE: A retainer plate is present at the	
		\times		top and bottom of both car and counterweight. (Commentary: Sec. A.7.16.2. Tier 2: 13.8.6)	
C		N/A		LS-not required; PR-H. ELEVATOR EQUIPMENT: Equipment, piping, and other components that are part of the elevator system are anchored. (Commentary: Sec. A.7.16.3. Tier 2: 13.8.6)	

C	NC	N/A	U	LS-not required; PR-H. SEISMIC SWITCH: Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Commentary: Sec. A.7.16.4. Tier 2: 13.8.6)	
C	NC	N/A		LS-not required; PR-H. SHAFT WALLS: Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Commentary: Sec. A.7.16.5. Tier 2: 13.8.6)	
c		N/A	U	LS-not required; PR-H. COUNTERWEIGHT RAILS: All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Commentary: Sec. A.7.16.6. Tier 2: 13.8.6)	
c	NC	N/A		LS-not required; PR-H. BRACKETS: The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Commentary: Sec. A.7.16.7. Tier 2: 13.8.6)	

C	NC	N/A	U	LS-not required; PR-H. SPREADER BRACKET: Spreader brackets are not used to resist seismic forces. (Commentary: Sec. A.7.16.8. Tier 2: 13.8.6)	
с	NC	N/A	U	LS-not required; PR-H. GO-SLOW ELEVATORS: The building has a go-slow elevator system. (Commentary: Sec. A.7.16.9. Tier 2: 13.8.6)	

City of Wilsonville


Operations Building Tier 1 Structural Calculations

ASCE 41-17 Seismic Parameters	pg. 1
Building Weight	pg. 3
Seismic Base Shear	pg. 5
Wall Shear Stress Check	pg. 6
Wall Anchorage Check	pg. 7

OSHPD

Latitude, Longitude: 45.294444, -122.77167

U.S. Seismic Design Maps

		46
Туре	Description	Value
Hazard Level		BSE-2E
S _S	spectral response (0.2 s)	0.589
S ₁	spectral response (1.0 s)	0.27
S _{XS}	site-modified spectral response (0.2 s)	0.744
S _{X1}	site-modified spectral response (1.0 s)	0.405
f _a	site amplification factor (0.2 s)	1.265
f _v	site amplification factor (1.0 s)	1.5

Туре	Description	Value
Hazard Level		BSE-1E
S _S	spectral response (0.2 s)	0.223
S ₁	spectral response (1.0 s)	0.082
S _{XS}	site-modified spectral response (0.2 s)	0.291
S _{X1}	site-modified spectral response (1.0 s)	0.123
F _a	site amplification factor (0.2 s)	1.3
F _v	site amplification factor (1.0 s)	1.5
Туре	Description	Value
Hazard Level		TL Data

DISCLAIMER

Long-period transition period in seconds

While the information presented on this website is believed to be correct, <u>SEAOC</u> /<u>OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

T-Sub-L

16

Engineers...Working Wonders With Water **

BY:	BS	DATE	Jul-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRI	PTION	Operation	ns Building	JOB NO.	11962A.00
DESIGN TA	SK	Operatio	ns Building	g Seismic V	Veight		

Roof Loads

Roof EL 125.63

Description	Load	
1-1/2"x20ga metal deck	2.5 psf	
Rigid insulation w/ metal sheet roofing	4.5	
Steel beam	1.8	
Steel truss	2.5	
Suspended accoustical ceiling	3.5	
Miscellaneous	5.0	
Dead Load for Gravity Design	19.8 psf	
Roof Live Load	20.0 psf	(Assumed)
Snow Load	25.0 psf	

Notes

1. The roof deck is set at a slope of 5/12, so the deck and truss members will have the unit weight increased by a factor of 1.08 to account for a projected unit horizontal weight.

Wall Loads

Wall Loads

Description	<u>Load</u>
8" CMU wall (partial grouted @ 24")	47.0 psf
5/8" GWB w/ insulation 5/8" GWB w/ insulation double sided	3.7 7.4
3-5/8"x20ga studs @ 16"	4.0
Plastic veneer finish	7.5
8" CMU Wall w/ GWB 1-side for Seismic Load	58.2 psf
8" CMU Wall w/ GWB 2-sides for Seismic Load	54.4 psf
8" CMU Wall w/ metal studs for Seismic Load	62.2 psf

Seismic Weight

Roof Weight

Roof Area	4888.0 ft ²	
Roof Seismic Weight	96.8 kip	
Vall Weight		
Wall Height to Roof	10.17 ft	
8" CMU Wall w/ GWB 1-side Length	254.67 ft	
8" CMU Wall w/ GWB 2-sides Length	25.33 ft	
8" CMU Wall w/ metal studs Length	37.00 ft	
Roof Wall Seismic Weight	94.1 kip	
otal Seismic Weight	190.9 kip	

Notes

1. Wall seismic weight assumes half of the wall height associated with each level.

2. Per Section 4.5.2.1, the effective seismic weight includes the total dead load, 25% of the live load when area is used as storage, and 20% of the roof snow live load if greater than 30 psf (otherwise assume zero).

	car	ollo
--	-----	------

Engineers, Working Wondors Wide Water *

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIPTION			Operations Building	JOB NO.	11962A.00
DESIGN TAS	Κ			ASCE	E 41-17 - Tier 1 Screening (BSE-2	E Level)	

SEISMIC BASE SHEAR

4.4.2.1 Pseudo Seismic Force. The pseudo seismic force, in a given horizontal direction of a building, shall be calculated in accordance with Eq. (4-1).

$$V = CS_{\alpha}W$$
 (4-1)

where

- V = Pseudo seismic force;
- C = Modification factor to relate expected maximum inelastic displacements to displacements calculated for linear elastic response; C shall be taken from Table 4-7;
- S_{α} = Response spectral acceleration at the fundamental period of the building in the direction under consideration. The value of S_{α} shall be calculated in accordance with the procedures in Section 4.4.2.3; and
- W = Effective seismic weight of the building, including the total dead load and applicable portions of other gravity loads listed below:

Process Gallery

Modification Factor, C =	1.0	
S _{X1} =	0.405	(BSE-2E seismic hazard)
T =	0.114	S
S _{XS} =	0.744	(BSE-2E seismic hazard)
Spectral Acceleration, $S_a =$	0.744	
Seismic Weight, W =	190.9	kip
Seismic Force, V =	142.0	kip

Table 4-7. Modification Factor, C

	Number of Stories			
Building Type"	1	2	3	≥4
Wood and cold-formet steel shear wall (W1, W1a, W2, CFS1) Moment frame (S1, S3, C1, PC2a)	1.3	1.1	1.0	1.0
Shear wall (S4, S5, C2, C3, PC1a, PC2, RM2, URMa) Braced frame (S2) Cold-formed steel strap-brace wall (CFS2)	1.4	1.2	1.1	1.0
Unreinforced masonry (UFIM) Flexible diaphragms (S1a, S2a, S5a, C2a, C3a, PC1, RM1)	1.0	1.0	1.0	1.0

^a Delined in Table 3-1.

Engineers. Working Wondors Wish Water *

BY:	BS	DATE	Aug-21
CHKD BY		DESCRI	PTION
DESIGN TA	SK		

	City of Wilsonville	
0	perations Building	

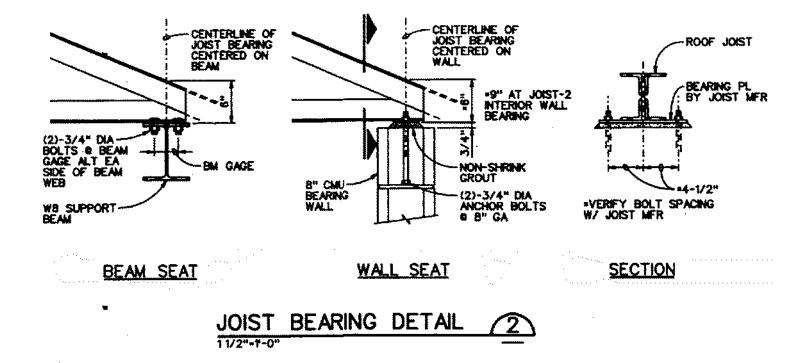
CLIENT

ASCE 41-17 - Tier 1 Screening (BSE-2E Level)

11962A.00

JOB NO.

SHEET


WALL SHEAR STRESS CHECK

4.4.3.3 Shear Stress in Shear Walls. The average shear stress in shear walls, v_j^{avg} , shall be calculated in accordance with Eq. (4-8).

- $V_j = \text{Story shear}$ 4.4.2.2;
- $A_w = Summation$ shear walls taken into ry walls, walls, the
- $M_s = System m$ Table 4-8.

Table 4-8. Ms Factors for Shear Walls

shear wans, v_j^{-1} , shan be calculated in accordance with Eq. (4-8).				
$v_j^{\text{avg}} = \frac{1}{M_s} \left(\frac{V_j}{A_w} \right) \qquad (4-8)$		Lev	el of Perfo	ormance
where	Wall Type	CP⁴	LSª	IO ^a
V_j = Story shear at level <i>j</i> computed in accordance with Section 4.4.2.2; A_w = Summation of the horizontal cross-sectional area of all	Reinforced concrete, pre concrete, wood, reinfo		3.0	1.5
shear walls in the direction of loading. Openings shall be	masonry, and cold-for	med		
taken into consideration where computing A_w . For mason- ry walls, the net area shall be used. For wood-framed	steel Unreinforced masonry	1.75	1.25	1.0
walls, the length shall be used rather than the area; and $M_s =$ System modification factor; M_x shall be taken from Table 4-8.	^a CP = Collapse Preventi Occupancy.	on, LS = Life S	Safety, IO =	- Immediate
CMU wall thickness, t =	7.625 in			
Roof Story Base Shear, V _{roof} =	142.0 kips			
System Modification Factor, M _s =	3.75 (Inte	rpolated betw	een LS &	CP)
Roof Level Shear Wall in N-S Direction West Elevation Wall Line				
Total length of exterior 8" CMU walls =	84.00 ft			
Grout spacing = total net area of shear walls =	32 in 4611.6 in ²			
average shear stress, v _{avg,NS} =	4011.0 m 4.1 psi	< 70.0	Sho	ar Stress C
	•	DCR = 0.06	<u>- 311e</u>	
East Elevation Wall Line	-	0.00		
Total length of exterior 8" CMU walls =	60.67 ft			
Grout spacing =	32 in			
total net area of shear walls =	3330.8 in ²			
average shear stress, v _{avg,NS} =	5.7 psi	< 70.0	<u>She</u>	<u>ar Stress O</u>
	L	DCR = 0.08		
<u>Shear Wall in E-W Direction</u> North Elevation Wall Line				
Total length of exterior 8" CMU walls =	21.33 ft			
Grout spacing =	32 in			
total net area of shear walls =	1171.0 in ²			
average shear stress, v _{avg,NS} =	32.3 psi	< 70.0	<u>She</u>	<u>ar Stress O</u>
South Elevation Wall Lina	L	DCR = 0.46		
South Elevation Wall Line Total length of exterior 8" CMU walls =	22.00 ft			
Grout spacing =	32 in			
total net area of shear walls =	1207.8 in ²			
total net area of shear walls = average shear stress, v _{avg,NS} =	1207.8 in² 31.4 psi	< 70.0	<u>She</u>	ar Stress O

ROOF JOIST BEARING CONNECTION TO CMU WALL

engaleers.	Protect	og werder	x weer war	C17				
BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET		
CHKD BY		DESCRIF	PTION	_	Operations Building	JOB NO.	11962A.00	-
DESIGN TASK		ASCE 41-17 - Tier 1 Screening (BSE-2E Level)				_		

WALL ANCHORAGE FORCE

Operations Building: Roof Joist Bearing Anchorage into 8" CMU Wall along East and West Wall Elevations

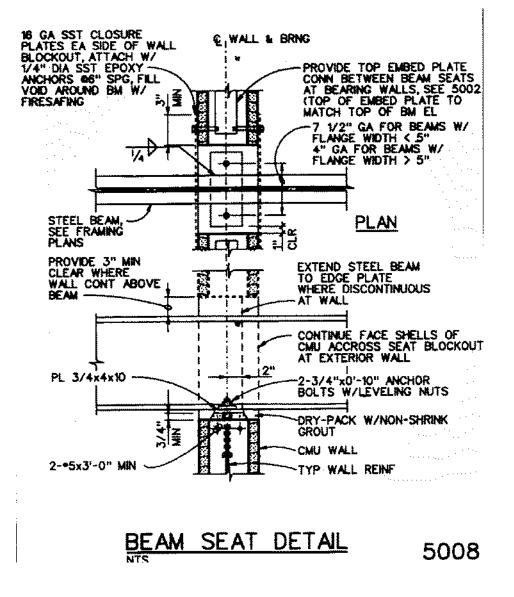
4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, To shall be calculated in accordance with Eq. (4-12). $T_c = \psi S_{XS} w_p A_p$ (4-12)where

 $w_p =$ Unit weight of the wall;

 A'_p = Area of wall tributary to the connection; $\psi = 1.0$ for Collapse Prevention Performance Level, 1.3 for

Life Safety Performance Level, and 1.8 for Immediate Occupancy Performance Level; and

 S_{XS} = Value specified in Section 4.4.2.3.


wall height to diaphragm, h_w =	10.17	ft
unit weight of wall, w_p =	58.20	psf
Ψ=	1.15	
S _{XS} =	0.744	g
wall out-of-plane load =	253.2	
roof joist spacing =	6.33	ft
wall anchorage force, T_c =	1602.8	lbs

(partial grout for wall) (Interpolated between LS & CP)

Masonry & Steel Strength

	in	0.750	anchor bolt size =
	in	7.00	anchor bolt embed, I_b =
	in	3.81	anchor bolt location from face, I_{be} =
	ksi	36.00	anchor bolt yield stress, f_y =
	psi	1500	masonry compressive strength, f_m =
	in∠	101.1	projected area of anchor bolt in tension, A_{pt} =
	in∠	22.80	projected area of each anchor bolt in shear, A_{pvbolt} =
		0.44	cross section area of anchor bolt, A_b =
	in∠	43.20	estimated overlap of projected area, A _{ptoverlap} =
	in [∠]	180.70	net projected area of anchor bolt in tension, Aptnet =
	in∠	0.00	estimated overlap of projected area, Apvoverlap =
	in∠	45.60	net projected area of anchor bolt in shear, A _{pvnet} =
gro	lbs	7064.9	$\phi B_{vnb} = 4^* A_{pvnet}^{*} (\mathbf{f}_{m}^{r})^{0.5} =$
gro	lbs	10654.8	$\phi B_{vnc} = 1050^* (f'_m * A_b)^{0.25} =$
gro	lbs	55987.6	$\phi B_{vnpry} = 8^* A_{ptnet}^* (f'_m)^{0.5} =$
gro	lbs	19085.2	$\phi B_{vns} = 0.60^{*}A_{b}^{*}f_{y} =$
	OK	0.23	Masonry breakout strength DCR =
	OK	0.15	Masonry crushing strength DCR =
	OK	0.03	Anchor pryout DCR =
	ΟΚ	0.08	Steel yielding DCR =

oup masonry breakout shear strength oup masonry crushing shear strength oup anchor pryout shear strength oup steel yielding strength

BEAM BEARING CONNECTION TO CMU WALL

engineers.	PYCIEG	oð vareare	x weer war	07				
BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET		
CHKD BY		DESCRIF	PTION	_	Operations Building	JOB NO.	11962A.00	-
DESIGN TASK		ASCE	41-17 - Tier 1 Screening (BSE-	2E Level)		_		

WALL ANCHORAGE FORCE

Operations Building: Beam Anchorage into 8" CMU Wall along East and West Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, To shall be calculated in accordance with Eq. (4-12).

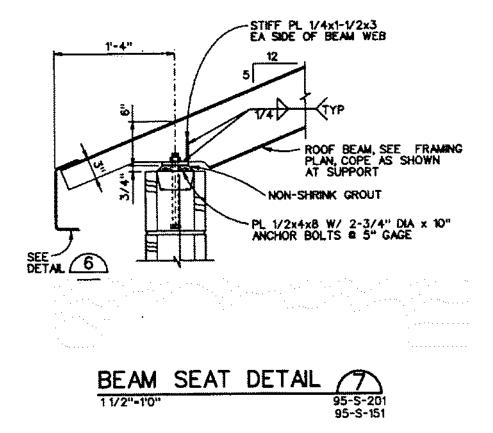
$$T_c = \psi S_{XS} w_p A_p \tag{4-12}$$

where

 $w_p =$ Unit weight of the wall;

 A_p^{μ} = Area of wall tributary to the connection; $\psi = 1.0$ for Collapse Prevention Performance Level, 1.3 for

- Life Safety Performance Level, and 1.8 for Immediate Occupancy Performance Level; and
- S_{XS} = Value specified in Section 4.4.2.3.


wall height to diaphragm, h_w =	18.36	ft
unit weight of wall, w_p =	58.20	psf
$\Psi =$	1.15	
S _{XS} =	0.744	g
wall out-of-plane load =	457.1	
beam spacing =	8.33	ft
wall anchorage force, T_c =	3807.9	lbs

Masonry & Steel Strength

anchor bolt size =	0.750	in
anchor bolt embed, I_b =	7.00	in
anchor bolt location from face, I_{be} =	3.81	in
anchor bolt yield stress, f_y =	36.00	ksi
masonry compressive strength, f_m =	1500	psi
projected area of single anchor bolt in tension, A_{pt} =	101.1	in∠
projected area of single anchor bolt in shear, A_{pvbolt} =	22.80	in∠
cross section area of single anchor bolt, A_b =	0.44	
estimated overlap of projected area, A _{ptoverlap} =	43.20	in∠
net projected area of anchor bolt in tension, A _{ptnet} =	180.70	in [∠]
estimated overlap of projected area, A _{pvoverlap} =	1.25	in∠
net projected area of anchor bolt in shear, A_{pvnet} =	44.98	in∠
	0000 4	11
$\phi B_{vnb} = 4^* A_{pvnet}^* (f_{m}^{n})^{0.5} =$	6968.1	
$\phi B_{vnc} = 1050^{*} (f'_{m} * A_{b})^{0.25} =$	10654.8	lbs
$\phi B_{vnpry} = 8^* A_{ptnet}^* (f'_m)^{0.5} =$	55987.6	lbs
$\phi B_{vns} = 0.60^* A_b^* f_y =$	19085.2	lbs
Masonry breakout strength DCR =	0.55	ок
Masonry crushing strength DCR =	0.36	OK
Anchor pryout DCR =	0.07	OK
Steel yielding DCR =	0.20	ΟΚ

(partial grout for exterior walls [CMU + venee (Interpolated between LS & CP)

group masonry breakout shear strength group masonry crushing shear strength group anchor pryout shear strength group steel yielding strength

SLOPED BEAM BEARING CONNECTION TO CMU WALLS

engineers.	PYCIEG	oð vareare	x weer war	07				
BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET		
CHKD BY		DESCRIF	PTION	_	Operations Building	JOB NO.	11962A.00	-
DESIGN TASK		ASCE	41-17 - Tier 1 Screening (BSE-	2E Level)		_		

WALL ANCHORAGE FORCE

Operations Building: Beam Anchorage into 8" CMU Wall along North and South Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, To shall be calculated in accordance with Eq. (4-12).

$$T_c = \psi S_{\chi S} w_p A_p \tag{4-12}$$

where

 $w_p =$ Unit weight of the wall;

 A_p^{μ} = Area of wall tributary to the connection; $\psi = 1.0$ for Collapse Prevention Performance Level, 1.3 for

Life Safety Performance Level, and 1.8 for Immediate Occupancy Performance Level; and

 S_{XS} = Value specified in Section 4.4.2.3.

wall height to diaphragm, h_w =	10.17	ft
unit weight of wall, w_p =	58.20	psf
Ψ =	1.15	
S _{XS} =	0.744	g
wall out-of-plane load =	253.2	lbs/ft
beam spacing =	6.67	ft
wall anchorage force, T_c =	1688.9	lbs

Masonry & Steel Strength

anchor bolt size =	0.750	in
anchor bolt embed, I_{b} =	7.00	in
anchor bolt location from face, I_{be} =	3.81	in
anchor bolt yield stress, f _y =	36.00	ksi
masonry compressive strength, f_m =	1500	psi
projected area of single anchor bolt in tension, A_{pt} =	101.1	in∠
projected area of single anchor bolt in shear, A_{pvbolt} =	22.80	in∠
cross section area of single anchor bolt, A_b =	0.44	in [∠]
estimated overlap of projected area, A _{ptoverlap} =	63.60	in∠
net projected area of anchor bolt in tension, A _{ptnet} =	170.50	in [∠]
estimated overlap of projected area, A _{pvoverlap} =	2.20	in∠
net projected area of anchor bolt in shear, A _{pvnet} =	44.50	in²
$\phi B_{vnb} = 4^* A_{pvnet}^* (f_m)^{0.5} =$	6894.5	lbe
•		
$\phi B_{vnc} = 1050^* (f_m^* A_b)^{0.25} =$	10654.8	
$\phi B_{vnpry} = 8^* A_{ptnet}^{}^* (\mathbf{f}_{m}^{})^{0.5} =$	52827.2	lbs
$\phi B_{vns} = 0.60^{*}A_{b}^{*}f_{y} =$	19085.2	lbs
Masonry breakout strength DCR =	0.24	ок
Masonry crushing strength DCR =	0.16	ОК
Anchor pryout DCR =	0.03	ОК
Steel yielding DCR =	0.09	OK

(partial grout for exterior walls [CMU + venee (Interpolated between LS & CP)

group masonry breakout shear strength group masonry crushing shear strength group anchor pryout shear strength group steel yielding strength

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Operations Building
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	07/01/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-3. Immediate Occupancy Basic Configuration Checklist

Very Low Seismicity Structural Components

CSZ Seismic Check at Damage Control

<i>รแน</i>	turai	Comp	onei	nts	
RA	TING			DESCRIPTION	COMMENTS
C	NC	N/A	U	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There are no diaphragm ties in the N-S direction where perimeter CMU shear walls stop. The diaphragm at these locations will lack the ability to transfer diaphragm forces into the shear walls.
C	NC	N/A	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	Roof joist bearing anchorage DCR = 0.18 (OK) E-W beam bearing anchorage DCR = 0.44 (OK) N-S beam bearing anchorage DCR = 0.20 (OK)

Very Low Seismicity

Building System

General

RA	TING			DESCRIPTION	COMMENTS
C	NC	N/A	U	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There are no diaphragm ties in the N-S direction where perimeter CMU shear walls stop. The diaphragm at these locations will lack the ability to transfer diaphragm forces into the shear walls.
C	NC	N/A X	U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement need not apply for the following building types: W1, W1A, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)	
C		N/A	U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)	

Building Configuration

RA	TING	Ū		DESCRIPTION	COMMENTS
c		N/A	U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction shall not be less than 80% of the strength in the adjacent story above. (Commentary: Sec. A.2.2.2. Tier 2: Sec. 5.4.2.1)	Building is a one-story structure.
c		N/A	U	SOFT STORY: The stiffness of the seismic-force- resisting system in any story shall not be less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)	Building is a one-story structure.
C		N/A	U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)	
c		N/A	U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force- resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)	Building is a one-story structure.

61Project NameCity of Wilsonville - OppProject Number11962A.00

C	NC	N/A X	U	MASS: There is no change in effective mass more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	Building is a one-story structure.
C	NC	N/A x	U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	Torsion check applies for structures with rigid diaphragms, not for flexible diaphragms.

Low Seismicity

Geologic Site Hazards

	Geologic Site Hazarus							
RA	TING			DESCRIPTION	COMMENTS			
C X		N/A	U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.			
C		N/A		SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)	Slope failure has been determined to not be an issue per NGI technical memorandum.			
C		N/A	U	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)	Surface fault rupture has been determined to not be an issue per NGI technical memorandum.			

Moderate and High Seismicity

Foundation Configuration

RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6S _a . (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	Height = 10.25ft

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Project Name Project Number

C NC N/A U TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic Image: Image	
---	--

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Operations Building
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	07/01/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-35. Immediate Occupancy Structural Checklist for Building Types RM1 and RM2

Very Low Seismicity Seismic-Force-Resisting System RATING DESCRIPTION COMMENTS **REDUNDANCY: The number of lines of shear walls** NC С N/A U in each principal direction is greater than or equal X to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1) SHEAR STRESS CHECK: The shear stress in the NC N/A U С West wall line DCR = 0.06 (OK) reinforced masonry shear walls, calculated using East wall line DCR = 0.08 (OK) X \square \square the Quick Check procedure of Section 4.5.3.3, is North wall line DCR = 0.46 (OK) less than 70 lb/in.². (Commentary: Sec. A.3.2.4.1. South wall line DCR = 0.45 (OK) Tier 2: Sec. 5.5.3.1.1) REINFORCING STEEL: The total vertical and С NC N/A U Horiz steel = #5@48"horizontal reinforcing steel ratio in reinforced Vert steel = #6@32" X masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two Horiz ratio = 0.31/(7.625*48) = 0.0008 > directions; the spacing of reinforcing steel is less 0.0007 (OK) than 48 in., and all vertical bars extend to the top Vert ratio = 0.44/(7.625*32) = 0.0018 > 0.0007 of the walls. (Commentary: Sec. A.3.2.4.2. Tier 2: (OK) Sec. 5.5.3.1.3) Combined = 0.0018+0.0008 = 0.0026 > 0.002 (OK) Horizontal reinforcing is spaced at 48in, but this is not less than 48in spacing, so NC. +

Connections

	Connections						
RA	TING			DESCRIPTION	COMMENTS		
С	NC	N/A	U	WOOD LEDGERS: The connection between the wall panels and the diaphragm does not induce			
	\square	X	\square	cross-grain bending or tension in the wood			
				ledgers. (Commentary: Sec. A.5.1.2. Tier 2: Sec.			
				5.7.1.3)			
	NC	N/A	U	TRANSFER TO SHEAR WALLS: Diaphragms are			
C	NC	N/A	U	connected for transfer of seismic forces to the	Anchorage to CMU connection DCR = 0.48 (OK)		
X				shear walls, and the connections are able to	Puddle weld connection DCR = 0.84 (OK)		
				develop the lesser of the shear strength of the			
				walls or diaphragms. (Commentary: Sec. A.5.2.1.			
				Tier 2: Sec. 5.7.2)			
С	NC	N/A	U	FOUNDATION DOWELS: Wall reinforcement is			
				doweled into the foundation, and the dowels are			
X				able to develop the lesser of the strength of the walls or the uplift capacity of the foundation.			
				(Commentary: Sec. A.5.3.5. Tier 2: Sec. 5.7.3.4)			
				(
				GIRDER–COLUMN CONNECTION: There is a			
C	NC	N/A	U	positive connection using plates, connection			
X				hardware, or straps between the girder and the			
				column support. (Commentary: Sec. A.5.4.1. Tier 2:			
				Sec. 5.7.4.1)			
				1			

67Project NameCity of Wilsonville - OrtimeProject Number11962A.00

С х	NC	N/A	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections	Roof joist bearing anchorage DCR = 0.18 (OK) E-W beam bearing anchorage DCR = 0.44 (OK) N-S beam bearing anchorage DCR = 0.20 (OK)
				have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	

Stiff Diaphragms

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	TOPPING SLAB: Precast concrete diaphragm	
				elements are interconnected by a continuous	
		X		reinforced concrete topping slab. (Commentary: Sec. A.4.5.1. Tier 2: Sec. 5.6.4)	
				Sec. A.4.5.1. Ther 2: Sec. 5.0.4)	
				TODDING SLAD TO WALLS OD EDAMES, Deinferrer	
C	NC	N/A	U	TOPPING SLAB TO WALLS OR FRAMES: Reinforced concrete topping slabs that interconnect the	
		×		precast concrete diaphragm elements are	
				doweled for transfer of forces into the shear wall	
				or frame elements. (Commentary: Sec. A.5.2.3. Tier	
				2: Sec. 5.7.2)	

Foundation System

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	DEEP FOUNDATIONS: Piles and piers are capable of transferring the seismic forces between the	No deep foundations present.
		X		structure and the soil. (Commentary: Sec. A.6.2.3.)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

С Х	NC	N/A	U	SLOPING SITES: The difference in foundation embedment depth from one side of the building to another does not exceed one story high. (Commentary: Sec. A.6.2.4)	

Low, Moderate, and High Seismicity

Seismic-Force-Resisting System

RA	TING			DESCRIPTION	COMMENTS			
С	NC	N/A	U	REINFORCING AT WALL OPENINGS: All wall				
×				openings that interrupt rebar have trim reinforcing on all sides. (Commentary: Sec.				
				A.3.2.4.3. Tier 2: Sec. 5.5.3.1.5)				
				PROPORTIONS: The height-to-thickness ratio of				
C	NC	N/A	U	the shear walls at each story is less than 30.	Height = 10.17ft Thickness = 7.625in			
X				(Commentary: Sec. A.3.2.4.4. Tier 2: Sec. 5.5.3.1.2)	THICKNESS – 7.02511			
					H/t = 10.17*12/7.625 = 16.0 < 30 (OK)			

Diaphragms (Flexible or Stiff)

RA	TING		DESCRIPTION	COMMENTS
C	NC	U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 15% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

69 Project Name Project Number 11962A.00

с	NC	N/A	U	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS:	
	NC	IN/A		Diaphragm openings immediately adjacent to	
		X			
				exterior masonry shear walls are not greater than	
				4 ft long. (Commentary: A.4.1.6. Tier 2: Sec. 5.6.1.3)	
с	NC	N/A	υ	PLAN IRREGULARITIES: There is tensile capacity to	There are no diaphragm ties in the N-S
	INC.			develop the strength of the diaphragm at	
	X			reentrant corners or other locations of plan	direction where perimeter CMU shear walls
	<u> </u>				stop. The diaphragm at these locations will
				irregularities. (Commentary: Sec. A.4.1.7. Tier 2:	lack the ability to transfer forces into the shear
				Sec. 5.6.1.4)	walls.
C	NC	N/A	U	DIAPHRAGM REINFORCEMENT AT OPENINGS:	
				There is reinforcing around all diaphragm	
$ \Box $		X		openings larger than 50% of the building width in	
				either major plan dimension. (Commentary: Sec.	
				A.4.1.8. Tier 2: Sec. 5.6.1.5)	
				A.4.1.0. Her Z: SEC. S.0.1.3)	

Flexible Diaphragms

RA	TING		5	DESCRIPTION	COMMENTS
С	NC	N/A	U	CROSS TIES: There are continuous cross ties	
X				between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2)	

с	NC	N/A (x)	U	STRAIGHT SHEATHING: All straight sheathed diaphragms have aspect ratios less than 1-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2)	
с		N/A x	U	SPANS: All wood diaphragms with spans greater than 12 ft consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2)	
c	NC	N/A X	U	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 30 ft and aspect ratios less than or equal to 3-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)	
C	NC	N/A	U	NONCONCRETE FILLED DIAPHRAGMS: Untopped metal deck diaphragms or metal deck diaphragms with fill other than concrete consist of horizontal spans of less than 40 ft and have aspect ratios less than 4-to-1. (Commentary: Sec. A.4.3.1. Tier 2: Sec. 5.6.3)	Span 1 = 40ft x 58ft Span 2 = 50ft x 36ft Span 1 ratio = 58/40 = 1.45 < 4 (OK) Span 2 ratio = 50/36 = 1.39 < 4 (OK) The aspect ratio is less than the 4-to-1 requirement, but the diaphragm spans between shear walls is greater than 40ft.

71 Project Name City of Wilsonville - Op+ Project Number 11962A.00

C 🗶	NC	N/A	U	OTHER DIAPHRAGMS: The diaphragm does not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)	

Connections

				DESCRIPTION	COMMENTS
C	NC	N/A	U	STIFFNESS OF WALL ANCHORS: Anchors of	
		X		concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. before engagement of the anchors. (Commentary: Sec. A.5.1.4. Tier 2: Sec. 5.7.1.2)	

City of Wilsonville

Operations Building Tier 1 Structural Calculations

pg. 1
pg. 3
pg. 5
pg. 6
pg. 7
pg. 10
pg. 11

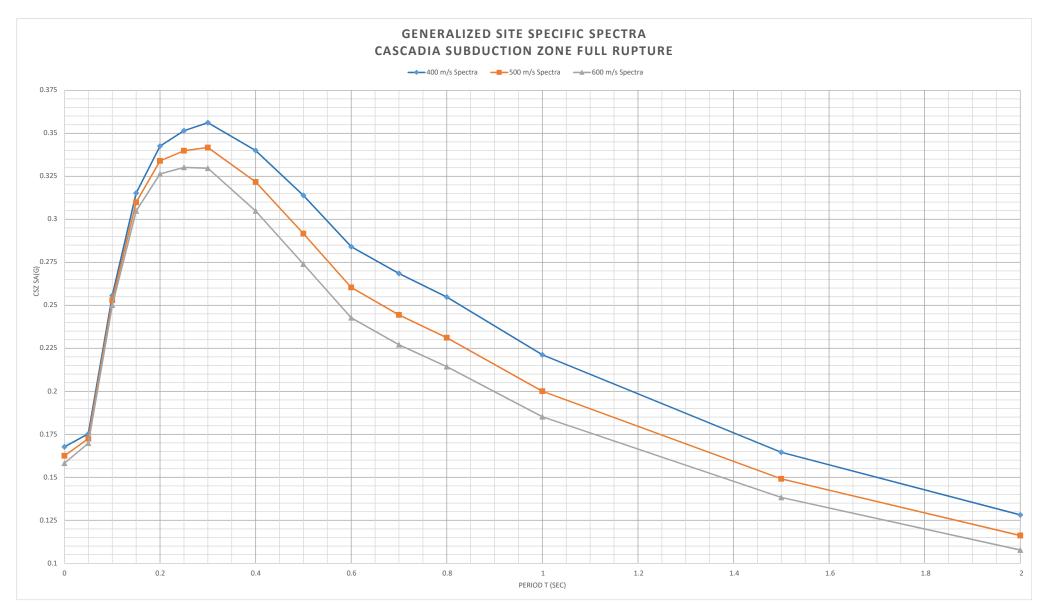


Figure No. 3

Table 2: CSZ Generalized Response Spectra Ordinates									
	Latitude 45.295155 degrees Longitude -122.771810 degrees								
Vs30 =	400 m/s	Vs30 =	500 m/s	Vs30 =	600 m/s				
Period T(sec)	CSZ Sa(g)	Period T (sec)	CSZ Sa (g)	Period T (sec)	CSZ Sa (g)				
0	0.168	0	0.163	0	0.158				
0.05	0.175	0.05	0.172	0.05	0.170				
0.1	0.256	0.1	0.253	0.1	0.250				
0.15	~~0,315~	0.15	0.310	0.15	0.305				
0.2	0.343	0.2	0.334	0.2	0.326				
0.25	0.352	0.25	0.340	0.25	0.330				
0.3	0.356	0.3	0.342	0.3	0.330				
0.4	0.340	0.4	0.322	0.4	0.305				
0.5	0.314	0.5	0.292	0.5	0.274				
0.6	0.284	0.6	0.260	0.6	0.243				
0.7	0.269	0.7	0.244	0.7	0.227				
0.8	0.255	0.8	0.231	0.8	0.214				
1	0.221	1	0.200	1	0.185				
1.5	0.165	1.5	0.149	1.5	0.138				
2	0.128	2	0.116	2	0.108				
2.5	0.104	2.5	0.094	2.5	0.087				
3	0.085	3	0.077	3	0.071				

Ss @ T=0.20 sec

Engineers...Working Wonders With Water **

BY:	BS	DATE	Jul-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRI	PTION	Operation	ns Building	JOB NO.	11962A.00
DESIGN TASK		Operations Building Seismic Weight					

Roof Loads

Roof EL 125.63

Description	<u>Load</u>	
1-1/2"x20ga metal deck	2.5 psf	
Rigid insulation w/ metal sheet roofing	4.5	
Steel beam	1.8	
Steel truss	2.5	
Suspended accoustical ceiling	3.5	
Miscellaneous	5.0	
Dead Load for Gravity Design	19.8 psf	
Roof Live Load	20.0 psf	(Assumed)
Snow Load	25.0 psf	

Notes

1. The roof deck is set at a slope of 5/12, so the deck and truss members will have the unit weight increased by a factor of 1.08 to account for a projected unit horizontal weight.

Wall Loads

Wall Loads

Description	<u>Load</u>
8" CMU wall (partial grouted @ 24")	47.0 psf
5/8" GWB w/ insulation 5/8" GWB w/ insulation double sided	3.7 7.4
3-5/8"x20ga studs @ 16"	4.0
Plastic veneer finish	7.5
8" CMU Wall w/ GWB 1-side for Seismic Load	58.2 psf
8" CMU Wall w/ GWB 2-sides for Seismic Load	54.4 psf
8" CMU Wall w/ metal studs for Seismic Load	62.2 psf

Seismic Weight

Roof Weight

Roof Area	4888.0 ft ²	
Roof Seismic Weight	96.8 kip	
Wall Weight		
Wall Height to Roof	10.17 ft	
8" CMU Wall w/ GWB 1-side Length	254.67 ft	
8" CMU Wall w/ GWB 2-sides Length	25.33 ft	
8" CMU Wall w/ metal studs Length	37.00 ft	
Roof Wall Seismic Weight	94.1 kip	
Fotal Seismic Weight	190.9 kip	

Notes

1. Wall seismic weight assumes half of the wall height associated with each level.

2. Per Section 4.5.2.1, the effective seismic weight includes the total dead load, 25% of the live load when area is used as storage, and 20% of the roof snow live load if greater than 30 psf (otherwise assume zero).

	ca!	ollo
--	-----	------

Engineers, Working Wondors With Water **

BY: B	S	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIPTION			Operations Building	JOB NO.	11962A.00
DESIGN TASK				ASCE 4	1-17 - Tier 1 Screening (CSZ Seis	mic Level)	

SEISMIC BASE SHEAR

4.4.2.1 Pseudo Seismic Force. The pseudo seismic force, in a given horizontal direction of a building, shall be calculated in accordance with Eq. (4-1).

$$V = CS_{\sigma}W$$
 (4-1)

where

- V = Pseudo seismic force;
- C = Modification factor to relate expected maximum inelastic displacements to displacements calculated for linear elastic response; C shall be taken from Table 4-7;
- S_{α} = Response spectral acceleration at the fundamental period of the building in the direction under consideration. The value of S_{α} shall be calculated in accordance with the procedures in Section 4.4.2.3; and
- W = Effective seismic weight of the building, including the total dead load and applicable portions of other gravity loads listed below:

Process Gallery

1	5	3	≥4
1.3	1.3	1.0	1.0
1.4	1.2	1.1	1.0
1.0	1.0	1.0	1.0
	1.3	1.3 1.3 1.4 1.2	1.3 1.3 1.0 1.4 1.2 1.1

Number of Stories

Table 4-7. Modification Factor, C

Modification Factor, C = 1.0 S_s = 0.343 (CSZ spectral response) S₁ = 0.221 (CSZ spectral response) $F_a =$ 1.3 (Site amplication factor per ASCE 7-16) F_v = 1.5 (Site amplication factor per ASCE 7-16) $S_{X1} = S_1 * F_v =$ 0.332 (CSZ seismic hazard) T = 0.114 s $S_{Xs} = S_s * F_a =$ 0.446 (CSZ seismic hazard) Spectral Acceleration, S_a = 0.446 Seismic Weight, W = 190.9 kip Seismic Force, V = 85.1 kip

Working Wondors With Water * Engineers.

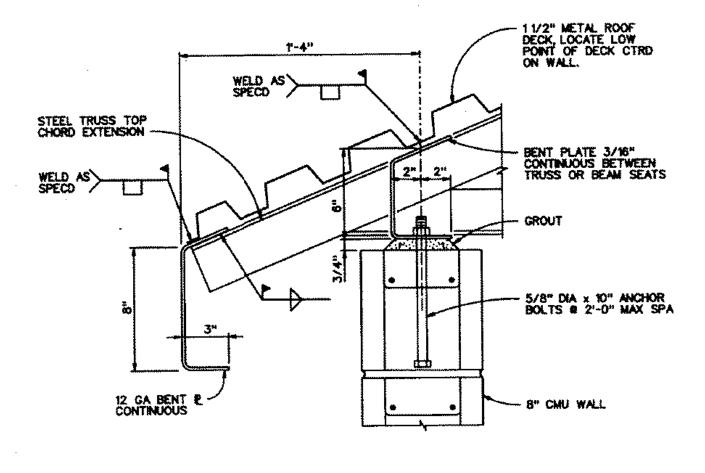
BY: BS DATE Aug-21 CLIENT CHKD BY DESCRIPTION **DESIGN TASK**

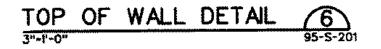
City of Wilsonville **Operations Building**

JOB NO. ASCE 41-17 - Tier 1 Screening (CSZ Seismic Level)

SHEET

11962A.00


WALL SHEAR STRESS CHECK


4.4.3.3 Shear Stress in Shear Walls. The average shear stress in shear walls, v_j^{avg} , shall be calculated in accordance with Eq. (4-8).

- $V_j = \text{Story sh}$ 4.4.2.2;
- $A_w = Summat$ shear wa taken int ry walls walls, th
- $M_s = System$ Table 4

Table 4-8. Ms Factors for Shear Walls

shear walls, v_j , shall be calculated in accordance with Eq. (4-8).				
$v_j^{\text{avg}} = \frac{1}{M_s} \left(\frac{V_j}{A_w} \right) \qquad (4-8)$		Lev	el of Perfo	ormance
where	Wall Type	CP ^a	LSª	IO ⁴
V _j = Story shear at level j computed in accordance with Section 4.4.2.2;	Reinforced concrete, precast concrete, wood, reinforced	4.5	3.0	1.5
A _w = Summation of the horizontal cross-sectional area of all shear walls in the direction of loading. Openings shall be	masonry, and cold-formed			
taken into consideration where computing A_w . For mason- ry walls, the net area shall be used. For wood-framed	steel Unreinforced masonry	1.75	1.25	1.0
walls, the length shall be used rather than the area; and $M_s =$ System modification factor; M_s shall be taken from Table 4-8.	^a CP = Collapse Prevention, La Occupancy.	S = Life S	Safety, IO =	- Immediate
CMU wall thickness, t =	7.625 in			
Roof Story Base Shear, V _{roof} =	85.1 kips			
System Modification Factor, M_s =	2.25 (Interpola	ted betw	veen LS &	IO)
Roof Level				
Shear Wall in N-S Direction				
West Elevation Wall Line				
Total length of exterior 8" CMU walls =	84.00 ft			
Grout spacing =	32 in			
total net area of shear walls =	4611.6 in ²			
average shear stress, v _{avg,NS} =	4.1 psi <	70.0	<u>She</u>	ar Stress
	DCR	= 0.06		
East Elevation Wall Line				
Total length of exterior 8" CMU walls =	60.67 ft			
Grout spacing =	32 in			
total net area of shear walls =	3330.8 in ²			
average shear stress, v _{avg,NS} =	5.7 psi <	70.0	<u>She</u>	ar Stress
	DCR	= 0.08		
Shear Wall in E-W Direction				
North Elevation Wall Line				
Total length of exterior 8" CMU walls =	21.33 ft			
Grout spacing =	32 in			
total net area of shear walls =	1171.0 in ²			
average shear stress, v _{avg,NS} =	32.3 psi <	70.0	<u>She</u>	ar Stress
	DCR	= 0.46		
South Elevation Wall Line	22.00 ft			
Total length of exterior 8" CMU walls =	22.00 ft 32 in			
Grout spacing =	1207.8 in ²			
total net area of shear walls = average shear stress, v _{ava.NS} =		70.0	Cha	or Stroop
average shear shess, v avg,NS -	31.3 psi <		<u>3110</u>	ar Stress
	DCR	= 0.45		

. e

Transfer to shear wall connection

Engineers, Warking Wondors With Water *

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	_	Operations Building	JOB NO.	11962A.00
DESIGN TAS	K			ASCE 41	-17 - Tier 1 Screening (CSZ S	eismic Level)	

TRANSFER TO SHEAR WALLS

Top of Wall Connection into CMU Walls (Detail 6/95-S-20	<u>)2)</u>		
diaphragm shear strength, q _{ult} = anchor bolt spacing = diaphragm shear strength =	1170 lbs 24 in 2340.0 lbs		(assumed less than wall shear strength)
Masonry & Steel Strength (Assuming $\phi = 1.0$ for Tier 1)			
anchor bolt size = anchor bolt embed, l_b = anchor bolt yield stress, f_y = masonry compressive strength, f_m = projected area of anchor bolt in tension, A_{pt} = cross section area of anchor bolt, A_b =	0.625 in 7.00 in 36.00 ksi 1500 psi 153.94 in ² 0.31 in ²		
$B_{vnc} = 1050^{*} (f_{m}^{*}A_{b})^{0.25} = B_{vnpry} = 8^{*}A_{pt}^{*} (f_{m})^{0.5} = B_{vns} = 0.60^{*}A_{b}^{*}f_{y} =$	4863.2 lbs 47696.0 lbs 6626.8 lbs	i	masonry crushing shear strength anchor pryout shear strength steel yielding strength
Masonry crushing strength DCR = Anchor pryout DCR = Steel yielding DCR =	0.48 0.05 0.35	OK OK OK	
Puddle Weld Strength			
deck thickness =	0.0359 in		
N-S Wall Elevations - Deck welded to support with puddle effective puddle weld diameter = puddle weld spacing =	e <i>weld at 18"</i> 0.625 in 18.00 in		
load at puddle weld = strength of puddle weld =	1755.0 lbs 2093.7 lbs		
Puddle weld strength DCR =	0.84	ок	
E-W Wall Elevations - Deck welded to support with puddl effective puddle weld diameter = puddle weld spacing =	<i>e weld at 12"</i> 0.625 in 12.00 in		
load at puddle weld = strength of puddle weld =	1170.0 lbs 2093.7 lbs		
Puddle weld strength DCR =	0.56	ОК	

Type HSB®-36

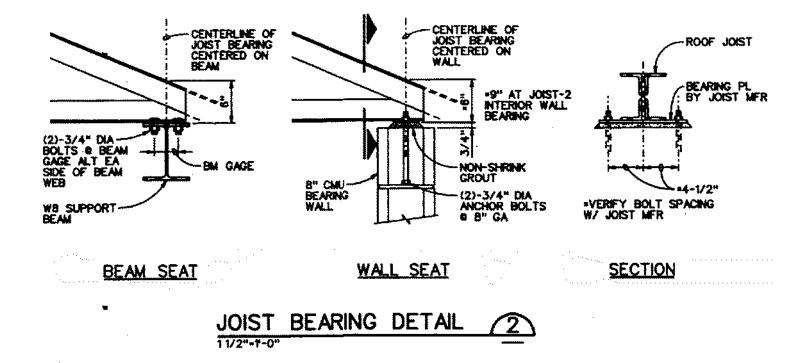
- **36/5 Weld Pattern at Supports**
- Sidelaps connected with Button Punch or 1¹/₂" Top Seam Weld

Allowable Diaphragm Shear Strength, q (plf) and Flexibility Factors, F ((in./lb)x10⁶)

DECK	SIDELAP	SPAN (ft-in.)										
GAGE	ATTACHMENT		4'-0''	5'-0''	6'-0''	7'-0"	8'-0''	9'-0"	10'-0''	11'-0"	12'-0''	
	BP @ 24"	q	369	303	248	218	187	174	156			
- - 22 -	DF @ 24	F	1.5+187R	5.7+148R	9.5+122R	12.3+103R	15.2+88R	17.3+77R	19.9+68R			
	BP @ 12"	q	405	332	284	249	223	205	192			
	DF W 12	F	0.8+188R	5+149R	8.2+123R	10.8+104R	13.1+90R	15.1+79R	16.9+70R			
		q	714	724	623	644	575	598	545			
	TSW @ 24"	F	-4.6+191R	-2.5+153R	-0.4+127R	0.5+109R	1.8+95R	2.2+85R	3.1+76R			
	TCW @ 10"	q	857	839	731	736	739	672	682			
	TSW @ 18"	F	-5.4+191R	-3.1+153R	-1.1+127R	0+109R	0.8+95R	1.7+85R	2.2+76R			
	TCW @ 40"	q	977	939	913	894	879	867	857			
	TSW @ 12"	F	-5.9+191R	-3.5+153R	-1.8+127R	-0.7+109R	0.2+96R	0.9+85R	1.4+76R			
		q	1275	1258	1246	1237	1231	1225	1001			
	TSW @ 6"	F	-6.7+191R	-4.3+153R	-2.7+128R	-1.6+109R	-0.8+96R	-0.1+85R	0.4+77R			
		q	524	433	356	315	271	249	224	213	195	
	BP @ 24"	F	4.3+117R	7.5+92R	10.5+75R	12.7+63R	15.2+54R	17+47R	19.2+40R	20.6+36R	22.7+31	
		q	576	475	407	359	323	295	275	260	247	
	BP @ 12"	F	3.7+118R	6.8+93R	9.3+76R	11.4+64R	13.3+55R	14.9+48R	16.4+42R	17.8+38R	19+34R	
		q	944	951	819	843	752	779	711	737	683	
~~	TSW @ 24"	F	-1.2+121R	0+96R	1.5+80R	2+69R	3+60R	3.2+53R	3.8+48R	3.9+44R	4.4+40F	
20		q	1125	1097	956	959	962	874	885	894	832	
	TSW @ 18"	F	-2+121R	-0.5+97R	0.9+80R	1.5+69R	2+60R	2.7+54R	3+48R	3.2+44R	3.6+40F	
		q	1276	1224	1188	1160	1139	1123	1109	1085	912	
	TSW @ 12"	F	-2.4+121R	-0.8+97R	0.2+81R	0.9+69R	1.5+60R	1.9+54R	2.3+48R	2.5+44R	2.8+40	
		q	1655	1631	1615	1602	1593	1585	1313	1085	912	
	TSW @ 6"	F	-3.1+121R	-1.6+97R	-0.6+81R	0.1+69R	0.6+61R	1+54R	1.4+48R	1.7+44R	1.9+40F	
	_	q	909	757	624	556	482	444	396	375	343	
	BP @ 24"	F	6.2+56R	8.4+44R	10.6+35R	12.2+29R	14.2+24R	15.6+20R	17.3+17R	18.5+14R	20.2+12	
		q	989	830	716	634	573	525	487	458	435	
	BP @ 12"	F	5.6+56R	7.8+44R	9.6+36R	11.1+29R	12.5+25R	13.8+21R	15+18R	16+16R	17+14R	
		q	1479	1472	1269	1295	1155	1190	1085	1120	1037	
	TSW @ 24"	F	1.3+59R	1.9+47R	2.8+39R	3+33R	3.6+29R	3.6+26R	4+23R	4+21R	4.4+19F	
18		, d	1739	1685	1468	1465	1462	1329	1341	1351	1257	
	TSW @ 18"	F	0.7+59R	1.4+47R	2.3+39R	2.5+34R	2.7+29R	3.2+26R	3.3+23R	3 4+21R	3.7+20F	
		q	1958	1871	1808	1762	1725	1697	1673	1654	1394	
	TSW @ 12"	F	0.3+59R	1.1+47R	1.6+39R	2+34R	2.3+29R	2.5+26R	2.7+24R	2.8+21R	3+20R	
		q	2520	2479	2449	2427	2410	2397	2007	1659	1394	
	TSW @ 6"	F	-0.3+59R	0.4+47R	0.9+39R	1.3+34R	1.6+30R	1.8+26R	1.9+24R	2.1+22R	2.2+20	
			1161	984	812	731	634	591	527	501	457	
	BP @ 24"	q F	6.4+31R	8.2+24R	10+18R	11.4+15R	13+12R	14.2+9R	15.7+7R	16.7+6R	18.2+4F	
			1285	1098	955	854	777	718	670	631	600	
	BP @ 12"	q F	6+31R	7.6+24R	9.1+19R	10.4+15R	11.5+13R	12.6+11R	13.6+9R	14.5+7R	15.4+6F	
			1904	1907	1647	1687	1508	1557	1422	1471	1363	
16	TSW @ 24"	q F	2.1+33R	2.4+27R	3.1+22R	3.1+19R	3.5+17R	3.5+15R	3.8+13R	3.8+12R	4+11R	
			2246	2185	1909	1910	1911	1741	1759	1774	1652	
	TSW @ 18"	q				2.7+19R						
		F	1.6+34R	2+27R	2.6+22R		2.8+17R	3.1+15R	3.2+13R	3.2+12R	3.4+11F	
	TSW @ 12"	q	2529	2424	2350	2295	2252	2218	2190	2167	1941	
		F	1.2+34R	1.7+27R	2+22R	2.2+19R	2.4+17R	2.5+15R	2.6+13R	2.7+12R	2.8+11R	
	TSW @ 6"	q	3232	3185	3152	3127	3108	3093	2795	2310	1941	
	-	F	0.7+34R	1.1+27R	1.4+23R	1.6+19R	1.7+17R	1.9+15R	2+14R	2+12R	2.1+11F	

See footnotes on page 28.

Deck Span = 6'-8" q = 1170 psf (interpolated)


Engineers, Warking Wondors With Water *

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	_	Operations Building	JOB NO.	11962A.00
DESIGN TAS	δK			ASCE 41	-17 - Tier 1 Screening (CSZ S	eismic Level)	

FOUNDATION DOWELS

Wall Shear Strength		
steel yield strength, f _y =	60000 psi	
Seismic unit shear, Vu =	0.43 kip/ft	
Seismic unit moment, Mu =	4.3 ft*kip/ft	
unit depth, dv =	12.00 in	
Mu/(Vu*dv) =	10.07	
Wall area, A _{nv} =	91.5 in ²	
masonry strength, f' _m =	1500 psi	
Reinforcement area, A _v =	0.44 in [∠]	
reinforcement spacing, s =	32.0 in	
	4.05.13	
Nominal reinforcement shear strength, V_{ns} =	4.95 kip	
Υ _g =	0.75	
Nominal Unit Wall Shear, V _n =	10.63 kip/ft	ACI 530-13 Eq. 9-23
<u>Shear Friction between wall and slab</u> Dowels into foundation are #6@32"		
Reinforcement area, A _{vf} =	0.44 in ²	
μ=	1.0	
Unit Shear Friction, V _n =	26.40 kip/ft	

Dowels can develop wall strength

ROOF JOIST BEARING CONNECTION TO CMU WALL

engaleers.	PYCIEG	où wevane	x weer war	07			
BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIF	PTION	_	Operations Building	JOB NO.	11962A.00
DESIGN TAS	SK						

WALL ANCHORAGE FORCE

Operations Building: Roof Joist Bearing Anchorage into 8" CMU Wall along East and West Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, To shall be calculated in accordance with Eq. (4-12).

$$T_c = \psi S_{XS} w_p A_p \qquad (4-12)$$

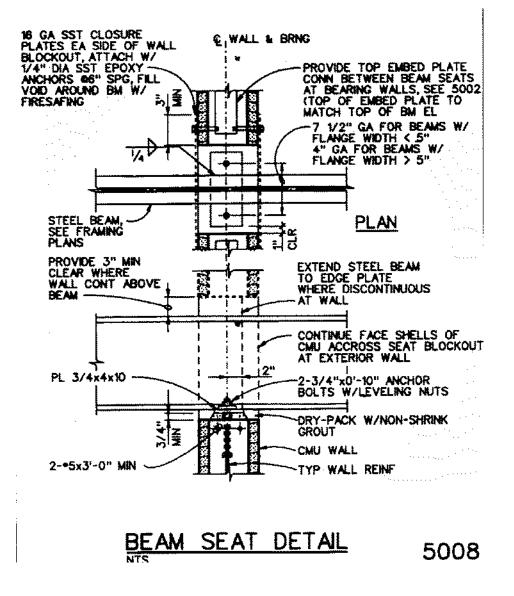
where

 $w_p =$ Unit weight of the wall;

 A'_p = Area of wall tributary to the connection; $\psi = 1.0$ for Collapse Prevention Performance Level, 1.3 for

Life Safety Performance Level, and 1.8 for Immediate Occupancy Performance Level; and

 S_{XS} = Value specified in Section 4.4.2.3.


wall height to diaphragm, h_w =	10.17	ft
unit weight of wall, w_p =	58.20	psf
Ψ=	1.55	
S _{XS} =	0.446	g
wall out-of-plane load =	204.6	lbs/ft
roof joist spacing =	6.33	ft
wall anchorage force, T_c =	1295.0	lbs

(partial grout for wall) (Interpolated between LS & IO)

Masonry & Steel Strength

anchor bolt size =	0.750	in	
anchor bolt embed, I_b =	7.00	in	
anchor bolt location from face, I_{be} =	3.81	in	
anchor bolt yield stress, f _y =	36.00	ksi	
masonry compressive strength, f_m =	1500	psi	
projected area of anchor bolt in tension, A_{pt} =	101.1	in∠	
projected area of each anchor bolt in shear, Apybolt =	22.80	in∠	
cross section area of anchor bolt, A_b =	0.44	in∠	
estimated overlap of projected area, A _{ptoverlap} =	43.20	in∠	
net projected area of anchor bolt in tension, A _{ptnet} =	180.70	in [∠]	
estimated overlap of projected area, A _{pvoverlap} =	0.00	in∠	
net projected area of anchor bolt in shear, A _{pvnet} =	45.60	in∠	
$\phi B_{vnb} = 4^* A_{pvnet}^* (f'_m)^{0.5} =$	7064.9	lbs	group maso
$\phi B_{vnc} = 1050^* (f'_m * A_b)^{0.25} =$	10654.8	lbs	group maso
$\phi B_{vnpry} = 8^* A_{ptnet}^* (f'_{m})^{0.5} =$	55987.6	lbs	group ancho
$\phi B_{vns} = 0.60^* A_b^* f_y =$	19085.2	lbs	group steel
Masonry breakout strength DCR =	0.18	OK	
Masonry crushing strength DCR =	0.12	OK	
Anchor pryout DCR =	0.02	OK	
Steel yielding DCR =	0.07	ΟΚ	

onry breakout shear strength onry crushing shear strength hor pryout shear strength l yielding strength

BEAM BEARING CONNECTION TO CMU WALL

engineers.	Proved	nd winwand	x weer war	07				
BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET		
CHKD BY		DESCRIP	PTION	_	Operations Building	JOB NO.	11962A.00	
DESIGN TAS	SK		ASCE 41-17 - Tier 1 Screening (CSZ Seismic Level)					

WALL ANCHORAGE FORCE

Operations Building: Beam Anchorage into 8" CMU Wall along East and West Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, To shall be calculated in accordance with Eq. (4-12).

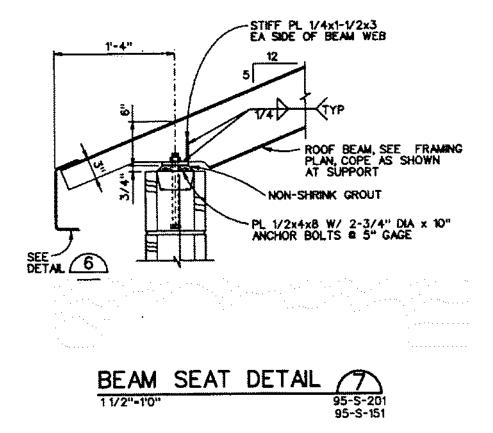
$$T_c = \psi S_{\chi S} w_p A_p \tag{4-12}$$

where

 $w_p =$ Unit weight of the wall;

 A_p^{μ} = Area of wall tributary to the connection; $\psi = 1.0$ for Collapse Prevention Performance Level, 1.3 for

- Life Safety Performance Level, and 1.8 for Immediate Occupancy Performance Level; and
- S_{XS} = Value specified in Section 4.4.2.3.


wall height to diaphragm, h_w =	18.36	ft
unit weight of wall, w_p =	58.20	psf
Ψ =	1.55	
S _{XS} =	0.446	g
wall out-of-plane load =	369.3	
beam spacing =	8.33	ft
wall anchorage force, T_c =	3076.6	lbs

Masonry & Steel Strength

<u>asoni y a Steel Stiength</u>		
anchor bolt size =	0.750	in
anchor bolt embed, I_b =	7.00	in
anchor bolt location from face, I_{be} =	3.81	in
anchor bolt yield stress, f_y =	36.00	ksi
masonry compressive strength, f_m =	1500	psi
projected area of single anchor bolt in tension, A_{pt} =	101.1	in∠
projected area of single anchor bolt in shear, A_{pvbolt} =	22.80	in∠
cross section area of single anchor bolt, A_b =	0.44	in∠
estimated overlap of projected area, A _{ptoverlap} =	43.20	in∠
net projected area of anchor bolt in tension, A _{ptnet} =	180.70	in∠
estimated overlap of projected area, A _{pvoverlap} =	1.25	in∠
net projected area of anchor bolt in shear, A_{pvnet} =	44.98	in∠
$\phi B_{vnb} = 4^* A_{pvnet} * (f_m)^{0.5} =$	6968.1	lbs
$\phi B_{vnc} = 1050^* (f'_m * A_b)^{0.25} =$	10654.8	lbs
$\phi B_{vnprv} = 8^* A_{ptnet} * (f_m)^{0.5} =$	55987.6	lbs
$\phi B_{vns} = 0.60^* A_b^* f_y =$	19085.2	lbs
Masonry breakout strength DCR =	0.44	ок
Masonry crushing strength DCR =	0.29	ОК
Anchor pryout DCR =	0.05	ΟΚ
Steel yielding DCR =	0.16	ΟΚ

(partial grout for exterior walls [CMU + venee (Interpolated between LS & IO)

group masonry breakout shear strength group masonry crushing shear strength group anchor pryout shear strength group steel yielding strength

SLOPED BEAM BEARING CONNECTION TO CMU WALLS

engineers.	Protect	og werder	x weer war	07				
BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET		
CHKD BY		DESCRIF	PTION	_	Operations Building	JOB NO.	11962A.00	-
DESIGN TAS	SK			ASCE 4	1-17 - Tier 1 Screening (CSZ Se	eismic Level)		_

WALL ANCHORAGE FORCE

Operations Building: Beam Anchorage into 8" CMU Wall along North and South Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, To shall be calculated in accordance with Eq. (4-12).

$$T_c = \psi S_{XS} w_p A_p \tag{4-12}$$

where

 $w_p =$ Unit weight of the wall;

 A'_p = Area of wall tributary to the connection; $\psi = 1.0$ for Collapse Prevention Performance Level, 1.3 for

Life Safety Performance Level, and 1.8 for Immediate Occupancy Performance Level; and

 S_{XS} = Value specified in Section 4.4.2.3.

wall height to diaphragm, h_w =	10.17	ft
unit weight of wall, w_p =	58.20	psf
$\Psi =$	1.55	
S _{XS} =	0.446	g
wall out-of-plane load =	204.6	lbs/ft
beam spacing =	6.67	ft
wall anchorage force, T_c =	1364.6	lbs

Masonry & Steel Strength

<u>asonny a Steel Strength</u>		
anchor bolt size =	0.750	in
anchor bolt embed, I _b =	7.00	in
anchor bolt location from face, I_{be} =	3.81	in
anchor bolt yield stress, f _y =	36.00	ksi
masonry compressive strength, f_m =	1500	psi
projected area of single anchor bolt in tension, A _{pt} =	101.1	in∠
projected area of single anchor bolt in shear, A_{pvbolt} =	22.80	in∠
cross section area of single anchor bolt, A_b =	0.44	in∠
estimated overlap of projected area, A _{ptoverlap} =	63.60	in∠
net projected area of anchor bolt in tension, A _{ptnet} =	170.50	in∠
estimated overlap of projected area, A _{pvoverlap} =	2.20	in∠
net projected area of anchor bolt in shear, A _{pvnet} =	44.50	in∠
0.5		
$\phi B_{vnb} = 4^* A_{pvnet}^* (f'_{m})^{0.5} =$	6894.5	lbs
$\phi B_{vnc} = 1050^* (f'_m * A_b)^{0.25} =$	10654.8	lbs
$\phi B_{vnpry} = 8^* A_{ptnet} * (f'_{m})^{0.5} =$	52827.2	lbs
$\phi B_{vns} = 0.60^* A_b^* f_y =$	19085.2	lbs
Masonry breakout strength DCR =	0.20	OK
Masonry crushing strength DCR =	0.13	OK
Anchor pryout DCR =	0.03	OK
Steel yielding DCR =	0.07	ΟΚ

(partial grout for exterior walls [CMU + venee (Interpolated between LS & IO)

group masonry breakout shear strength group masonry crushing shear strength group anchor pryout shear strength group steel yielding strength

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Process Gallery
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	07/06/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Table 17-2. Collapse Prevention Basic Configuration Checklist

Very Low Seismicity

BSE-2E Seismic Level at Limited Safety

Struc	Structural Components								
RA	TING			DESCRIPTION	COMMENTS				
C	NC	N/A	U	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There is a roof beam aligned with an interior shear wall but no connection to the wall for seismic transfer. The diaphragm at this location will lack the ability to transfer diaphragm forces into the shear wall.				
C	NC	N/A	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	 Ledger anchorage steel yielding DCR = 0.05 (OK) Interior wall bearing anchorage masonry breakout strength DCR = 0.11 (OK) Beam anchorage masonry breakout strength DCR = 0.39 (OK) 				

Low Seismicity

Building System

General

RA	TING			DESCRIPTION	COMMENTS
C	NC	N/A	U	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There is a roof beam aligned with an interior shear wall but no connection to the wall for seismic transfer. The diaphragm at this location will lack the ability to transfer diaphragm forces into the shear wall.
c		N/A	U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement need not apply for the following building types: W1, W1A, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)	
c	NC	N/A X	U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)	

Building Configuration

RA	TING	Ū		DESCRIPTION	COMMENTS
C		N/A	U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1)	
C	NC	N/A	U	SOFT STORY: The stiffness of the seismic-force- resisting system in any story is not less than 70%	
X				of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the	
				average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec.	
				A.2.2.3. Tier 2: Sec. 5.4.2.2)	
		N1/A		VERTICAL IRREGULARITIES: All vertical elements in	
C	NC	N/A	U	the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier	The center interior CMU shear walls don't continue down into the basement level. These
				2: Sec. 5.4.2.3)	walls are supported by concrete beams.
С	NC	N/A	U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-	
X				resisting system of more than 30% in a story relative to adjacent stories, excluding one-story	
				penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)	

C	NC	N/A	U	MASS: There is no change in effective mass more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	
c		N/A X	U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	Building roof is considered flexible and check is not required.

Moderate Seismicity

Geologic Site Hazards

RA	TING			DESCRIPTION	COMMENTS		
C		N/A	U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.		
с □	NC	N/A x	U	SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)	There are no slopes nearby structure.		

C X	NC	N/A	U	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.

High Seismicity

Foundation Configuration

RA	TING		Ū	DESCRIPTION	COMMENTS
C	NC	N/A	U	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/ height) is greater than 0.6S _a . (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	Height = 19.50 ft Length = 56.42 ft Sa = 0.744 L/H = 56.42 / 19.50 = 2.89 0.6*Sa = 0.6 * 0.744 = 0.45 2.89 > 0.45 (ok)
C	NC	N/A	U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)	

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Process Gallery
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	06/23/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-33. Collapse Prevention Structural Checklist for Building Types RM1 and RM2

Low and Moderate Seismicity

	Seismic-Force-Resisting System					
	RATING DESCRIPTION COMMENTS					
C		N/A	U	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1)		
C	NC	N/A	U	SHEAR STRESS CHECK: The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than 70 lb/in. ² . (Commentary: Sec. A.3.2.4.1. Tier 2: Sec. 5.5.3.1.1)	Roof Level N-S direction DCR = 0.15 (OK) E-W direction DCR = 0.13 (OK) 1st Floor N-S direction DCR = 0.12 (OK) E-W direction DCR = 0.13 (OK)	
C	NC	N/A	U	REINFORCING STEEL: The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in., and all vertical bars extend to the top of the walls. (Commentary: Sec. A.3.2.4.2. Tier 2: Sec. 5.5.3.1.3)	Horiz steel = $#6@48"$ Vert steel = $#6@24"$ (ext) & $#6@32"$ (int) Horiz ratio = $0.44 / (7.625*48) = 0.0012 > 0.0007$ (OK) Vert ratio = $0.44 / (7.625*24) = 0.0024 > 0.0007$ (OK) 0.44 / (7.625*32) = $0.0018 > 0.0007$ (OK) Horizontal reinforcing is specified at 48" but this is less than 48in required. Reinforcing is non-compliant.	

Stiff Diaphragms

RA	RATING DESCRIPTION				COMMENTS
С	NC	N/A	U	TOPPING SLAB: Precast concrete diaphragm	
		X		elements are interconnected by a continuous reinforced concrete topping slab. (Commentary: Sec. A.4.5.1. Tier 2: Sec. 5.6.4)	

Connections

00111	Connections				
RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	 Ledger anchorage steel yielding DCR = 0.05 (OK) Interior wall bearing anchorage masonry breakout strength DCR = 0.11 (OK) Beam anchorage masonry breakout strength DCR = 0.39 (OK)
c		N/A		WOOD LEDGERS: The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Commentary: Sec. A.5.1.2. Tier 2: Sec. 5.7.1.3)	
c	NC	N/A	U	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of seismic forces to the shear walls. (Commentary: Sec. A.5.2.1. Tier 2: Sec. 5.7.2)	There is a roof beam aligned with an interior shear wall but no connection to the wall for seismic transfer.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

c		N/A X	U	TOPPING SLAB TO WALLS OR FRAMES: Reinforced concrete topping slabs that interconnect the precast concrete diaphragm elements are doweled for transfer of forces into the shear wall or frame elements. (Commentary: Sec. A.5.2.3. Tier 2: Sec. 5.7.2)	
с	NC	N/A	U	FOUNDATION DOWELS: Wall reinforcement is	
		, , .	Ĭ	doweled into the foundation. (Commentary: Sec.	
X				A.5.3.5. Tier 2: Sec. 5.7.3.4)	
с	NC	N/A	υ	GIRDER-COLUMN CONNECTION: There is a	
				positive connection using plates, connection	
		X		hardware, or straps between the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2: Sec. 5.7.4.1)	

High Seismicity

Stiff Diaphragms

our blapmagmo						
RATING			DESCRIPTION		COMMENTS	
С	NC	N/A	U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls		
		X		are less than 25% of the wall length.		
				(Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3)		

99 Project Name City of Wilsonville - Pr Project Number 11962A.00

С	NC	N/A	U	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to	
		x		exterior masonry shear walls are not greater than	
				8 ft long. (Commentary: Sec. A.4.1.6. Tier 2: Sec.	
				5.6.1.3)	

Flexible Diaphragms

RA	TING			DESCRIPTION	COMMENTS
c	NC	N/A	U	CROSS TIES: There are continuous cross ties	
X				between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2)	
с	NC	N/A	U	OPENINGS AT SHEAR WALLS: Diaphragm	
		X		openings immediately adjacent to the shear walls are less than 25% of the wall length.	
				(Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3)	
c	NC	N/A	U	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to	
		X		exterior masonry shear walls are not greater than	
				8 ft long. (Commentary: Sec. A.4.1.6. Tier 2: Sec.	
				5.6.1.3)	

С	NC	N/A	υ	STRAIGHT SHEATHING: All straight sheathed	
		•••	Ŭ	diaphragms have aspect ratios less than 2-to-1 in	
		X		the direction being considered. (Commentary:	
				Sec. A.4.2.1. Tier 2: Sec. 5.6.2)	
C	NC	N1/A	υ	SPANS: All wood diaphragms with spans greater	
C	NC	N/A		than 24 ft consist of wood structural panels or	
		X		diagonal sheathing. (Commentary: Sec. A.4.2.2.	
				Tier 2: Sec. 5.6.2)	
с	NC	N/A	υ	DIAGONALLY SHEATHED AND UNBLOCKED	
				DIAPHRAGMS: All diagonally sheathed or	
		X		unblocked wood structural panel diaphragms	
				have horizontal spans less than 40 ft and aspect	
				ratios less than or equal to 4-to-1. (Commentary:	
				Sec. A.4.2.3. Tier 2: Sec. 5.6.2)	
C	NC	N/A	U	OTHER DIAPHRAGMS: The diaphragm shall not	
				consist of a system other than wood, metal deck,	
X				concrete, or horizontal bracing. (Commentary:	
				Sec. A.4.7.1. Tier 2: Sec. 5.6.5)	

101Project NameCity of Wilsonville - Project NumberProject Number11962A.00

Connections

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	STIFFNESS OF WALL ANCHORS: Anchors of	
		X		concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and	
				the diaphragm to no greater than 1/8 in. before engagement of the anchors. (Commentary: Sec. A.5.1.4. Tier 2: Sec. 5.7.1.2)	

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Process Gallery
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	07/06/2021
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-38. Nonstructural Checklist

The Performance Level is designated LS for Life Safety or PR for Position Retention. The level of seismicity is designated as "not required" or by L, M, or H, for Low, Moderate, and High.

All Seismicity Levels

For BSE-1E Tier 1, use PR (Position Retention)

Life S	Life Safety Systems					
RA	TING			DESCRIPTION	COMMENTS	
C	NC	N/A	U	LS-LMH; PR-LMH. FIRE SUPPRESSION PIPING: Fire suppression piping is anchored and braced in accordance with NFPA-13. (Commentary: Sec. A.7.13.1. Tier 2: Sec. 13.7.4)		
c		N/A	U	LS-LMH; PR-LMH. FLEXIBLE COUPLINGS: Fire suppression piping has flexible couplings in accordance with NFPA-13. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.4)		
C		N/A	U	LS-LMH; PR-LMH. EMERGENCY POWER: Equipment used to power or control life safety systems is anchored or braced. (Commentary: Sec. A.7.12.1. Tier 2: Sec. 13.7.7)		
C		N/A	U	LS-LMH; PR-LMH. STAIR AND SMOKE DUCTS: Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Commentary: Sec. A.7.14.1. Tier 2: Sec. 13.7.6)		

C	NC	N/A	U	LS-MH; PR-MH. SPRINKLER CEILING CLEARANCE: Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.4)	
C	NC	N/A	U	LS-not required; PR-LMH. EMERGENCY LIGHTING: Emergency and egress lighting equipment is anchored or braced. (Commentary: Sec. A.7.3.1. Tier 2: Sec. 13.7.9)	

Hazardous Materials

c		N/A	U	LS-MH; PR-MH. HAZARDOUS MATERIAL DISTRIBUTION: Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and 13.7.5)	
c		N/A		LS-MH; PR-MH. SHUT-OFF VALVES: Piping containing hazardous material, including natural gas, has shut-off valves or other devices to limit spills or leaks. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.3 and 13.7.5)	
c	NC	N/A	U	LS-LMH; PR-LMH. FLEXIBLE COUPLINGS: Hazardous material ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec. A.7.15.4, Tier 2: Sec.13.7.3 and 13.7.5)	
C		N/A	U	LS-MH; PR-MH. PIPING OR DUCTS CROSSING SEISMIC JOINTS: Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A.7.13.6. Tier 2: Sec.13.7.3, 13.7.5, and 13.7.6)	

106

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-LMH; PR-LMH.	
				UNREINFORCED MASONRY: Unreinforced	
		\times		masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft in Low or Moderate	
				Seismicity, or at most 6 ft in High Seismicity.	
				(Commentary: Sec. A.7.1.1. Tier 2: Sec. 13.6.2)	
C	NC	N/A	U	LS-LMH; PR-LMH. HEAVY PARTITIONS SUPPORTED BY CEILINGS: The	
		\times		tops of masonry or hollow-clay tile partitions are	
				not laterally supported by an integrated ceiling	
				system. (Commentary: Sec. A.7.2.1. Tier 2: Sec.	
				13.6.2)	
С	NC	N/A	U	LS-MH; PR-MH.	
				DRIFT: Rigid cementitious partitions are detailed	
		\times		to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and	
				wood frame buildings, 0.02; in other buildings,	
				0.005. (Commentary A.7.1.2 Tier 2: Sec. 13.6.2)	
С	NC	N/A	U	LS-not required; PR-MH. LIGHT PARTITIONS SUPPORTED BY CEILINGS: The	
	\square	\times	\square	tops of gypsum board partitions are not laterally	
				supported by an integrated ceiling system.	
				(Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)	

Project Name City of Wilsonville Project Number 11962A.00

C	NC	N/A	U	LS-not required; PR-MH. STRUCTURAL SEPARATIONS: Partitions that cross structural separations have seismic or control joints. (Commentary: Sec. A.7.1.3. Tier 2. Sec. 13.6.2)	
c	NC	N/A	U	LS-not required; PR-MH. TOPS: The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft. (Commentary: Sec. A.7.1.4. Tier 2. Sec. 13.6.2)	

Ceilings

	onnigo						
RA	TING			DESCRIPTION	COMMENTS		
С	NC	N/A	U	LS-MH; PR-LMH.			
		\times		SUSPENDED LATH AND PLASTER: Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft ² of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)			
C	NC	N/A	U	LS-MH; PR-LMH. SUSPENDED GYPSUM BOARD: Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft ² of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)			

с С	NC	N/A × N/A ×	U 	LS-not required; PR-MH. INTEGRATED CEILINGS: Integrated suspended ceilings with continuous areas greater than 144 ft ² , and ceilings of smaller areas that are not surrounded by restraining partitions, are laterally restrained at a spacing no greater than 12 ft with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Commentary: Sec. A.7.2.2. Tier 2: Sec. 13.6.4) LS-not required; PR-MH. EDGE CLEARANCE: The free edges of integrated suspended ceilings with continuous areas greater than 144 ft ² have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in.; in High Seismicity, 3/4 in. (Commentary: Sec. A.7.2.4. Tier 2: Sec. 13.6.4)	
c		N/A		LS-not required; PR-MH. CONTINUITY ACROSS STRUCTURE JOINTS: The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Commentary: Sec. A.7.2.5. Tier 2: Sec. 13.6.4)	
C		N/A	U	LS-not required; PR-H. EDGE SUPPORT: The free edges of integrated suspended ceilings with continuous areas greater than 144 ft ² are supported by closure angles or channels not less than 2 in. wide. (Commentary: Sec. A.7.2.6. Tier 2: Sec. 13.6.4)	

	1			
C	NC	N/A	U	LS-not required; PR-H.
		,	-	SEISMIC JOINTS: Acoustical tile or lay-in panel
		\mathbf{X}		ceilings have seismic separation joints such that
				each continuous portion of the ceiling is no more
				than 2500 ft ² and has a ratio of long-to-short
				dimension no more than 4-to-1. (Commentary:
				Sec. A.7.2.7. Tier 2: 13.6.4)

Light Fixtures

Ligin	iyin Fixtures								
RA	TING			DESCRIPTION	COMMENTS				
c		N/A	C	LS-MH; PR-MH. INDEPENDENT SUPPORT: Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Commentary: Sec. A.7.3.2. Tier 2: Sec. 13.6.4 and 13.7.9)					
C		N/A		LS-not required; PR-H PENDANT SUPPORTS: Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigid supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Commentary: Sec. A.7.3.3. Tier 2: Sec. 13.7.9)					
C		N/A	U	LS-not required; PR-H. LENS COVERS: Lens covers on light fixtures are attached with safety devices. (Commentary: Sec. A.7.3.4. Tier 2: Sec. 13.7.9)	Rooms with lens cover present do have safety devices.				

Project Name City of Wilsonville Project Number 11962A.00

Cladding and Glazing

	RATING DESCRIPTION COMMENTS						
				LS-MH; PR-MH.	COMMENTS		
C	NC	N/A	U	CLADDING ANCHORS: Cladding components			
	\square	\times		weighing more than 10 lb/ft ² are mechanically			
				anchored to the structure at a spacing equal to or			
				less than the following: for Life Safety in Moderate			
				Seismicity, 6 ft; for Life Safety in High Seismicity			
				and for Position Retention in any seismicity, 4 ft.			
				(Commentary: Sec. A.7.4.1. Tier 2: Sec. 13.6.1)			
С	NC	N/A	U	LS-MH; PR-MH			
	INC.		0	CLADDING ISOLATION: For steel or concrete			
		\times		moment-frame buildings, panel connections			
				are detailed to accommodate a story drift ratio			
				by the use of rods attached to framing with oversize holes or slotted holes of at least the			
				following: for Life Safety in Moderate			
				Seismicity, 0.01; for Life Safety in High			
				Seismicity and for Position Retention in any			
				seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less.			
				(Commentary: Sec. A.7.4.3. Tier 2: Sec.			
				13.6.1)			
С	NC	N/A	υ	LS-MH; PR-MH			
				MULTI-STORY PANELS: For multi-story			
		X		panels attahed at more than one floor level panel connections are detailed to			
				accommodate a story drift ratio by the use of			
				rods attached to framing with oversize holes			
				or slotted holes of at least the following: for			
				Life Safety in Moderate Seismicity, 0.01; for			
				Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the			
				rods have a length-to-diameter ratio of 4.0 or			
				less. (Commentary: Sec. A.7.4.4. Tier 2: Sec.			
				13.6.1)			
С	NC	N/A	U	LS-MH; PR-MH			
		x		THREADED RODS: Threaded rods for panel			
				connections detailed to accommodate drift by bending of the rod have a length-to-diameter			
				ratio greater than 0.06 times the story height			
				in inches for Life Safety in Moderate			
				Seismicity and 0.12 times the story height in			
				inches for Life Safety in High Seismicity and			
				for Position Retention in any seismicity. (Commentary: Sec. A.7.4.9. Tier 2: Sec.			
				13.6.1)			
	l		l				

C	NC	N/A	U	LS-MH; PR-MH. PANEL CONNECTIONS: Cladding panels are anchored out-of-plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Commentary: Sec. A.7.4.5. Tier 2: Sec. 13.6.1.4)	

c		N/A		LS-MH; PR-MH. BEARING CONNECTIONS: Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Commentary: Sec. A.7.4.6. Tier 2: Sec. 13.6.1.4)	
С	NC	N/A	U	LS-MH; PR-MH. INSERTS: Where concrete cladding components	
		\times		use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Commentary: Sec. A.7.4.7. Tier 2: Sec. 13.6.1.4)	
с	NC	N/A	U	LS-MH; PR-MH.	
				OVERHEAD GLAZING: Glazing panes of any size in	
		\boxtimes		curtain walls and individual interior or exterior panes over 16 ft ² in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Commentary: Sec. A.7.4.8: Tier 2: Sec. 13.6.1.5)	

Masonry Veneer

RA	TING		DESCRIPTION	COMMENTS
C		U	LS-LMH; PR-LMH. TIES: Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft ² , and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in.; for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (Commentary: Sec. A.7.5.1. Tier 2: Sec. 13.6.1.2)	

с []		N/A ×	U	LS-LMH; PR-LMH. SHELF ANGLES: Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Commentary: Sec. A.7.5.2. Tier 2: Sec. 13.6.1.2)	
c		N/A	U	LS-LMH; PR-LMH. WEAKENED PLANES: Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Commentary: Sec. A.7.5.3. Tier 2: Sec. 13.6.1.2)	
C	NC	N/A	U	LS-LMH; PR-LMH. UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec. A.7.7.2. Tier 2: Section 13.6.1.1 and 13.6.1.2)	
c		N/A	U	LS-MH; PR-MH STUD TRACKS: For veneer with cold-formed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. on center. (Commentary: Sec. A.7.6.1. Tier 2: Sec. 13.6.1.1 and 13.6.1.2)	

c		N/A	U	LS-MH; PR-MH. ANCHORAGE: For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Commentary: Sec. A.7.7.1. Tier 2: Section 13.6.1.1 and 13.6.1.2)	
C	NC	N/A	U	LS-not required; PR-MH. WEEP HOLES: In veneer anchored to stud walls,	
		\times		the veneer has functioning weep holes and base flashing. (Commentary: Sec. A.7.5.6. Tier 2: Section 13.6.1.2)	
С	NC	N/A	U	LS-not required; PR-MH OPENINGS: For veneer with cold-formed	
		\mathbf{X}		-steel stud backup, steel studs frame window and door openings. (Commentary: Sec. A.7.6.2. Tier 2: Sec. 13.6.1.1 and 13.6.1.2)	

Parapets, Cornices, Ornamentation, and Appendages

RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	DESCRIPTION LS-LMH; PR-LMH. URM PARAPETS OR CORNICES: Laterally unsupported unreinforced masonry parapets or cornices have height-to-thickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Commentary: Sec. A.7.8.1. Tier 2: Sec. 13.6.5)	COMMENTS
				Sec. 13.6.5)	

Project Name City of Wilsonville

115

c	N/A		LS-LMH; PR-LMH. CANOPIES: Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft; for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft. (Commentary: Sec. A.7.8.2. Tier 2: Sec. 13.6.6)	
C	N/A	U	LS-MH; PR-LMH. CONCRETE PARAPETS: Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Commentary: Sec. A.7.8.3. Tier 2: Sec. 13.6.5)	
C	N/A	U	LS-MH; PR-LMH. APPENDAGES: Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft. This checklist item does not apply to parapets or cornices covered by other checklist items. (Commentary: Sec. A.7.8.4. Tier 2: Sec. 13.6.6)	

Masonry Chimneys

RA	TING			DESCRIPTION	COMMENTS
c	NC	N/A	U	LS-LMH; PR-LMH. URM CHIMNEYS: Unreinforced masonry chimneys extend above the roof surface no more than the	
				following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Commentary: Sec. A.7.9.1. Tier 2: 13.6.7)	

Project Name City of Wilsonville Project Number 11962A.00

С	NC	N/A	U	LS-LMH; PR-LMH. ANCHORAGE: Masonry chimneys are anchored at	
		\times		each floor level, at the topmost ceiling level, and at the roof. (Commentary: Sec. A.7.9.2. Tier 2: 13.6.7)	

Stairs

Stant					
RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-LMH; PR-LMH.	
		$\left \times \right $	\square	STAIR ENCLOSURES: Hollow-clay tile or unreinforced masonry walls around stair	
				enclosures are restrained out-of-plane and have	
				height-to-thickness ratios not greater than the	
				following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High	
				Seismicity and for Position Retention in any	
				seismicity, 12-to-1. (Commentary: Sec. A.7.10.1.	
				Tier 2: Sec. 13.6.2 and 13.6.8)	
C	NC	N/A	U	LS-LMH; PR-LMH STAIR DETAILS: The connection between	
\mathbf{X}			\square	the stairs and the structure does not rely on	
				post-installed anchors in concrete or	
				masonry, and the stair details are capable of accommodating the drift calculated using the	
				Quick Check procedure of Section 4.4.3.1 for	
				moment-frame structures or 0.5 in. for all	
				other structures without including any lateral stiffness contribution from the stairs.	
				(Commentary: Sec. A.7.10.2. Tier 2: Sec.	
				13.6.8)	

Contents and Furnishings

R	ATIN	١G			DESCRIPTION	COMMENTS
С	N	IC	N/A	U	LS-MH; PR-MH.	
			\times		INDUSTRIAL STORAGE RACKS: Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/MH 16.1 as modified by ASCE 7 Chapter 15. (Commentary: Sec. A.7.11.1. Tier 2: Sec. 13.8.1)	

c	NC	N/A	U	LS-H; PR-MH. TALL NARROW CONTENTS: Contents more than 6 ft high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Commentary: Sec. A.7.11.2. Tier 2: Sec. 13.8.2)	
с	NC	N/A	υ	LS-H; PR-H.	
	_		_	FALL-PRONE CONTENTS: Equipment, stored	
		\mathbf{X}		items, or other contents weighing more than 20	
				Ib whose center of mass is more than 4 ft above the adjacent floor level are braced or otherwise	
				restrained. (Commentary: Sec. A.7.11.3. Tier 2: Sec.	
				13.8.2)	
с	NC	N/A	U	LS-not required; PR-MH.	
	NC			ACCESS FLOORS: Access floors more than 9 in.	
		\times		high are braced. (Commentary: Sec. A.7.11.4. Tier	
		\times			
		\times		high are braced. (Commentary: Sec. A.7.11.4. Tier	
		\mathbf{X}		high are braced. (Commentary: Sec. A.7.11.4. Tier	
		\mathbf{X}		high are braced. (Commentary: Sec. A.7.11.4. Tier	
		\mathbf{X}		high are braced. (Commentary: Sec. A.7.11.4. Tier	
		\square		high are braced. (Commentary: Sec. A.7.11.4. Tier	
C	NC	× N/A	U	high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.8.3) LS-not required; PR-MH.	
C		N/A		high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.8.3) LS-not required; PR-MH. EQUIPMENT ON ACCESS FLOORS: Equipment and	
C	NC		U	high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.8.3) LS-not required; PR-MH. EQUIPMENT ON ACCESS FLOORS: Equipment and other contents supported by access floor systems	
C	NC	N/A	U	high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.8.3) LS-not required; PR-MH. EQUIPMENT ON ACCESS FLOORS: Equipment and other contents supported by access floor systems are anchored or braced to the structure	
C	NC	N/A	U	high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.8.3) LS-not required; PR-MH. EQUIPMENT ON ACCESS FLOORS: Equipment and other contents supported by access floor systems	
C	NC	N/A	U	high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.8.3) LS-not required; PR-MH. EQUIPMENT ON ACCESS FLOORS: Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Commentary:	
C	NC	N/A	U	high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.8.3) LS-not required; PR-MH. EQUIPMENT ON ACCESS FLOORS: Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Commentary:	
C	NC	N/A	U	high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.8.3) LS-not required; PR-MH. EQUIPMENT ON ACCESS FLOORS: Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Commentary:	

C NC	⊂ N/A	LS-not required; PR-H. SUSPENDED CONTENTS: Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Commentary. A.7.11.6. Tier 2: Sec. 13.8.2)	

Mechanical and Electrical Equipment

RA	TING			DESCRIPTION	COMMENTS
C	NC	N/A	U	LS-H; PR-H. FALL-PRONE EQUIPMENT: Equipment weighing more than 20 lb whose center of mass is more than 4 ft above the adjacent floor level, and which is not in-line equipment, is braced. (Commentary: A.7.12.4. Tier 2: 13.7.1 and 13.7.7)	
C	NC	N/A	U	LS-H; PR-H. IN-LINE EQUIPMENT: Equipment installed in-line with a duct or piping system, with an operating weight more than 75 lb, is supported and laterally braced independent of the duct or piping system. (Commentary: Sec. A.7.12.5. Tier 2: Sec. 13.7.1)	Equipment 40-ASU-02 lacks anchorage along backside channel supports. There are (2) anchors to the front, but missing in back. See photo on next page. Aeration blower pumps do have anchor rods but the nuts appear to be backing off or missing completely.
c		N/A	U	LS-H; PR-MH. TALL NARROW EQUIPMENT: Equipment more than 6 ft high with a height-to-depth or height-to- width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Commentary: Sec. A.7.12.6. Tier 2: Sec. 13.7.1 and 13.7.7)	

HVAC equipment is unanchored to structure along backside.

Aeration blower pump lacks anchorage to structure. Nuts are missing or backing off from threaded rods.

Project Name City of Wilsonville Project Number 11962A.00

c	NC	N/A	U	LS-not required; PR-MH. MECHANICAL DOORS: Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Commentary: Sec. A.7.12.7. Tier 2: Sec. 13.6.9)	
С	NC	N/A	U	LS-not required; PR-H.	
\times				SUSPENDED EQUIPMENT: Equipment suspended without lateral bracing is free to swing from or	
				move with the structure from which it is	
				suspended without damaging itself or adjoining components. (Commentary: Sec. A.7.12.8. Tier 2:	
				Sec. 13.7.1 and 13.7.7)	
C	NC	N/A	U	LS-not required; PR-H. VIBRATION ISOLATORS: Equipment mounted on	
				i vibro i loci i	
		\times		vibration isolators is equipped with horizontal	
		\times		vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints	
		\times		vibration isolators is equipped with horizontal	
		\mathbf{X}		vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9.	
		\times		vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9.	
		\times		vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9.	
C	NC	× N/A	U	vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1) LS-not required; PR-H.	
C	NC			vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1)	
C	NC	N/A	U	vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1) LS-not required; PR-H. HEAVY EQUIPMENT: Floor-supported or platform- supported equipment weighing more than 400 lb is anchored to the structure. (Commentary: Sec.	
C	NC	N/A	U	vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1) LS-not required; PR-H. HEAVY EQUIPMENT: Floor-supported or platform- supported equipment weighing more than 400 lb	
C	NC	N/A	U U	vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1) LS-not required; PR-H. HEAVY EQUIPMENT: Floor-supported or platform- supported equipment weighing more than 400 lb is anchored to the structure. (Commentary: Sec.	
C	NC	N/A	U U	vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1) LS-not required; PR-H. HEAVY EQUIPMENT: Floor-supported or platform- supported equipment weighing more than 400 lb is anchored to the structure. (Commentary: Sec.	
C	NC	N/A	U	vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1) LS-not required; PR-H. HEAVY EQUIPMENT: Floor-supported or platform- supported equipment weighing more than 400 lb is anchored to the structure. (Commentary: Sec.	


С	NC	N/A	U	LS-not required; PR-H.	
				ELECTRICAL EQUIPMENT: Electrical equipment is laterally braced to the structure. (Commentary:	
				Sec. A.7.12.11. Tier 2: 13.7.7)	
С	NC	N/A	U	LS-not required; PR-H.	
		$\left X \right $		CONDUIT COUPLINGS: Conduit greater than 2.5 in. trade size that is attached to panels, cabinets,	
				or other equipment and is subject to relative	
				seismic displacement has flexible couplings or connections. (Commentary: Sec. A.7.12.12. Tier 2:	
				13.7.8)	

Piping

' ipiii	9				
RA	TING			DESCRIPTION	COMMENTS
C	NC	N/A	U	LS-not required; PR-H. FLEXIBLE COUPLINGS: Fluid and gas piping has flexible couplings. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.3 and 13.7.5)	
c	NC	N/A	U	LS-not required; PR-H. FLUID AND GAS PIPING: Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and 13.7.5)	Multiple pipes lack restraint to unistrut supports as these pipes are sitting on supports. Compression strut supports lack diagonal bracing back to structure.

Piping lacks restraint to unistrut support. Pipe shown is sitting on unistrut.

Compression strut lacks diagonal bracing.

Project Name City of Wilsonville Project Number 11962A.00

С	NC	N/A	U	LS-not required; PR-H.	
		\boxtimes		C-CLAMPS: One-sided C-clamps that support piping larger than 2.5 in. in diameter are restrained. (Commentary: Sec. A.7.13.5. Tier 2: Sec. 13.7.3 and 13.7.5)	
C		N/A	U	LS-not required; PR-H. PIPING CROSSING SEISMIC JOINTS: Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A7.13.6. Tier 2: Sec.13.7.3 and Sec. 13.7.5)	

Ducts

Duci					
RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LS-not required; PR-H. DUCT BRACING: Rectangular ductwork larger than 6 ft ² in cross-sectional area and round ducts larger than 28 in. in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft. The maximum spacing of longitudinal bracing does not exceed 60 ft. (Commentary: Sec. A.7.14.2. Tier 2: Sec. 13.7.6)	
C		N/A	U	LS-not required; PR-H. DUCT SUPPORT: Ducts are not supported by piping or electrical conduit. (Commentary: Sec. A.7.14.3. Tier 2: Sec. 13.7.6)	

С	NC	N/A	υ	LS-not required; PR-H.	
				DUCTS CROSSING SEISMIC JOINTS: Ducts that	
		\times		cross seismic joints or isolation planes or are	
				connected to independent structures have	
				couplings or other details to accommodate the	
				relative seismic displacements. (Commentary: Sec.	
				A.7.14.5. Tier 2: Sec. 13.7.6)	

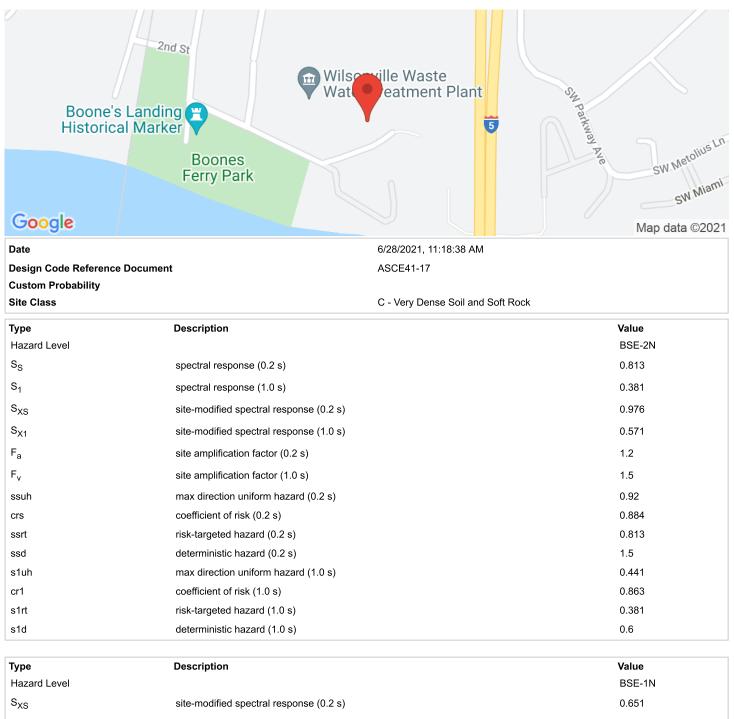
Elevators

RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LS-H; PR-H. RETAINER GUARDS: Sheaves and drums have cable retainer guards. (Commentary: Sec. A.7.16.1. Tier 2: 13.8.6)	
с	NC	N/A	U	LS-H; PR-H. RETAINER PLATE: A retainer plate is present at the	
		\times		top and bottom of both car and counterweight. (Commentary: Sec. A.7.16.2. Tier 2: 13.8.6)	
C		N/A		LS-not required; PR-H. ELEVATOR EQUIPMENT: Equipment, piping, and other components that are part of the elevator system are anchored. (Commentary: Sec. A.7.16.3. Tier 2: 13.8.6)	

					-
C		N/A	U	LS-not required; PR-H. SEISMIC SWITCH: Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Commentary: Sec. A.7.16.4. Tier 2: 13.8.6)	
C	NC	N/A	U	LS-not required; PR-H. SHAFT WALLS: Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Commentary: Sec. A.7.16.5. Tier 2: 13.8.6)	
C	NC	N/A	U	LS-not required; PR-H. COUNTERWEIGHT RAILS: All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Commentary: Sec. A.7.16.6. Tier 2: 13.8.6)	
C	NC	N/A	U	LS-not required; PR-H. BRACKETS: The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Commentary: Sec. A.7.16.7. Tier 2: 13.8.6)	

C	N/A	U	LS-not required; PR-H. SPREADER BRACKET: Spreader brackets are not used to resist seismic forces. (Commentary: Sec. A.7.16.8. Tier 2: 13.8.6)	
c	N/A	U	LS-not required; PR-H. GO-SLOW ELEVATORS: The building has a go-slow elevator system. (Commentary: Sec. A.7.16.9. Tier 2: 13.8.6)	

City of Wilsonville


Process Gallery Building Tier 1 Structural Calculations

ASCE 41-17 Seismic Parameters	pg. 1
Building Weight	pg. 3
Seismic Base Shear	pg. 6
Wall Shear Stress Check	pg. 7
Wall Anchorage Check	pg. 8

OSHPD

Latitude, Longitude: 45.294444, -122.77167

site-modified spectral response (1.0 s)

 S_{X1}

0.381

T-Sub-L

		130
Туре	Description	Value
Hazard Level		BSE-2E
SS	spectral response (0.2 s)	0.589
S ₁	spectral response (1.0 s)	0.27
S _{XS}	site-modified spectral response (0.2 s)	0.744
S _{X1}	site-modified spectral response (1.0 s)	0.405
f _a	site amplification factor (0.2 s)	1.265
f _v	site amplification factor (1.0 s)	1.5

Туре	Description	Value
Hazard Level		BSE-1E
SS	spectral response (0.2 s)	0.223
S ₁	spectral response (1.0 s)	0.082
S _{XS}	site-modified spectral response (0.2 s)	0.291
S _{X1}	site-modified spectral response (1.0 s)	0.123
Fa	site amplification factor (0.2 s)	1.3
F _v	site amplification factor (1.0 s)	1.5
Туре	Description	Value
Hazard Level		TL Data

DISCLAIMER

Long-period transition period in seconds

While the information presented on this website is believed to be correct, <u>SEAOC</u> /<u>OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

16

Engineers...Working Wonders With Water **

BY:	BS	DATE	Jul-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRI	PTION	Process G	allery Building	JOB NO.	11962A.00
DESIGN TASK		Process	Gallery Bu	ilding Seis	mic Weight		

Roof Loads

Roof EL 125.63

Description	<u>Load</u>	
1-1/2"x20ga metal deck	2.3 psf	
Rigid insulation w/ sheet roofing	4.5	
Steel beam	3.5	
Miscellaneous	5.0	
Dead Load for Gravity Design	15.3 psf	
Roof Live Load	20.0 psf	(Assumed)
Snow Load	25.0 psf	

Notes

1. Roof beam self weight assumed total beam weight, 9831.0 lb, divided by total roof area, 3093.1 ft ² which is 9831.0lb/3093.1ft² = 3.18 lb/ft². Assume 3.5 psf.

Floor Loads

Floor EL 111.00

Description	<u>Load</u>
8" concrete slab	100.0 psf
Concrete beam	73.0
Miscellaneous	10.0
Dead Load for Gravity Design	183.0 psf
Floor Live Load	200.0 psf

Notes

1. Floor beam self weight assumed total beam weight, 226925.0 lb, divided by total floor area, 3093.1 ft ² which is 226925.0lb/3093.1ft² = 73.4 lb/ft². Assume 73.5 psf.

Wall Loads

Description	Load
8" CMU wall (partial grouted @ 24")	51.0 psf
8" CMU wall (partial grouted @ 32")	47.0
8" Concrete wall	100.0
14" Concrete wall	175.0
Exterior Plastic Veneer Finish	7.5
8" Exterior CMU Wall Load for Seismic	58.5 psf
8" Interior CMU Wall Load for Seismic	47.0 psf
8" Concrete Wall Load for Seismic	100.0 psf
14" Concrete Wall Load for Seismic	175.0 psf

Seismic Weight

Roof Weight

Roof Area Roof Seismic Weight 3093.1 ft² 47.3 kip

Dry Chemical Storage Area	3093.1 ft ²
Floor Seismic Weight	566.0 kip
Wall Weight	

Total Seismic Weight	1267.3 kip
Combined Base Level Seismic Weight	1077.5 kip
Combined Roof Seismic Weight	189.8 kip
Basement Wall Seismic Weight	511.5 kip
Roof Wall Seismic Weight	142.5 kip
14" Concrete Wall Length (basement)	220.00 ft
8" Concrete Wall Length (basement)	37.42 ft
8" Interior CMU Wall Length (1st floor)	108.00 ft
8" Exterior CMU Wall Length (1st floor)	220.00 ft
Parapet Height	0.87 ft
Wall Height to 2nd Level	18.00 ft
Wall Height to Roof	14.63 ft

Notes

1. Wall seismic weight assumes half of the wall height associated with each level.

2. Per Section 4.5.2.1, the effective seismic weight includes the total dead load, 25% of the live load when area is used as storage, and 20% of the roof snow live load if greater than 30 psf (otherwise assume zero).

@ caroll	-
----------	---

Engineers, Working Wondors With Water *

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIPTION			Process Gallery	JOB NO.	11962A.00
DESIGN TA	SK			ASCE 41	-17 - Tier 1 Screening (BSE-2E Se	ismic Level)	

Table 4-7. Modification Factor, C

Wood and cold-formed stent

Shear wall (S4, S5, C2, C3,

Braced frame (S2)

wall (CP\$2)

RM1)

PC1a, PC2, RM2, URMa}

Cold-formed steel strap-brace

Flexible diaphragms (\$1a, \$2a, \$5a, \$2a, \$3a, \$21,

* Defined in Table 3-1.

Unreinforced masonry (URM) 1.0 1.0

shear wall (W1, W1a, W2, CFS1) Moment frame (S1, S3, C1,

Building Type⁴

PC2a)

Number of Stories

3

1.0

1.1

1.0

≥4

1.0

1.0

1.0

1 2

1.3 1,1

1.4 1.2

SEISMIC BASE SHEAR

4.4.2.1 Pseudo Seismic Force. The pseudo seismic force, in a given horizontal direction of a building, shall be calculated in accordance with Eq. (4-1).

V

$$= CS_{a}W$$
 (4-1)

where

V = Pseudo seismic force;

- C = Modification factor to relate expected maximum inelastic displacements to displacements calculated for linear elastic response; C shall be taken from Table 4-7;
- S_a = Response spectral acceleration at the fundamental period of the building in the direction under consideration. The value of S_a shall be calculated in accordance with the procedures in Section 4.4.2.3; and
- W = Effective seismic weight of the building, including the total dead load and applicable portions of other gravity loads listed below;

Process Gallery

Modification Factor, C =	1.2	
S _{X1} =	0.405	(BSE-2E seismic hazard)
T =	0.149	S
S _{XS} =	0.744	(BSE-2E seismic hazard)
Spectral Acceleration, $S_a =$	0.744	
Seismic Weight, W =	1267.3	kip

Seismic Force, V = 1131.4 kip

Story	Weight, w _x (kip)	Floor Height, h _x (ft)	k factor	w _x h _x ^k (kip*ft ²)	C _{vx}	Force on Level, F _x (kip)	Story Force, V _j (kip)
Roof	189.8	32.63	1.0	6193.2	0.242	273.8	273.8
1st	1077.5	18.00	1.0	19395.0	0.758	857.6	1131.4

$$\Sigma w_{x}h_{x}^{k} = 25588.2$$

135

Aug-21 CLIENT City of Wilsonville SHEET DESCRIPTION 11962A.00 Process Gallery JOB NO. ASCE 41-17 - Tier 1 Screening (BSE-2E Seismic Level)

WALL SHEAR STRESS CHECK

4.4.3.3 Shear Stress in Shear Walls. The average shear stress in shear walls, v₁^{avg}, shall be calculated in accordance with Eq. (4-8).

$$v_j^{seg} = \frac{1}{M_s} \left(\frac{V_j}{A_w} \right) \qquad (4.8)$$

where

CHKD BY

DESIGN TASK

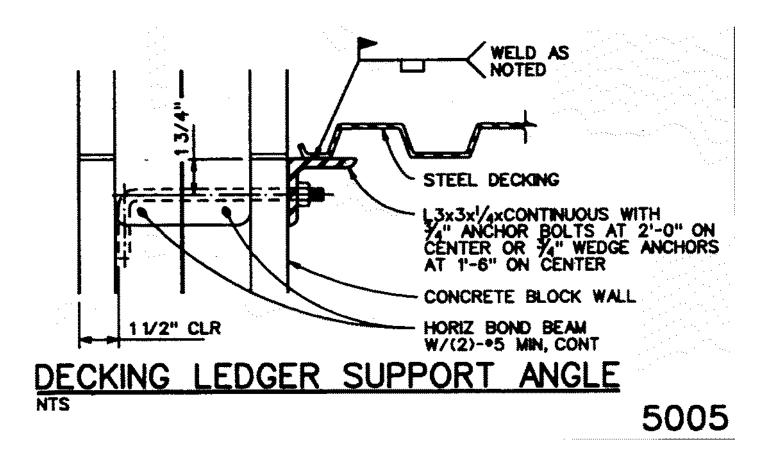
V_j = Story shear at level j computed in accordance with Section 4.4.2.2.

- $A_w =$ Summation of the horizontal cross-sectional area of all shear walls in the direction of loading. Openings shall be taken into consideration where computing Aur. For masonry walls, the net area shall be used. For wood-framed
- walls, the length shall be used rather than the area; and $M_s = System$ modification factor; M_s shall be taken from Table 4-8.

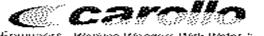
Table 4-8. M_s Factors for Shear Walls Level of Performance

Wall Type	CP"	LS"	łO*
Reinforced concrete, precast concrete, wood, reinforced masonry, and cold-formed steel	4.5	3.0	1.5
Unreinforced masonry	1.75	1.25	1.0

^a CP = Collapse Prevention, LS = Life Safety, IO = Immediate Occupancy.


CMU wall thickness, t =	7.625 i	n
Concrete wall thickness, t =	14 i	n
Concrete strength, f_c =	4000 p	osi
Roof Story Base Shear, V _{roof} =	273.8	kips
1st Floor Story Base Shear, V _{1st} =	1131.4	kips
System Modification Factor, M_s =	3.75	(Interpolated between LS & CP)
Roof Level		
Shear Wall in N-S Direction		

Shear Wairin N-S Direction			
Total length of exterior 8" CMU walls =	74.00 ft		
Grout spacing =	24 in		
Total length of interior 8" CMU walls =	49.42 ft		
Grout spacing =	32 in		
total net area of shear walls =	6997.1 in ²		
average shear stress, v _{avg.NS} =	10.4 psi	< 70.0	Shear Stress OK
		DCR = 0.15	
Shear Wall in E-W Direction			
Total length of exterior 8" CMU walls =	88.00 ft		
Grout spacing =	24 in		
Total length of interior 8" CMU walls =	50.00 ft		
Grout spacing =	32 in		
total net area of shear walls =	8280.8 in ²		
average shear stress, v _{avg,NS} =	8.8 psi	< 70.0	<u>Shear Stress OK</u>
		DCR = 0.13	
1st Level			
Shear Wall in N-S Direction			
Total length of 14" concrete walls =	118.00 ft		
total net area of shear walls =	19824.0 in ²		
average shear stress, v _{avg,NS} =	15.2 psi	< 126.5	Shear Stress OK
-	-	DCR = 0.12	
Shear Wall in E-W Direction			
Total length of 14" concrete walls =	109.50 ft		
total net area of shear walls =	18396.0 in ²		


average shear stress, $v_{avg,NS}$ =

126.5 Shear Stress OK < DCR = 0.13

16.4 psi

WALL ANCHORAGE CONNECTION DETAIL ALONG NORTH AND SOUTH WALL ELEVATIONS

Engineers, Working Wondors With Water 11

BY: BS DATE Aug-21 CLIENT City of Wilsonville SHEET CHKD BY DESCRIPTION **Process Gallery** JOB NO. **DESIGN TASK**

ASCE 41-17 - Tier 1 Screening (BSE-2E Seismic Level)

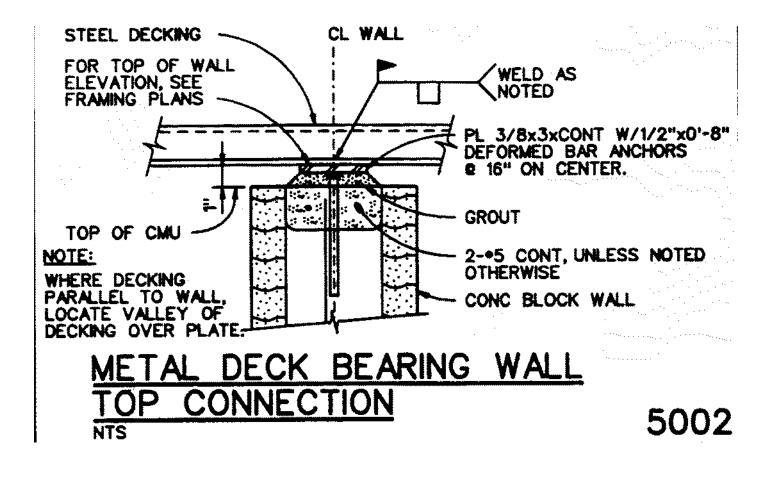
WALL ANCHORAGE FORCE

P

Process Gallery: Ledger Angle Anchorage into 8" CMU W	/all along I	North	and South Wall Elevations
4.4.3.7 Flexible Diaphragm Co tal seismic forces associated wi diaphragm to either concrete o calculated in accordance with E	th the conn r masonry	ection	of a flexible
$T_c = \psi S$	xswpAp		(4-12)
where			
$w_p =$ Unit weight of the wall; $A_p =$ Area of wall tributary to $\psi =$ 1.0 for Collapse Preventi Life Safety Performance Occupancy Performance $S_{XS} =$ Value specified in Section	on Perform: Level, and Level; and	ance	
wall height to diaphragm, h _w =	14.63	ft	
parapet height, $h_p =$	0.87	ft	
unit weight of wall, w_p =	58.50	psf	(partial grout for exterior walls [CMU + veneer])
Ψ =	1.15		(Interpolated between LS & CP)
S _{XS} =	0.744	g	
wall out-of-plane load =	409.7		t
anchor bolt spacing =	24.00	in	
wall anchorage force, T_c =	819.4	lbs	
Masonry & Steel Strength			
anchor bolt size =	0.750		
anchor bolt embed, I _b =	6.00	in	
anchor bolt yield stress, f _y =	36.00	ksi	
masonry compressive strength, f_{m} =	1500	psi	
projected area of anchor bolt in tension, A _{pt} =	113.10	in²	
cross section area of anchor bolt, A_b =	0.44	in²	
$\phi B_{anb} = 4^* A_{bt}^* (f_m)^{0.5} =$	17521.0	lbs	masonry breakout tensile strength
$\phi B_{ans} = A_b * f_y =$			steel yielding strength
Masonry breakout strength DCR = Steel yielding DCR =	0.05 0.05		ЭК ЭК

Puddle Weld Shear Strength

Table 4: Allowable Shear Strength (Ibs/connection) for Arc Spot Welds. Arc Seam Welds, Hilli Fasteners, Pneutek Fasteners and SDI Recognized Screws for Verco Deck Panel Support Connections


Deck Gege	Profile	BMT	ANC BROT	APC SEAM	K NSHCU X ENDK22 K ENDK22	HILTI X-EMP-19	PNEUTEK SDK51	PNUTEK BOKES	PNDUTEK	PHOUTOK ADD	SCI MICCOMUNIO NUCCOMUNIO
		(0.1	(bs)	(lbs)	(bs)	(bs)	(bs)	(lbs)	(bs)	(bs)	(bs)
22	DAN	0.0299	763	1251	685	650	618	691	684	736	561
29	B&N	0.0050	1091	1491	720	775	733	791	886	903	673
18	88.N	0.0478	1850	2017	947	1020	951	962	1204	1253	806
15	DAN	0.0598	2309	2564	1109	\$259	1158	1125	1474	9630	1121

11962A.00

Engineers, Working Wondors With Water *

BY:	BS	DATE	Aug-21	CLIENT	City	of Wilsor	nville	SHEET	
CHKD BY		DESCRIP	TION		Process G	allery		JOB NO.	11962A.00
DESIGN T	ASK			ASCE 41-17	- Tier 1 Scr	eening (E	BSE-2E Seis	mic Level)	
			dec	ck thickness =	0.0359 ir	n			
			W	/eld spacing =	6.00 ir	n			
				load at weld =	204.8 lb	os / weld			
	allo	wable stren	igth of scre	w from chart=	1091.0 lb	os / weld	ASCE 41-1	7 Section 9.	10.1.3 allows for 2
		strength	level of scr	rew in shear =	2182.0 lb	os / weld	times allow	able strength	h for strength level.
		Pud	dle weld sti	rength DCR =	0.09	ΟΚ			

WALL ANCHORAGE CONNECTION DETAIL ALONG INTERIOR WALL ELEVATIONS

engineers.						0	
BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIF	PTION		Process Gallery	JOB NO.	11962A.00
DESIGN TA	SK			ASCE 41-1	7 - Tier 1 Screening (BSE-2E S	Seismic Level)	

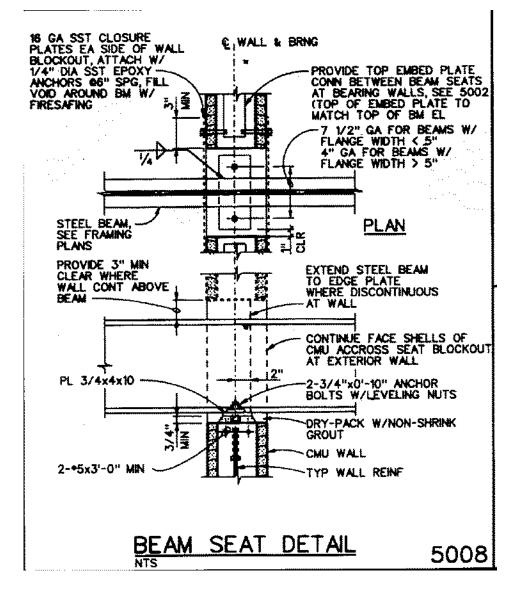
WALL ANCHORAGE FORCE

4.4.3.7 Flexible Diaphragm Co.			
tal seismic forces associated wi diaphragm to either concrete o calculated in accordance with E	r masonry v		
$T_c = \psi S_c$	xswpAp		(4-12)
where			
w_p = Unit weight of the wall; A_p = Area of wall tributary to ψ = 1.0 for Collapse Preventi Life Safety Performance Occupancy Performance 1 S_{XS} = Value specified in Section	on Performa Level, and Level; and	nce Leve	
wall height to diaphragm, $h_w =$	14.63 f	ť	
unit weight of wall, $w_p =$	47.00 p		(partial grout for interior walls)
$\Psi =$	1.15		(Interpolated between LS & CP)
S _{xs} =	0.744 g	a	(1
wall out-of-plane load =	294.2 I	-	
anchor bolt spacing =	16.00 i	n	
wall anchorage force, T_c =	392.2 I	bs	
lasonry & Steel Strength			
anchor bolt size =	0.750 i	n	
anchor bolt embed, I_b =	6.00 i	n	
anchor bolt location from face, I_{be} =	3.81 i	n	
anchor bolt yield stress, f_y =	36.00	ksi	
masonry compressive strength, f_m =	1500 p	osi	
projected area of anchor bolt in tension, A_{pt} =	113.10 i	n [∠]	
projected area of each anchor bolt in shear, A _{pvbolt} =	22.80 i	n∠	
cross section area of anchor bolt, A_b =	0.44 i	n∠	
$\phi B_{vnb} = 4 * A_{pv} * (f_m)^{0.5} =$	3532.4 I	bs	masonry breakout shear strength
$\phi B_{vnc} = 1050^{\circ} (f_m^{\circ} A_b)^{0.25} =$	5327.4		masonry crushing shear strength
$\phi B_{vnorv} = 8^* A_{pt}^* (f_m)^{0.5} =$	35041.9		anchor pryout shear strength
$\phi B_{vnpry} = 0.60^{\circ} A_{b}^{*} f_{y} =$	9542.6 I		steel yielding strength
Masonry breakout strength DCR =	0.11	ок	
Masonry crushing strength DCR =	0.07	OK	
Anchor pryout DCR =	0.01	ОК	
Steel yielding DCR =	0.04	ОК	

Puddle Weld Shear Strength

Table 4: Allowable Shear Strength (Ibs/connection) for Arc Spot Welds. Arc Seam Welds, Hilti Fasteners, Pneutek Fasteners and SDI Recognized Screws for Verco Deck Panel Support Connections

Deck Gege	Profile	BMT	ANC BROT	APC SEAM	HUTI X.ENDK22 or X.HSN 2N	HILTI X-ENP-19	PHEUTEK	PNIUTEK BOKS	PNDUTEX	PHEUTEK	SCI PSICOOMUNIC SCORENS
		(0.1	(bs)	(lbs)	(bs)	(bs)	(bs)	(lbs)	(bs)	(bs)	(bs)
22	DAN	0.0299	763	1251	605	650	618	691	684	736	561
29	B&N	0.0050	1091	1491	720	775	733	791	885	903	673
18	88.N	0.0478	1850	2017	947	1020	961	962	1204	1253	896
15	DAN	0.0598	2309	2564	1169	1259	1158	1125	1474	9630	1121


deck thickness = 0.0359 in weld spacing = 6.00 in

load at weld = 147.1 lbs / weld

allowable strength of screw from chart= 1091.0 lbs / weld ASCE 41-17 Section 9.10.1.3 allows for 2

strength level of screw in shear = 2182.0 lbs / weld times allowable strength for strength level.

Puddle weld strength DCR = 0.07 OK

BEAM ANCHORAGE CONNECTION DETAIL ALONG EAST AND WEST WALL ELEVATIONS

	carollo
--	---------

Engineers, Working Wondors Wish Water *

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIPTION		_	Process Gallery		11962A.00
DESIGN TASK				ASCE 41-17 - Tier 1 Screening (BSE-2E Seismic Level)			

WALL ANCHORAGE FORCE

Process Gallery: Beam Anchorage into 8" CMU Wall along East and West Wall Elevations

4.4.3.7 Flexible Diaphragm Co tal seismic forces associated w diaphragm to either concrete calculated in accordance with E	ith the conr or masonry	nectio	n of a flexible	
$T_c = \psi S$	$\delta_{XS} w_p A_p$		(4-12)	
where				
$w_p =$ Unit weight of the wall; $A_p =$ Area of wall tributary to $\psi = 1.0$ for Collapse Prevent Life Safety Performance Occupancy Performance $S_{XS} =$ Value specified in Section	ion Perform Level, and Level; and	ance		
wall height to diaphragm, $h_w =$	14.63	ft		
parapet height, $h_p =$	0.87			
unit weight of wall, $w_p =$	58.50		(nartial)	grout for exterior walls [CMU + veneer])
$\Psi =$	1.15			lated between LS & CP)
S _{xs} =	0.744		(interpe	
wall out-of-plane load =	409.7	U	ft	
beam spacing =	6.67		-	
wall anchorage force, $T_c =$	2732.6			
<u>Masonry & Steel Strength</u> anchor bolt size =	0.750	in		
anchor bolt embed, I _b =	8.00			
anchor bolt location from face, I _{be} =	3.81			
anchor bolt yield stress, $f_y =$	36.00	ksi		
masonry compressive strength, f _{'m} =	1500			
projected area of single anchor bolt in tension, A _{pt} =	201.06			
projected area of single anchor bolt in shear, A _{pvbolt} =	22.80			
cross section area of single anchor bolt, $A_b =$	0.44			
estimated overlap of projected area, A _{ptoverlap} =	2.50			
net projected area of anchor bolt in tension, A_{ptnet} =	400.87			
estimated overlap of projected area, A _{pvoverlap} =	1.25			
net projected area of anchor bolt in shear, A _{pynet} =	44.98			
, princi				
$\phi B_{vnb} = 4^* A_{pvnet} * (f_m)^{0.5} =$	6968.1	lbs	group m	asonry breakout shear strength
$\phi B_{vnc} = 1050^{\circ} (f_m^{\circ} A_b)^{0.25} =$	10654.8	lbs	group m	asonry crushing shear strength
$\phi B_{vnpry} = 8^* A_{ptnet}^* (f_m)^{0.5} =$	124206.2	lbs	group a	nchor pryout shear strength
$\phi B_{vns} = 0.60^* A_b^* f_y =$	19085.2			eel yielding strength
Masonry breakout strength DCR =	0.39		OK OK	
Masonry crushing strength DCR = Anchor pryout DCR =	0.26 0.02		OK OK	
Steel yielding DCR =	0.02		OK OK	
	0.14			

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Process Gallery
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	07/06/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-3. Immediate Occupancy Basic Configuration Checklist

Very Low Seismicity Structural Components

CSZ Seismic Level at Damage Control

Struc	Structural Components									
RA	TING			DESCRIPTION	COMMENTS					
C	NC	N/A	U	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There is a roof beam aligned with an interior shear wall but no connection to the wall for seismic transfer. The diaphragm at this location will lack the ability to transfer diaphragm forces into the shear wall.					
C	NC	N/A	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	 Ledger anchorage steel yielding DCR = 0.04 (OK) Interior wall bearing anchorage masonry breakout strength DCR = 0.09 (OK) Beam anchorage masonry breakout strength DCR = 0.32 (OK) 					

Very Low Seismicity

Building System

General

RA	TING			DESCRIPTION	COMMENTS
C	NC	N/A	U	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There is a roof beam aligned with an interior shear wall but no connection to the wall for seismic transfer. The diaphragm at this location will lack the ability to transfer diaphragm forces into the shear wall.
c		N/A	U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement need not apply for the following building types: W1, W1A, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)	
C		N/A	U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)	

Building Configuration

RA	TING	Ū		DESCRIPTION	COMMENTS
C		N/A		WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction shall not be less than 80% of the strength in the adjacent story above. (Commentary: Sec. A.2.2.2. Tier 2: Sec. 5.4.2.1)	
С	NC	N/A	U	SOFT STORY: The stiffness of the seismic-force- resisting system in any story shall not be less than	
X				70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the	
				average seismic-force-resisting system stiffness of	
				the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)	
с	NC	N/A	U	VERTICAL IRREGULARITIES: All vertical elements in	The center interior CMU shear walls don't
	x			the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier	continue down into the basement level. These walls are supported by concrete beams.
				2: Sec. 5.4.2.3)	
		N1 / A		GEOMETRY: There are no changes in the net	
C	NC	N/A	U	horizontal dimension of the seismic-force-	
X				resisting system of more than 30% in a story relative to adjacent stories, excluding one-story	
				penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)	
				, , , , , , , , , , , , , , , , , , ,	

148Project NameCity of Wilsonville - Project NumberProject Number11962A.00

С	NC	N/A	U	MASS: There is no change in effective mass more than 50% from one story to the next. Light roofs,	
X				penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	
c	NC	N/A X		TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	Building roof is considered flexible and check is not required.

Low Seismicity

Geologic Site Hazards

	beologic Site Hazarus								
RA	TING			DESCRIPTION	COMMENTS				
C X		N/A	U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.				
C	NC	N/A X	U	SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)	There are no slopes nearby structure.				
C	NC	N/A	U	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)	Surface fault rupture has been determined to not be an issue per NGI technical memorandum.				

Moderate and High Seismicity

Foundation Configuration

RA	TING		-	DESCRIPTION	COMMENTS
C X		N/A	U	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/ height) is greater than 0.6S _a . (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	Height = 19.50 ft

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Project Name Project Number

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Process Gallery
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	07/07/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-35. Immediate Occupancy Structural Checklist for Building Types RM1 and RM2

Very Low Seismicity

Seisn	Seismic-Force-Resisting System							
RA	TING			DESCRIPTION	COMMENTS			
C		N/A		REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1)				
C	NC	N/A	U	SHEAR STRESS CHECK: The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than 70 lb/in. ² . (Commentary: Sec. A.3.2.4.1. Tier 2: Sec. 5.5.3.1.1)	Roof Level N-S direction DCR = 0.15 (OK) E-W direction DCR = 0.13 (OK) 1st Floor N-S direction DCR = 0.12 (OK) E-W direction DCR = 0.13 (OK)			
C	NC	N/A	U	REINFORCING STEEL: The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in., and all vertical bars extend to the top of the walls. (Commentary: Sec. A.3.2.4.2. Tier 2: Sec. 5.5.3.1.3)	Horiz steel = $#6@48"$ Vert steel = $#6@24"$ (ext) & $#6@32"$ (int) Horiz ratio = $0.44 / (7.625*48) = 0.0012 > 0.0007$ (OK) Vert ratio = $0.44 / (7.625*24) = 0.0024 > 0.0007$ (OK) 0.44 / (7.625*32) = $0.0018 > 0.0007$ (OK) Horizontal reinforcing is specified at 48" but this is not less than 48in required. Reinforcing is non-compliant.			

Connections

	Connections							
RA	TING			DESCRIPTION	COMMENTS			
С	NC	N/A	U	WOOD LEDGERS: The connection between the wall panels and the diaphragm does not induce				
		X		cross-grain bending or tension in the wood				
				ledgers. (Commentary: Sec. A.5.1.2. Tier 2: Sec.				
				5.7.1.3)				
С	NC	N/A	U	TRANSFER TO SHEAR WALLS: Diaphragms are	Ledger Connection:			
				connected for transfer of seismic forces to the	Anchorage connection DCR = 0.48 (OK)			
	X			shear walls, and the connections are able to	Deck weld connection DCR = 0.61 (OK)			
				develop the lesser of the shear strength of the				
				walls or diaphragms. (Commentary: Sec. A.5.2.1. Tier 2: Sec. 5.7.2)	Collector Beam:			
				Tier 2: Sec. 5.7.2)	Anchorage connection DCR = 5.51 (NG)			
C	NC	N/A	U	FOUNDATION DOWELS: Wall reinforcement is	CMU wall dowel DCR = 0.40 (OK)			
x				doweled into the foundation, and the dowels are able to develop the lesser of the strength of the	Concrete wall dowel DCR = 0.34 (OK)			
				walls or the uplift capacity of the foundation.				
				(Commentary: Sec. A.5.3.5. Tier 2: Sec. 5.7.3.4)				
	NC	NI / A	U	GIRDER-COLUMN CONNECTION: There is a				
C	NC	N/A	U	positive connection using plates, connection				
		X		hardware, or straps between the girder and the				
				column support. (Commentary: Sec. A.5.4.1. Tier 2:				
				Sec. 5.7.4.1)				

154Project NameCity of Wilsonville - Project NumberProject Number11962A.00

C		N/A	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	 Ledger anchorage steel yielding DCR = 0.04 (OK) Interior wall bearing anchorage masonry breakout strength DCR = 0.09 (OK) Beam anchorage masonry breakout strength DCR = 0.32 (OK)
---	--	-----	---	--	--

Stiff Diaphragms

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	TOPPING SLAB: Precast concrete diaphragm	
		×		elements are interconnected by a continuous reinforced concrete topping slab. (Commentary:	
		~		Sec. A.4.5.1. Tier 2: Sec. 5.6.4)	
C	NC	N/A	U	TOPPING SLAB TO WALLS OR FRAMES: Reinforced	
			_	concrete topping slabs that interconnect the	
		×		precast concrete diaphragm elements are	
				doweled for transfer of forces into the shear wall or frame elements. (Commentary: Sec. A.5.2.3. Tier	
				2: Sec. 5.7.2)	

Foundation System

RA	TING	_		DESCRIPTION	COMMENTS
С	NC	N/A	U	DEEP FOUNDATIONS: Piles and piers are capable of transferring the seismic forces between the	Structure is not located on a deep foundation
		X		structure and the soil. (Commentary: Sec. A.6.2.3.)	system.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Low, Moderate, and High Seismicity

Seismic-Force-Resisting System

	TING			DESCRIPTION	COMMENTS
C		N/A	U	REINFORCING AT WALL OPENINGS: All wall openings that interrupt rebar have trim reinforcing on all sides. (Commentary: Sec. A.3.2.4.3. Tier 2: Sec. 5.5.3.1.5)	
C		N/A	U	PROPORTIONS: The height-to-thickness ratio of the shear walls at each story is less than 30. (Commentary: Sec. A.3.2.4.4. Tier 2: Sec. 5.5.3.1.2)	Height = 14.63 ft Thickness = 7.625 in H/t = 14.63 * 12 / 7.625 = 23.0 < 30 (OK)

Diaphragms (Flexible or Stiff)

I	RAT	ING			DESCRIPTION	COMMENTS
	2	NC	N/A	U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls	
			X		are less than 15% of the wall length.	
					(Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

c	NC	N/A X	U	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 4 ft long. (Commentary: A.4.1.6. Tier 2: Sec. 5.6.1.3)	
с	NC	N/A	U	PLAN IRREGULARITIES: There is tensile capacity to develop the strength of the diaphragm at	
		X		reentrant corners or other locations of plan irregularities. (Commentary: Sec. A.4.1.7. Tier 2:	
				Sec. 5.6.1.4)	
С	NC	N/A	U	DIAPHRAGM REINFORCEMENT AT OPENINGS: There is reinforcing around all diaphragm	
		X		openings larger than 50% of the building width in either major plan dimension. (Commentary: Sec. A.4.1.8. Tier 2: Sec. 5.6.1.5)	

Flexible Diaphragms

1.10/11	r ickibie Diapin agins							
RA	RATING			DESCRIPTION	COMMENTS			
С	NC	N/A	U	CROSS TIES: There are continuous cross ties between diaphragm chords. (Commentary: Sec.				
X				A.4.1.2. Tier 2: Sec. 5.6.1.2)				

C		N/A		STRAIGHT SHEATHING: All straight sheathed diaphragms have aspect ratios less than 1-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2)	
C		N/A	U	SPANS: All wood diaphragms with spans greater than 12 ft consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2)	
C		N/A x	U	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 30 ft and aspect ratios less than or equal to 3-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)	
C	NC	N/A	U	NONCONCRETE FILLED DIAPHRAGMS: Untopped metal deck diaphragms or metal deck diaphragms with fill other than concrete consist of horizontal spans of less than 40 ft and have aspect ratios less than 4-to-1. (Commentary: Sec. A.4.3.1. Tier 2: Sec. 5.6.3)	Span 1 = 24ft x 21.33ft Span 2 = 32ft x 21.33ft Span 3 = 56.67ft x 30ft (NG). Span exceeds 40ft requirement. Span 1 ratio = 24/21.33 = 1.13 < 4 (OK) Span 2 ratio = 32/21.33 = 1.50 < 4 (OK) Span 3 ratio = 56.67/30 = 1.89 < 4 (OK)

158Project NameCity of Wilsonville - Project NumberProject Number11962A.00

C	NC	N/A	U	OTHER DIAPHRAGMS: The diaphragm does not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)	

Connections

R/	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	STIFFNESS OF WALL ANCHORS: Anchors of	
		×		concrete or masonry walls to wood structural elements are installed taut and are stiff enough to	
				limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. before engagement of the anchors. (Commentary: Sec. A.5.1.4. Tier 2: Sec. 5.7.1.2)	

City of Wilsonville

Process Gallery Building Tier 1 Structural Calculations

pg. 1
pg. 3
pg. 6
pg. 7
pg. 8
pg. 11
pg. 12

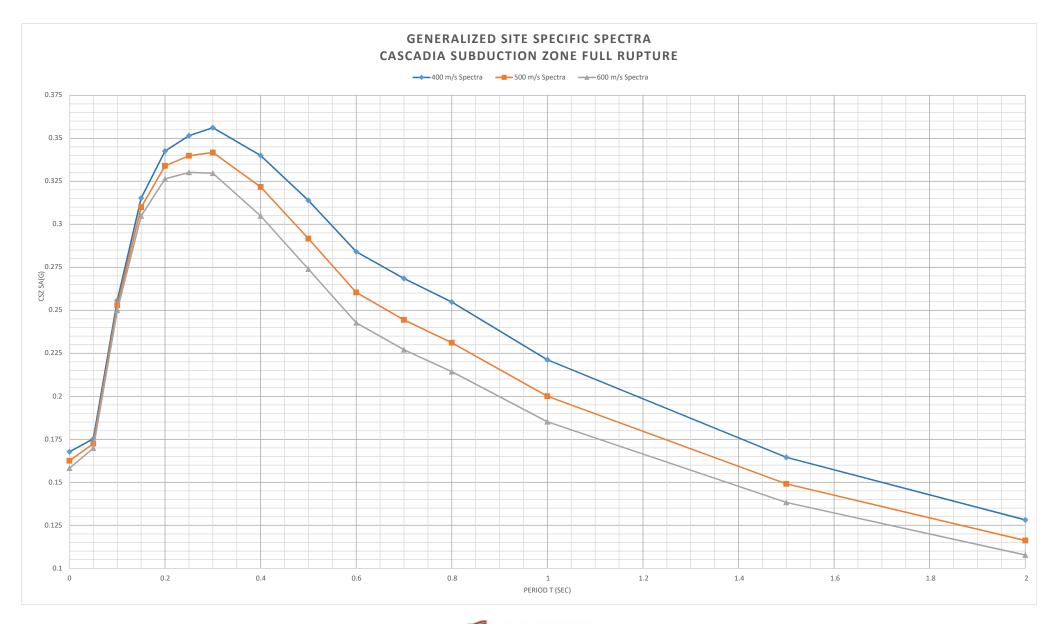


Figure No. 3

160

Table 2: CSZ Generalized Response Spectra Ordinates							
Latitude 45.295155 degrees Longitude -122.771810 degrees							
Vs30 =	400 m/s	Vs30 =	500 m/s	Vs30 = 600 m/s			
Period T(sec)	CSZ Sa(g)	Period T (sec)	CSZ Sa (g)	Period T (sec)	CSZ Sa (g)		
0	0.168	0	0.163	0	0.158		
0.05	0.175	0.05	0.172	0.05	0.170		
0.1	0.256	0.1	0.253	0.1	0.250		
0.15	0,315	0.15	0.310	0.15	0.305		
0.2	0.343	0.2	0.334	0.2	0.326		
0.25	0.352	0.25	0.340	0.25	0.330		
0.3	0.356	0.3	0.342	0.3	0.330		
0.4	0.340	0.4	0.322	0.4	0.305		
0.5	0.314	0.5	0.292	0.5	0.274		
0.6	0.284	0.6	0.260	0.6	0.243		
0.7	0.269	0.7	0.244	0.7	0.227		
0.8	0.255	0.8	0.231	0.8	0.214		
1	0.221	1	0.200	1	0.185		
1.5	0.165	1.5	0.149	1.5	0.138		
2	0.128	2	0.116	2	0.108		
2.5	0.104	2.5	0.094	2.5	0.087		
3	0.085	3	0.077	3	0.071		

Ss @ T=0.20 sec

Engineers...Working Wonders With Water **

BY:	BS	DATE	Jul-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRI	PTION	Process G	allery Building	JOB NO.	11962A.00
DESIGN TASK		Process	Gallery Bu	ilding Seis	mic Weight		

Roof Loads

Roof EL 125.63

Description	Load		
1-1/2"x20ga metal deck	2.3 psf		
Rigid insulation w/ sheet roofing	4.5		
Steel beam	3.5		
Miscellaneous	5.0		
Dead Load for Gravity Design	15.3 psf		
Roof Live Load	20.0 psf	(Assumed)	
Snow Load	25.0 psf		

Notes

1. Roof beam self weight assumed total beam weight, 9831.0 lb, divided by total roof area, 3093.1 ft ² which is 9831.0lb/3093.1ft² = 3.18 lb/ft². Assume 3.5 psf.

Floor Loads

Floor EL 111.00

Description	Load
8" concrete slab	100.0 psf
Concrete beam	73.0
Miscellaneous	10.0
Dead Load for Gravity Design	183.0 psf
Floor Live Load	200.0 psf

Notes

1. Floor beam self weight assumed total beam weight, 226925.0 lb, divided by total floor area, 3093.1 ft ² which is 226925.0lb/3093.1ft² = 73.4 lb/ft². Assume 73.5 psf.

Wall Loads

Description	Load
8" CMU wall (partial grouted @ 24")	51.0 psf
8" CMU wall (partial grouted @ 32")	47.0
8" Concrete wall	100.0
14" Concrete wall	175.0
Exterior Plastic Veneer Finish	7.5
8" Exterior CMU Wall Load for Seismic	58.5 psf
8" Interior CMU Wall Load for Seismic	47.0 psf
8" Concrete Wall Load for Seismic	100.0 psf
14" Concrete Wall Load for Seismic	175.0 psf

Seismic Weight

Roof Weight

Roof Area Roof Seismic Weight 3093.1 ft² 47.3 kip

Dry Chemical Storage Area	3093.1 ft ²	
Floor Seismic Weight	566.0 kip	
Wall Weight		

Total Seismic Weight	1267.3 kip
Combined Base Level Seismic Weight	1077.5 kip
Combined Roof Seismic Weight	189.8 kip
Basement Wall Seismic Weight	511.5 kip
Roof Wall Seismic Weight	142.5 kip
14" Concrete Wall Length (basement)	220.00 ft
8" Concrete Wall Length (basement)	37.42 ft
8" Interior CMU Wall Length (1st floor)	108.00 ft
8" Exterior CMU Wall Length (1st floor)	220.00 ft
Parapet Height	0.87 ft
Wall Height to 2nd Level	18.00 ft
Wall Height to Roof	14.63 ft

Notes

1. Wall seismic weight assumes half of the wall height associated with each level.

2. Per Section 4.5.2.1, the effective seismic weight includes the total dead load, 25% of the live load when area is used as storage, and 20% of the roof snow live load if greater than 30 psf (otherwise assume zero).

Ca	ro‼o	þ
	$M = M(M \otimes G) \otimes M(M)$	

Engineers. Working Wondors With Water **

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIPTION		_	Process Gallery	JOB NO.	11962A.00
DESIGN TASK		ASCE 41-17 - Tier 1 Screening (CSZ Seismic Level)					

Table 4-7. Modification Factor, C

Wood and cold-formed stent

Moment frame (S1, S3, C1,

Shear wall (S4, S5, C2, C3,

Braced frame (S2)

wall (CP\$2)

RM1)

PC1a, PC2, RM2, URMa}

Cold-formed steel strap-brace

Flexible diaphragms (\$1a, \$2a, \$5a, \$2a, \$3a, \$21,

* Defined in Table 3-1.

Unreinforced masonry (URM) 1.0 1.0

shear wall (W1, W1a, W2,

Building Type⁴

CFS1)

PC2a)

Number of Stories

3

1.0

1.1

1.0

<u>></u>4

1.0

1.0

1.0

1 2

1.3 1,1

1.4 1.2

SEISMIC BASE SHEAR

4.4.2.1 Pseudo Seismic Force. The pseudo seismic force, in a given horizontal direction of a building, shall be calculated in accordance with Eq. (4-1).

V

$$T = CS_{a}W$$
 (4-1)

where

- V = Pseudo seismic force;
- C = Modification factor to relate expected maximum inelastic displacements to displacements calculated for linear elastic response; C shall be taken from Table 4-7;
- S_a = Response spectral acceleration at the fundamental period of the building in the direction under consideration. The value of S_a shall be calculated in accordance with the procedures in Section 4.4.2.3; and
- W = Effective seismic weight of the building, including the total dead load and applicable portions of other gravity loads listed below:

Process	Gal	lery
---------	-----	------

Modification Factor, C =	1.2	
S _s =	0.343	(CSZ spectral response)
S ₁ =	0.221	(CSZ spectral response)
F _a =	1.3	(Site amplication factor per ASCE 7-16)
F _v =	1.5	(Site amplication factor per ASCE 7-16)
$S_{X1} = S_1 * F_v =$	0.332	(CSZ seismic hazard)
T =	0.149	S
$S_{Xs} = S_s * F_a =$	0.446	(CSZ seismic hazard)
Spectral Acceleration, $S_a =$	0.446	
Seismic Weight, W =	1267.3	kip

Seismic Force, V = 678.1 kip

Story	Weight, w _x (kip)	Floor Height, h _x (ft)	k factor	w _x h _x ^k (kip*ft ²)	C _{vx}	Force on Level, F _x (kip)	Story Force, V _j (kip)
Roof	189.8	32.63	1.0	6193.2	0.242	164.1	164.1
1st	1077.5	18.00	1.0	19395.0	0.758	514.0	678.1

 $\Sigma w_{x}h_{x}^{k} = 25588.2$

Aug-21 CLIENT BS DATE City of Wilsonville SHEET CHKD BY DESCRIPTION Process Gallery 11962A.00 JOB NO. DESIGN TASK ASCE 41-17 - Tier 1 Screening (CSZ Seismic Level)

WALL SHEAR STRESS CHECK

4.4.3.3 Shear Stress in Shear Walls. The average shear stress in shear walls, v_j^{avg}, shall be calculated in accordance with Eq. (4-8).

$$v_j^{seg} = \frac{1}{M_s} \left(\frac{V_j}{A_w} \right) \qquad (4.8)$$

where

V_j = Story shear at level j computed in accordance with Section 4.4.2.2.

- A_w = Summation of the horizontal cross-sectional area of all A_w = Summation of the horizontal cross-sectional area of all shear walls in the direction of loading. Openings shall be taken into consideration where computing A_w. For mason-ry walls, the net area shall be used. For wood-framed walls, the length shall be used rather than the area; and M_s = System modification factor; M_s shall be taken from Table 4-8.

Table 4-8. M_s Factors for Shear Walls

	Level of Performance				
Wall Type	CP*	LS"	łO*		
Reinforced concrete, precast concrete, wood, reinforced masonry, and cold-formed steel	4.5	3.0	1.5		
Unreinforced masonry	1.75	1.25	1.0		

^a CP = Collapse Prevention, LS = Life Safety, IO = Immediate Occupancy.

CMU wall thickness, t = Concrete wall thickness, t = Concrete strength, f' _c = Roof Story Base Shear, V _{roof} = 1st Floor Story Base Shear, V _{1st} = System Modification Factor, M _s =	7.625 in 14 in 4000 psi 164.1 kips 678.1 kips 2.25	(Interpolated between	LS & IO)
Roof Level Shear Wall in N-S Direction			
Total length of exterior 8" CMU walls = Grout spacing = Total length of interior 8" CMU walls = Grout spacing = total net area of shear walls = average shear stress, v _{avg,NS} =	74.00 ft 24 in 49.42 ft 32 in 6997.1 in ² 10.4 psi	< 70.0 DCR = 0.15	<u>Shear Stress OK</u>
<u>Shear Wall in E-W Direction</u> Total length of exterior 8" CMU walls = Grout spacing = Total length of interior 8" CMU walls = Grout spacing = total net area of shear walls = average shear stress, v _{avg,NS} =	88.00 ft 24 in 50.00 ft 32 in 8280.8 in ² 8.8 psi	< 70.0	Shear Stress OK
average shear stress, v avg,NS -	0.0 psi	DCR = 0.13	Shear Stress OK
1st Level <u>Shear Wall in N-S Direction</u> Total length of 14" concrete walls = total net area of shear walls = <i>average shear stress,</i> v _{avg,NS} = <u>Shear Wall in E-W Direction</u> Total length of 14" concrete walls = total net area of shear walls =	118.00 ft 19824.0 in ² 15.2 psi 109.50 ft 18396.0 in ²	< 126.5 DCR = 0.12	<u>Shear Stress OK</u>
average shear stress, v _{avg,NS} =	16.4 psi	< 126.5	<u>Shear Stress OK</u>

DCR = 0.13

Engineers, Working Wondors With Water *

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET		
CHKD BY		DESCRIP	TION		Process Gallery	JOB NO.	11962A.00	
DESIGN TAS	K			ASCE 41-17 - Tier 1 Screening (CSZ Seismic Level)				

TRANSFER TO SHEAR WALLS

Beam	Connection	to	CMU	Walls	<u>(Detail 5008)</u>

Beam Connection to Civio Walls (Detail 5008)		
diaphragm shear strength, q _{ult} = beam length = diaphragm shear strength =	1280 30	ft
diaphragm shear strength =	38400.0	IDS
<u>W16x26 Beam Tensile Strength (Assuming ϕ = 1.0 for T</u>	ier 1)	
beam area, A =	7.68	in ²
steel yield stress, F_y =	50	ksi
steel tensile stress, F _u =	65	ksi
$A = \min(\Gamma * A = \Gamma * A) =$	204.0	l cim
$\phi B_t = \min(F_y^*A, F_u^*A) =$ Masonry breakout strength DCR =	384.0 <i>0.10</i>	кір ОК
Masonry breakout strength DCR -	0.10	UN
<u>Masonry & Steel Strength (Assuming ϕ = 1.0 for Tier 1)</u>		
anchor bolt size =	0.750	
anchor bolt embed, l_b =	8.00	
anchor bolt location from face, I_{be} =	3.81	
anchor bolt yield stress, f _y =	36.00	
masonry compressive strength, $f_m =$	1500	•
projected area of single anchor bolt in tension, A_{pt} =	201.06	
projected area of single anchor bolt in shear, A_{pvbolt} =	22.80	
cross section area of single anchor bolt, A_b =	0.44	
estimated overlap of projected area, A _{ptoverlap} =	2.50	
net projected area of anchor bolt in tension, A _{ptnet} =	400.87	
estimated overlap of projected area, A _{pvoverlap} =	1.25	
net projected area of anchor bolt in shear, A_{pvnet} =	44.98	in∠
$\phi B_{vnb} = 4*A_{pvnet}*(f_m)^{0.5} =$	6968.1	lbe
$\phi B_{vnc} = 4050*(f_m^*A_b)^{0.25} =$	10654.8	
$\phi B_{vnc} = 1000 (T_m A_b)^{-1} = \phi B_{vnprv} = 8^* A_{ptnet}^{*} (f_m)^{0.5} =$	124206.2	
$\phi B_{vns} = 0.60^{*}A_{b}^{*}f_{y} =$	19085.2	IDS
Masonry breakout strength DCR =	5.51	NG
Masonry crushing strength DCR =	3.60	NG
Anchor pryout DCR =	0.31	ΟΚ
Steel yielding DCR =	2.01	NG

(assumed less than wall shear strength)

group masonry breakout shear strength group masonry crushing shear strength group anchor pryout shear strength group steel yielding strength

Type HSB®-36

- 36/7 Weld Pattern at Supports
- Sidelaps connected with Button Punch or 1¹/₂" Top Seam Weld

Allowable Diaphragm Shear Strength, q (plf) and Flexibility Factors, F ((in./lb)x10⁶)

DECK	SIDELAP					5	SPAN (ft-in.)			
GAGE	ATTACHMENT		4'-0''	5'-0"	6'-0''	7'-0"	8'-0"	9'-0"	10'-0''	11'-0"	12'-0"
	BP @ 24"	q	398	327	267	235	202	186	168		
	BF @ 24	F	9.9+27R	11.9+20R	14+15R	15.7+12R	17.6+9R	19.1+7R	20.9+5R		
	DD @ 12"	q	434	355	303	266	238	218	204		
	BP @ 12"	F	9.5+27R	11.4+21R	13.1+16R	14.6+13R	16.1+10R	17.4+8R	18.7+6R		
	TOW @ 24	q	770	777	661	682	601	627	566		
00	TSW @ 24"	F	5.1+30R	5.3+24R	6.1+20R	6.1+17R	6.6+15R	6.5+13R	7+12R		
22	TOW @ 10"	q	937	911	781	785	787	710	720		
	TSW @ 18"	F	4.4+30R	4.8+24R	5.4+20R	5.5+17R	5.6+15R	6+13R	6.1+12R		
		q	1084	1033	998	972	952	936	924		
	TSW @ 12"	F	4+30R	4.4+24R	4.7+20R	4.9+17R	5.1+15R	5.2+13R	5.3+12R		
		q	1504	1476	1456	1442	1430	1236	1001		
	TSW @ 6"	F	3.2+30R	3.6+24R	3.8+20R	4+17R	4.2+15R	4.3+14R	4.4+12R		
		q	564	466	383	338	292	267	240	228	209
	BP @ 24"	F	9.3+16R	11+12R	12.8+8R	14.3+6R	16+4R	17.3+2R	19+1R	20.1+0R	21.7-1
		q	616	507	434	382	343	313	292	274	260
	BP @ 12"	F	8.8+16R	10.5+12R	12+9R	13.3+7R	14.6+5R	15.8+3R	16.9+2R	18+1R	19+0F
		q	1024	1026	873	896	793	821	742	772	711
~~	TSW @ 24"	F	4.8+19R	4.9+15R	5.6+12R	5.5+11R	6+9R	5.8+8R	6.2+7R	6.1+7R	6.4+6F
20		q	1236	1197	1026	1027	1028	926	937	946	875
	TSW @ 18"	F	4.2+19R	4.4+15R	5+13R	5+11R	5.1+9R	5.4+8R	5.4+7R	5.4+7R	5.7+6F
	TSW @ 12" TSW @ 6"	q	1425	1354	1304	1267	1239	1217	1200	1085	912
		F	3.8+19R	4.1+15R	4.3+13R	4.5+11R	4.6+10R	4.7+8R	4.7+8R	4.8+7R	4.8+6F
		q	1970	1930	1901	1880	1864	1621	1313	1085	912
		F	3.1+19R	3.4+15R	3.5+13R	3.7+11R	3.7+10R	3.8+9R	3.9+8R	3.9+7R	4+6R
	PD @ 24"	q	979	812	670	595	516	475	423	400	366
	BP @ 24"	F	8.1+7R	9.5+4R	11+2R	12.2+1R	13.7+0R	14.8-1R	16.2-2R	17.2-3R	18.6-4
		q	1070	885	761	673	607	556	515	483	458
	BP @ 12"	F	7.7+7R	9+5R	10.3+3R	11.4+2R	12.5+1R	13.5+0R	14.4-1R	15.3-2R	16.2-2
		q	1617	1598	1359	1383	1224	1258	1141	1177	1085
	TSW @ 24"	F	4.3+9R	4.2+7R	4.7+6R	4.6+5R	5+4R	4.9+4R	5.2+3R	5+3R	5.3+3F
18		q	1928	1851	1586	1577	1570	1414	1425	1434	1326
	TSW @ 18"	F	3.7+9R	3.8+7R	4.2+6R	4.2+5R	4.2+4R	4.5+4R	4.5+4R	4 4+3R	4.7+3F
		q	2208	2084	1998	1935	1886	1848	1817	1659	1394
	TSW @ 12"	F	3.4+9R	3.5+7R	3.6+6R	3.7+5R	3.8+5R	3.8+4R	3.9+4R	3.9+3R	3.9+3F
		q	3036	2962	2910	2872	2842	2478	2007	1659	1394
	TSW @ 6"	F	2.7+9R	2.9+8R	3+6R	3+5R	3.1+5R	3.1+4R	3.1+4R	3.2+3R	3.2+3F
		q	1255	1052	869	780	677	629	561	532	485
	BP @ 24"	F	7.2+3R	8.4+1R	9.7+0R	10.8-1R	12 1-2R	13.1-2R	14.3-3R	15.2-4R	16.4-4
		q	1395	1167	1013	902	820	756	704	662	628
	BP @ 12"	F	6.8+3R	8+2R	9.1+1R	10.1+0R	11-1R	11.9-2R	12.7-2R	13.5-3R	14.3-3F
		q	2083	2073	1766	1805	1599	1649	1497	1548	1428
	TSW @ 24"	F	3.7+5R	3.7+4R	4.1+3R	4+3R	4.3+2R	4.2+2R	4.5+2R	4.3+2R	4.6+1F
16			2496	2408	2067	2062	2058	1856	1874	1889	1748
	TSW @ 18"	q F	3.2+5R	3.3+4R	3.7+3R	3.6+3R	3.6+2R	3.9+2R	3.8+2R	3.8+2R	4+2R
			2862	2713	2609	2532	2473	2427	2389	2310	1941
	TSW @ 12"	q F	2.9+5R	3.1+4R	3.1+3R	3.2+3R	3.2+3R	3.3+2R	3.3+2R	3.3+2R	3.4+2F
			3918	3.1+4K 3833	3773	3729	3695	3451	2795	2310	1941
	TSW @ 6"	q F									
		E.	2.4+5R	2.5+4R	2.5+4R	2.6+3R	2.6+3R	2.6+2R	2.6+2R	2.7+2R	2.7+2F

See footnotes on page 28.

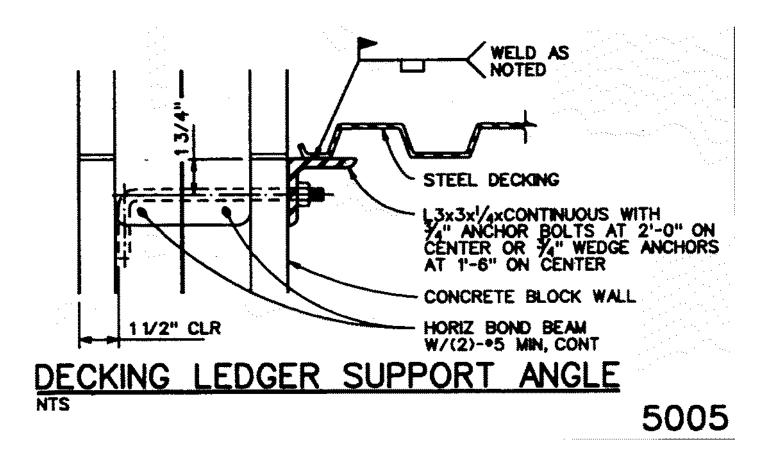
Deck span = 6'-8" q = 1280 lb/ft (interpolated)

Engineers, Working Wondors With Water "

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION		Process Gallery	JOB NO.	11962A.00
DESIGN TAS	K			ASCE 41-17 - Tier 1 Screening (CSZ Seismic Level)			

TRANSFER TO SHEAR WALLS

Ledger Angle Connection into CMU Walls		
diaphragm shear strength, q _{ult} =	1280 lbs/ft	(assumed less than wall shear strength)
anchor bolt spacing =	24 in	
diaphragm shear strength =	2560.0 lbs	
Masonry & Steel Strength (Assuming $\phi = 1.0$ for Tier 1)		
anchor bolt size =	0.750 in	
anchor bolt embed, l _b =	6.00 in	
anchor bolt location from face, I_{be} =	13.50 in	
anchor bolt yield stress, f _y =	36.00 ksi	
masonry compressive strength, f_m =	1500 psi	
projected area of anchor bolt in tension, A_{pt} =	113.10 in [∠]	
projected area of each anchor bolt in shear, A_{pv} =	286.28 in [∠]	
cross section area of anchor bolt, A_b =	0.44 in ²	
$\phi B_{vnb} = 4 A_{pv} (f_m)^{0.5} =$	44349.9 lbs	masonry breakout shear strength
$B_{vnc} = 1050*(f_m^*A_b)^{0.25} =$	5327.4 lbs	masonry crushing shear strength
$B_{vnrv} = 8^* A_{pt}^* (f_m)^{0.5} =$	35041.9 lbs	anchor pryout shear strength
$B_{vnpry} = 0.60^{\circ}A_{b} f_{r} =$	9542.6 lbs	steel yielding strength
$B_{VRS} = 0.00 \Lambda_b I_y =$	9342.0 105	
Masonry breakout strength DCR =	0.06 <mark>OK</mark>	
Masonry crushing strength DCR =	0.48 <mark>OK</mark>	
Anchor pryout DCR =	0.07 OK	
Steel yielding DCR =	0.27 <mark>OK</mark>	
Puddle Weld Strength		
deck thickness =	0.0359 in	
N-S Wall Elevations - Deck welded to support with puddle	e weld at 6"	
effective puddle weld diameter =	0.625 in	
puddle weld spacing =	6.00 in	
load at puddle weld =	640.0 lbs /weld	
strength of puddle weld =	2093.7 lbs /weld	
Puddle weld strength DCR =	0.31 <mark>OK</mark>	
E-W Wall Elevations - Deck welded to support with puddle	e weld at 12"	
effective puddle weld diameter =	0.625 in	
puddle weld spacing =	12.00 in	
, p		
load at puddle weld =	1280.0 lbs /weld	
strength of puddle weld =	2093.7 lbs /weld	
Puddle weld strength DCR =	0.61 <mark>OK</mark>	



engineers.	Maren	og waraan	e waar waaro	· · ·		
BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET
CHKD BY		DESCRIP	TION	_	Process Gallery	JOB NO

CHKD BY DESCRIPTION Process Gallery JOB NO. 11962A.00 DESIGN TASK ASCE 41-17 - Tier 1 Screening (CSZ Seismic Level) 11962A.00

FOUNDATION DOWELS

CMU Wall Shear Strength			
steel yield strength, $f_y =$	60000	psi	
Seismic unit shear, Vu =		kip/ft	
Seismic unit moment, Mu =		ft*kip/ft	
unit depth, dv =	12.00	in	
Mu/(Vu*dv) =	14.62		
Wall area, A _{nv} =	91.5	in [∠]	
masonry strength, f' _m =	1500		
Reinforcement area, $A_v =$	0.44	-	
reinforcement spacing, s =	32.0		
Nominal reinforcement shear strength, V_{ns} =	4.95	-	
$\Upsilon_g =$	0.75		
Nominal Unit Wall Shear, V_n =	10.63	kip/ft	ACI 530-13 Eq. 9-23
Shear Friction between wall and slab			
Dowels into concrete walls below are #6@32'			
Reinforcement area, A _{vf} =	0.44	in²	
μ =	1.0		
Unit Shear Friction, V _n =	26.40	kin/ft	
Dowel DCR =	0.40	-	can develop wall strength
Dower DCK -	0.40	Dowers	can develop wan strength
Concrete Wall Shear Strength			
Concrete wall thickness, t =	14		
Concrete strength, $f_c =$	4000	-	
Seismic unit shear, Vu =		kips/ft	
Axial unit load on wall, Nu =	10.1	kips/ft	
Shear strength, $V_{c1} = 2^* \lambda^* (f_c)^{0.5*} h^* dv =$	17.0	kips/ft	(ACI 318-14 Table 11.5.4.6)
Shear strength, $V_{c2} = 3.3^{*}(f_{c})^{0.5*}h^{*}dv + [(Nu^{*}dv)/(4^{*}L)] =$	28.1	kips/ft	(ACI 318-14 Table 11.5.4.6)
0.5		1	
Shear strength, $V_{cmax} = 10^{*}(f_{c})^{0.5*}h^{*}dv =$	85.0	κips/π	(ACI 318-14 Section 11.5.4.3)
Shear strength, V _{cmax} = 10*(f' _c) ^{0.3*} h*dv = Conc shear capacity, V _c = min[max(V _{c1} ,V _{c2}),V _{cmax}] =		kips/ft	(ACI 318-14 Section 11.5.4.3)
			(ACI 318-14 Section 11.5.4.3)
Conc shear capacity, $V_c = min[max(V_{c1}, V_{c2}), V_{cmax}] =$ <u>Shear Friction between wall and slab</u> Dowels into foundation are #7@12" & #8@12" alternating	28.1 g (effective	kips/ft 6" spaciı	
Conc shear capacity, $V_c = min[max(V_{c1}, V_{c2}), V_{cmax}] =$ <u>Shear Friction between wall and slab</u> Dowels into foundation are #7@12" & #8@12" alternating Reinforcement area, A _{vf} =	28.1	kips/ft 6" spaciı	
Conc shear capacity, $V_c = min[max(V_{c1}, V_{c2}), V_{cmax}] =$ <u>Shear Friction between wall and slab</u> Dowels into foundation are #7@12" & #8@12" alternating	28.1 g (effective 1.39 60000	kips/ft 6" spaciı in [∠]	
Conc shear capacity, $V_c = min[max(V_{c1}, V_{c2}), V_{cmax}] =$ <u>Shear Friction between wall and slab</u> Dowels into foundation are #7@12" & #8@12" alternating Reinforcement area, A _{vf} =	28.1 g (effective 1.39	kips/ft 6" spaciı in [∠]	
Conc shear capacity, $V_c = min[max(V_{c1}, V_{c2}), V_{cmax}] =$ <u>Shear Friction between wall and slab</u> Dowels into foundation are #7@12" & #8@12" alternating Reinforcement area, $A_{vf} =$ steel yield strength, $f_y =$ $\mu =$	28.1 g (effective 1.39 60000 1.0	kips/ft 6" spacii in ⁻ psi	
Conc shear capacity, $V_c = min[max(V_{c1}, V_{c2}), V_{cmax}] =$ <u>Shear Friction between wall and slab</u> Dowels into foundation are #7@12" & #8@12" alternating Reinforcement area, A _{vf} = steel yield strength, f _y =	28.1 g (effective 1.39 60000 1.0 83.40	kips/ft 6" spaciu in [∠] psi kip/ft	

WALL ANCHORAGE CONNECTION DETAIL ALONG NORTH AND SOUTH WALL ELEVATIONS

Engineers, Working Wondors With Water *

BY: BS DATE Aug-21 CLIENT CHKD BY DESCRIPTION

ASCE 41-17 - Tier 1 Screening (CSZ Seismic Level)

11962A.00

SHEET

JOB NO.

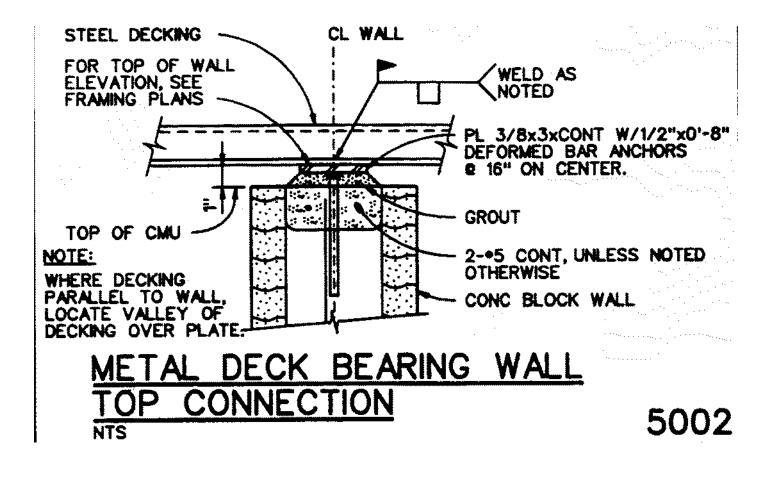
WALL ANCHORAGE FORCE

DESIGN TASK

Process Gallery: Ledger Angle Anchorage into 8" CMU Wall along North and South Wall Elevations

Process Gallery: Ledger Angle Anchorage into 8" CMU W	<u>′all along N</u>	lorth and	I South Wall Elevations
4.4.3.7 Flexible Diaphragm Col tal seismic forces associated with diaphragm to either concrete o calculated in accordance with Ed	th the conner r masonry	ection of a	a flexible
$T_c = \psi S_i$	swpAp		(4-12)
where			
w_p = Unit weight of the wall; A_p = Area of wall tributary to ψ = 1.0 for Collapse Preventi Life Safety Performance Occupancy Performance I S_{XS} = Value specified in Section	on Performa Level, and Level; and	ance Level	
wall height to diaphragm, $h_w =$	14.63	ft	
parapet height, h_{p} =	0.87		
unit weight of wall, $w_p =$	58.50		(partial grout for exterior walls [CMU + veneer])
Ψ=	1.55	P	(Interpolated between LS & IO)
S _{xs} =	0.446	a	(
wall out-of-plane load =	331.0	•	
anchor bolt spacing =	24.00		
wall anchorage force, T_c =	662.0	lbs	
Masonry & Steel Strength			
anchor bolt size =	0.750	in	
anchor bolt embed, I_{b} =	6.00	in	
anchor bolt yield stress, f _y =	36.00	ksi	
masonry compressive strength, f _m =	1500	psi	
projected area of anchor bolt in tension, A_{pt} =	113.10	in²	
cross section area of anchor bolt, A_b =	0.44	in²	
$\phi B_{anb} = 4 * A_{pt} * (f_m)^{0.5} =$	17521.0	lbs	masonry breakout tensile strength
$\phi B_{ans} = A_b^* f_y =$	15904.3	lbs	steel yielding strength
Masonry breakout strength DCR = Steel yielding DCR =	0.04 0.04	OK OK	

Puddle Weld Shear Strength


Table 4: Allowable Shear Strength (Ibs/connection) for Arc Spot Welds. Arc Seam Welds, Hilti Fasteners, Pneutek Fasteners and SDI Recognized Screws for Verco Deck Panel Support Connections

Deck Gege	Profile	BMT	ANC BROT	APC SEAM	KENDK22 KENDK22 KENDK22	HUTI X-EMP-19	PNEUTEK SDNS1	PNEUTEK BOKED	PNDUTEK	PHEUTEK	SCI MICCOMUNIO SCREWS		
		(0.1	(0.)	(in.) (lbs)	(bs)	(lbs)	(bs) (bs)	(bs)	(bs)	(lbs)	(bs)	(bs)	(bs)
22	DAN	0.0299	763	1251	685	650	618	691	684	736	561		
29	B&N	0.0050	1091	1491	720	775	733	791	886	903	673		
18	88.N	0.0478	1850	2017	947	1020	951	962	1204	1253	896		
15	DAN	0.0598	2309	2564	1169	1259	1158	1125	1474	9630	1121		

Engineers, Warking Wondors With Water *

BY:	BS DATE Aug-21 CLIENT			City	of Wilsor	nville	SHEET		
CHKD BY	BY DESCRIPTION		Process C	Process Gallery			11962A.00		
DESIGN T			ASCE 41-1	7 - Tier 1 S	creening	(CSZ Seismi	c Level)		
			deo	ck thickness =	0.0359 ir	า			
			W	/eld spacing =	6.00 ir	า			
				load at weld =	165.5 ll	os / weld			
	allo	wable stren	gth of scre	w from chart=	1091.0	os / weld	ASCE 41-17	Section 9.1	0.1.3 allows for 2
		strength	level of sci	rew in shear =	2182.0	os / weld	times allowa	ble strength	for strength level.
		Pud	dle weld sti	rength DCR =	0.08	ΟΚ			

WALL ANCHORAGE CONNECTION DETAIL ALONG INTERIOR WALL ELEVATIONS

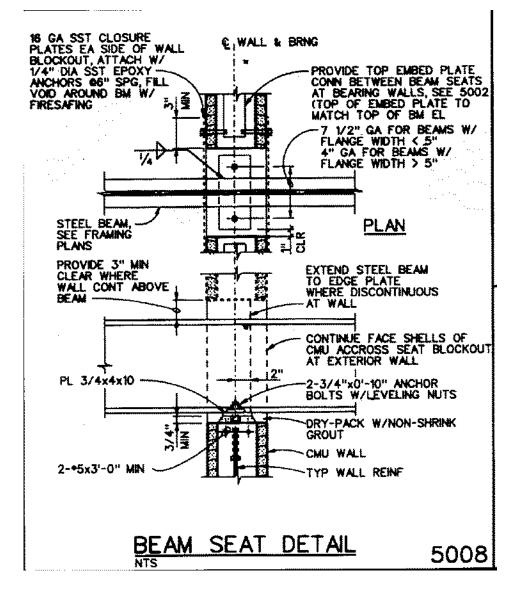
BY:	BS	DATE		CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	PTION	_	Process Gallery	JOB NO.	11962A.00
DESIGN TA	SK			ASCE 41	-17 - Tier 1 Screening (CSZ Se	ismic Level)	

WALL ANCHORAGE FORCE

Process Gallery: Bearing Anchorage into 8" Interior CMU	Wall									
4.4.3.7 Flexible Diaphragm Co tal seismic forces associated w diaphragm to either concrete o calculated in accordance with E	ith the conne or masonry v	ection of a	a flexible							
$T_c = \psi S$	$T_c = \psi S_{XS} w_p A_p \tag{4-12}$									
where										
w_p = Unit weight of the wall; A_p = Area of wall tributary to ψ = 1.0 for Collapse Prevent Life Safety Performance Occupancy Performance S_{XS} = Value specified in Section	ion Performa Level, and Level; and	nce Level								
wall height to diaphragm, $h_w =$	14.63 f	ť								
unit weight of wall, $w_{\rm p}$ =	47.00 p	osf	(partial grout for interior walls)							
$\Psi =$	1.55		(Interpolated between LS & IO)							
S _{XS} =	0.446 g	9								
wall out-of-plane load =	237.7 I	bs/ft								
anchor bolt spacing =	16.00 i									
wall anchorage force, T_c =	316.9 I	bs								
Masonry & Steel Strength										
anchor bolt size =	0.750 i	n								
anchor bolt embed, $I_{\rm b} =$	6.00 i									
anchor bolt location from face, I_{be} =	3.81 i									
anchor bolt yield stress, $f_y =$	36.00	ksi								
masonry compressive strength, $f_m =$	1500 p									
projected area of anchor bolt in tension, A _{ot} =	113.10 i	-								
projected area of each anchor bolt in shear, A _{pvbolt} =	22.80 i									
cross section area of anchor bolt, $A_b =$	0.44 i									
, ,	••••									
$\phi B_{vnb} = 4^* A_{pv}^* (f'_m)^{0.5} =$	3532.4 I	bs	masonry breakout shear strength							
$\phi B_{vnc} = 1050^* (f_m^* A_b)^{0.25} =$	5327.4 I	bs	masonry crushing shear strength							
$\phi B_{vnprv} = 8^* A_{pt}^* (\mathbf{f}_m)^{0.5} =$	35041.9 I	bs	anchor pryout shear strength							
$\phi B_{vns} = 0.60^* A_b^* f_y =$	9542.6 I	bs	steel yielding strength							
Masonry breakout strength DCR =	0.09	OK								
Masonry crushing strength DCR =	0.06	OK								
Anchor pryout DCR = Steel yielding DCR =	0.01 0.03	OK OK								
Sieer yierding DCR -	0.00	UN								

Puddle Weld Shear Strength

Table 4: Allowable Shear Strength (Ibs/connection) for Arc Spot Welds. Arc Seam Welds, Hilti Fasteners, Pneutek Fasteners and SDI Recognized Screws for Verco Deck Panel Support Connections


Deck Gege	Profile	BMT	ANC BPOT	APC SEAM	HLTI X-ENDK22 or X-HSN 2N	HUT X.CNP-19	PHEUTEK SONSI	PNEUTEK BOKED	PHOTOR	PHOUTOK ADDITEK	SCI PSICCOMUNIC RURENS	
		(0.1	(0.1	(bs)	(lbs)	(bs)	(bs)	(bs)	(lbs)	(bs)	(bs)	(bs)
22	DAN	0.0299	763	1251	603	650	618	691	684	736	561	
29	B&N	0.0050	1091	1491	720	775	733	791	885	903	673	
18	88.N	0.0478	1850	2017	947	1020	961	962	1204	1253	806	
15	DAN	0.0598	2309	2564	1169	1259	1158	1125	1474	9630	1121	

deck thickness = 0.0359 in weld spacing = 6.00 in

load at weld =	118.8 lbs / weld	
allowable strength of screw from chart=	1091.0 lbs / weld	ASCE 41-17 Section 9.10.1.3 allows for 2
strength level of screw in shear =	2182.0 lbs / weld	times allowable strength for strength level.

Puddle weld strength DCR = 0.05 OK

176

BEAM ANCHORAGE CONNECTION DETAIL ALONG EAST AND WEST WALL ELEVATIONS

C2! E C

Engineers. Working Wondors Wish Water "

BY:	BS	DATE	Aug-21	CLIENT City of Wilsonville		SHEET	
CHKD BY		DESCRIP	TION		Process Gallery	JOB NO.	11962A.00
DESIGN TAS	SK			ASCE 41-1	17 - Tier 1 Screening (CSZ Se	ismic Level)	

WALL ANCHORAGE FORCE

Process Gallery: Beam Anchorage into 8" CMU Wall along East and West Wall Elevations

4.4.3.7 Flexible Diaphragm Co tal seismic forces associated w diaphragm to either concrete calculated in accordance with I	onnection For ith the conn or masonry	ection of	he horizon- f a flexible
$T_c = \psi t$	$S_{XS}w_pA_p$		(4-12)
where			
$w_p =$ Unit weight of the wall; $A_p =$ Area of wall tributary to $\psi = 1.0$ for Collapse Preven Life Safety Performance Occupancy Performance $S_{XS} =$ Value specified in Section	the connecti tion Performs Level, and Level; and	ance Lev	
wall height to diaphragm, $h_w =$	14.63	ft	
parapet height, $h_p =$	0.87		
unit weight of wall, $w_p =$	58.50		(partial grout for exterior walls [CMU + veneer])
Ψ=	1.55	P 0.	(Interpolated between LS & IO)
S _{xs} =	0.446	a	(
wall out-of-plane load =	331.0	0	
beam spacing =	6.67		
wall anchorage force, T_c =	2207.8	lbs	
Masonry & Steel Strength			
anchor bolt size =	0.750	in	
anchor bolt embed, $I_b =$	8.00		
anchor bolt location from face, I_{be} =	3.81		
anchor bolt yield stress, $f_y =$	36.00		
masonry compressive strength, f_{im} =	1500		
projected area of single anchor bolt in tension, A_{pt} =	201.06	•	
projected area of single anchor bolt in shear, A_{pvbolt} =	22.80		
cross section area of single anchor bolt, A_b =	0.44		
estimated overlap of projected area, $A_{ptoverlap}$ =	2.50		
net projected area of anchor bolt in tension, $A_{ptnet} =$	400.87		
estimated overlap of projected area, A _{pvoverlap} =	1.25		
net projected area of anchor bolt in shear, A_{pynet} =	44.98		
	11.00		
$\phi B_{vnb} = 4^* A_{pvnet} * (f'_{m})^{0.5} =$	6968.1	lbs	group masonry breakout shear strength
$\phi B_{vnc} = 1050^{*} (f_{m}^{*}A_{b})^{0.25} =$	10654.8	lbs	group masonry crushing shear strength
$\phi B_{vnpry} = 8^* A_{ptnet} * (f'_m)^{0.5} =$	124206.2	lbs	group anchor pryout shear strength
$\phi B_{vns} = 0.60^* A_b^* f_y =$	19085.2	lbs	group steel yielding strength
Masonry breakout strength DCR =	0.32	ок	
Masonry crushing strength DCR =	0.21	ОК	
Anchor pryout DCR =	0.02	ОК	
	0.40	014	

0.12

Steel yielding DCR =

ΟΚ

Engineers, Warking Wondors Wish Water *

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	PTION	Process Gallery		JOB NO.	11962A.00
DESIGN TASK			ASCE 41	-17 - Tier 1 Screening (CSZ S	eismic Level)		

PLAN IRREGULARITIES

Beam Connection to CMU Walls (Detail 5008)

diaphragm shear strength, q _{ult} =	1466 lbs/ft	(assumed less than wall shear strength)
beam length =	30 ft	
diaphragm shear strength =	43980.0 lbs	
<u>W16x26 Beam Tensile Strength (Assuming ϕ = 1.0 for T</u>	ier 1)	
	. 2	
beam area, A =	7.68 in ²	
steel yield stress, F _y =	50 ksi	
steel tensile stress, F _u =	65 ksi	
$\phi B_t = \min(F_v A, F_u A) =$	384.0 kip	
Masonry breakout strength DCR =	0.11 OK	
Masonry breakout sireingin bork =	0.11	
<u>Masonry & Steel Strength (Assuming ϕ = 1.0 for Tier 1)</u>		
	0.750	
anchor bolt size = anchor bolt embed, I _b =	0.750 in	
-	8.00 in	
anchor bolt location from face, I _{be} =	3.81 in	
anchor bolt yield stress, $f_y =$	36.00 ksi	
masonry compressive strength, $f_m =$	1500 psi	
projected area of single anchor bolt in tension, A_{pt} =	201.06 in ²	
projected area of single anchor bolt in shear, A_{pvbolt} =	22.80 in ²	
cross section area of single anchor bolt, A_b =	0.44 in ²	
estimated overlap of projected area, A _{ptoverlap} =	2.50 in ²	
net projected area of anchor bolt in tension, A_{ptnet} =	400.87 in ²	
estimated overlap of projected area, A _{pvoverlap} =	1.25 in ²	
net projected area of anchor bolt in shear, A_{pvnet} =	44.98 in ²	
$\phi B_{vnb} = 4^* A_{pvnet} * (f_m)^{0.5} =$	6968.1 lbs	group masonry breakout shear strength
$\phi B_{vnc} = 1050^{*} (f_{m}^{*}A_{b})^{0.25} =$	10654.8 lbs	group masonry crushing shear strength
$\phi B_{vnpry} = 8^* A_{ptnet} * (\mathbf{f'}_{m})^{0.5} =$	124206.2 lbs	group anchor pryout shear strength
$\phi B_{vns} = 0.60^{*}A_{b}^{*}f_{y} =$	19085.2 lbs	group steel yielding strength
Masonry breakout strength DCR =	6.31 NG	
Masonry crushing strength DCR =	4.13 NG	
Anchor pryout DCR =	0.35 <mark>OK</mark>	
Steel yielding DCR =	2.30 NG	

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Workshop
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	07/07/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-2. Collapse Prevention Basic Configuration Checklist

Very Low Seismicity Structural Components BSE-2E Seismic Level at Limited Safety

รแนต	lurai	Сотр	onei	าเร	
RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	
C		N/A X	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	Workshop exterior walls are wood stud with plywood sheathing.

Low Seismicity

Building System

General

RA	TING			DESCRIPTION	COMMENTS
C X	NC	N/A	U	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	
с □	NC	N/A X	U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement need not apply for the following building types: W1, W1A, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)	
C		N/A	U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)	

Building Configuration

	RATING DESCRIPTION COMMENTS						
RA	TING			DESCRIPTION	COMMENTS		
с		N/A 🗶	U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1)	Building is a one-story structure.		
С	NC	N/A	U	SOFT STORY: The stiffness of the seismic-force- resisting system in any story is not less than 70%	Building is a one-story structure.		
		X		of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)			
C	NC	N/A	U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)			
C	NC	N/A X		GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force- resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)	Building is a one-story structure.		

184Project NameCity of Wilsonville - WProject Number11962A.00

C	NC	N/A X	U	MASS: There is no change in effective mass more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	Building is a one-story structure.
C	NC	N/A x	U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	Torsion check applies to rigid diaphragms. Structure has a flexible diaphragm.

Moderate Seismicity

Geologic Site Hazards

	sooroyis site mazarda						
RA	TING			DESCRIPTION	COMMENTS		
C		N/A	U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.		
C		N/A	U	SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)	Slope failure has been determined to not be an issue per NGI technical memorandum.		

185Project NameCity of Wilsonville - Wq+Project Number11962A.00

С Х	N/A	U	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)	Surface fault rupture has been determined to not be an issue per NGI technical memorandum.

High Seismicity

Foundation Configuration

	TING		5	DESCRIPTION	COMMENTS
C	NC	N/A	U	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/ height) is greater than 0.6S _a . (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	Height = 15.50 ft Base = 36.00 ft Sa = 0.744 B / H = 36 / 15.5 = 2.32 0.6 * Sa = 0.6 * 0.744 = 0.45 2.32 > 0.45 (OK)
C	NC	N/A	U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)	

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Workshop
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	06/24/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-6. Collapse Prevention Structural Checklist for Building Type W2

Low and Moderate Seismicity

Lateral Seismic-Force-Resisting System

C NC N/A U REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1) Image: C NC N/A U SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): West Wall Line DCR = 0.34 (OK) East Wall Line DCR = 1.02 (Slightly overstresse but considered OK) Image: C NC N/A U SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): West Wall Line DCR = 0.34 (OK) Image: C NC N/A U Structural panel sheathing 1,000 lb/ft Diagonal sheathing 700 lb/ft All other conditions 100 lb/ft All other conditions 100 lb/ft All other conditions 100 lb/ft Interior Wall Line DCR = 0.42 (OK) C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. Here Stuce walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec.	-	TING			DESCRIPTION	COMMENTS
Image: State in the state in the shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. bit considered OK) West Wall Line DCR = 0.34 (OK) East Wall Line DCR = 1.02 (Slightly overstresse but considered OK) Image: Structural panel sheathing 1,000 lb/ft Structural panel sheathing 700 lb/ft West Wall Line DCR = 0.47 (OK) Image: Constructure of the shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): West Wall Line DCR = 0.52 (OK) South Wall Line DCR = 0.47 (OK) Image: Constructure of the shear walls of the product of the straight sheathing 1000 lb/ft Structural panel sheathing 1000 lb/ft North Wall Line DCR = 0.42 (OK) Image: Constructure of the shear walls of the product of the straight sheathing 1000 lb/ft Structure of the sheat wall the product of the straight sheathing 1000 lb/ft North Wall Line DCR = 0.42 (OK) Image: Constructure of the straight sheathing 1000 lb/ft Structure of the straight sheathing 1000 lb/ft Interior Wall Line DCR = 0.42 (OK) Image: Constructure of the straight sheathing 1000 lb/ft Structore (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior Image: Constructure of the structure of t	C	NC	N/A	U	REDUNDANCY: The number of lines of shear walls	
C NC N/A U SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): West Wall Line DCR = 0.34 (OK) Image: Comparison of the shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): West Wall Line DCR = 0.34 (OK) Image: Comparison of the shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): West Wall Line DCR = 0.52 (OK) Image: Comparison of the shear walls is the strenge of the shear walls of				_		
C NC N/A U SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): West Wall Line DCR = 0.34 (OK) East Wall Line DCR = 1.02 (Slightly overstresser but considered OK) Image: Structural panel sheathing 1,000 lb/ft Diagonal sheathing 1,000 lb/ft Structural panel sheathing 1,000 lb/ft South Wall Line DCR = 0.47 (OK) North Wall Line DCR = 0.42 (OK) C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. Sec.	X				·	
C NC N/A U shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): Structural panel sheathing 1,000 lb/ft Diagonal sheathing North Wall Line DCR = 0.52 (OK) South Wall Line DCR = 0.47 (OK) Interior Wall Line DCR = 0.42 (OK) C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. Sec.					5.5.1.1)	
C NC N/A U shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): Structural panel sheathing 1,000 lb/ft Diagonal sheathing North Wall Line DCR = 0.52 (OK) South Wall Line DCR = 0.47 (OK) Interior Wall Line DCR = 0.42 (OK) C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. Sec.						
C NC N/A U shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): Structural panel sheathing 1,000 lb/ft Diagonal sheathing North Wall Line DCR = 0.52 (OK) South Wall Line DCR = 0.47 (OK) Interior Wall Line DCR = 0.42 (OK) C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. Sec.						
C NC N/A U shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): Structural panel sheathing 1,000 lb/ft Diagonal sheathing North Wall Line DCR = 0.52 (OK) South Wall Line DCR = 0.47 (OK) Interior Wall Line DCR = 0.42 (OK) C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. Sec.						
C NC N/A U shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): Structural panel sheathing 1,000 lb/ft Diagonal sheathing North Wall Line DCR = 0.52 (OK) South Wall Line DCR = 0.47 (OK) Interior Wall Line DCR = 0.42 (OK) C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. Sec.						
C NC N/A U shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): Structural panel sheathing 1,000 lb/ft Diagonal sheathing North Wall Line DCR = 0.52 (OK) South Wall Line DCR = 0.47 (OK) Interior Wall Line DCR = 0.42 (OK) C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. Sec.						
C NC N/A U shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1): Structural panel sheathing 1,000 lb/ft Diagonal sheathing North Wall Line DCR = 0.52 (OK) South Wall Line DCR = 0.47 (OK) Interior Wall Line DCR = 0.42 (OK) C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. Sec.						
Image: Construction of the construc	C	NC	N/A	U		
C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. North Wall Line DCR = 0.52 (OK) South Wall Line DCR = 0.47 (OK) Interior Wall Line DCR = 0.42 (OK)	X					
2: Sec. 5.5.3.1.1): Structural panel sheathing 1,000 lb/ft South Wall Line DCR = 0.47 (OK) Diagonal sheathing 700 lb/ft Diagonal sheathing 100 lb/ft All other conditions 100 lb/ft Interior Wall Line DCR = 0.42 (OK) C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec.					•	,
C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec.					-	
C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec.						Interior Wall Line DCR = 0.42 (OK)
C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec.						
C NC N/A U STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec.						
C NC N/A O Multi-story buildings do not rely on exterior Image: State of the stude of th						
C NC N/A O Multi-story buildings do not rely on exterior Image: State of the stude of th						
Image: Stuck of the stuck	с	NC	N/A	U		
system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec.						
					. ,	
5.5.3.6.1)					5.5.3.6.1)	
C NC N/A U GYPSUM WALLBOARD OR PLASTER SHEAR Structure is one story.	С	NC	N/A	U		Structure is one story.
WALLS: Interior plaster or gypsum wallboard is						· · · · · · · · · · · · · · · · · · ·
Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start Image: Second start					.	
uppermost level of a multi-story building.						
(Commentary: Sec. A.3.2.7.3. Tier 2: Sec. 5.5.3.6.1)						

188Project NameCity of Wilsonville - WProject Number11962A.00

c	NC	N/A	U	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2- to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1)	East elevation wall and northwest wall segments all exceed the 2:1 requirement. E1 = $14.5ft/2.5ft = 5.8 : 1 (NG)$ E2 = $14.5ft/4.5ft = 3.2 : 1 (NG)$ E3 = $14.5ft/6ft = 2.4 : 1 (NG)$ E4 = $14.5ft/2ft = 7.3 : 1 (NG)$
C	NC	N/A	U	WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Commentary: Sec. A.3.2.7.5. Tier 2: Sec.5.5.3.6.2)	
C	NC	N/A X	U	HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1- to-1. (Commentary: Sec. A.3.2.7.6. Tier 2: Sec. 5.5.3.6.3)	
C		N/A x	U	CRIPPLE WALLS: Cripple walls below first-floor- level shear walls are braced to the foundation with wood structural panels. (Commentary: Sec. A.3.2.7.7. Tier 2: Sec. 5.5.3.6.4)	

189Project NameCity of Wilsonville - WqrlProject Number11962A.00

С	NC	N/A	U	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural	East elevation wall line has openings
		x		panel shear walls with aspect ratios of not more	extending 70% of the length.
				than 1.5-to-1 or are supported by adjacent	
				construction through positive ties capable of	
				transferring the seismic forces. (Commentary: Sec.	
				A.3.2.7.8. Tier 2: Sec. 5.5.3.6.5)	

Connections

RA	TING			DESCRIPTION	COMMENTS
C	NC	N/A	U	WOOD POSTS: There is a positive connection of wood posts to the foundation. (Commentary: Sec.	
		×		A.5.3.3. Tier 2: Sec. 5.7.3.3)	
C	NC	N/A		WOOD SILLS: All wood sills are bolted to the foundation. (Commentary: Sec. A.5.3.4. Tier 2: Sec. 5.7.3.3)	
C		N/A	U	GIRDER-COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2: Sec. 5.7.4.1)	

High Seismicity

Diaphragms

	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not	
X				have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1)	
c	NC	N/A	U	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof	
×				elevation. (Commentary: Sec. A.4.1.3. Tier 2: Sec. 5.6.1.1)	
C	NC	N/A	U	DIAPHRAGM REINFORCEMENT AT OPENINGS: There is reinforcing around all diaphragm	
		X		openings larger than 50% of the building width in either major plan dimension. (Commentary: Sec.	
				A.4.1.8. Tier 2: Sec. 5.6.1.5)	
C	NC	N/A	U	STRAIGHT SHEATHING: All straight sheathed diaphragms have aspect ratios less than 2-to-1 in	Drawings show 1/2" plywood diaphragm.
		X		the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2)	

C	NC	N/A	U	SPANS: All wood diaphragms with spans greater than 24 ft consist of wood structural panels or diagonal sheathing. Wood commercial and industrial buildings may have rod-braced systems. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2)	Drawings show 1/2" plywood diaphragm.
C		N/A	U	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)	The roof uses bridging but it is unclear if blocking between framing members. The spans are less than 40ft between shear walls and aspect ratio is less than 4-to-1.
C		N/A	U	OTHER DIAPHRAGMS: The diaphragm does not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)	Plans do show plywood at roof level.

Connections

••••	IECUO				
RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft or less, with proper edge and end distance provided	
X				for wood and concrete. (Commentary: A.5.3.7. Tier 2: Sec. 5.7.3.3)	

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Workshop
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	06/18/2021
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-38. Nonstructural Checklist

The Performance Level is designated LS for Life Safety or PR for Position Retention. The level of seismicity is designated as "not required" or by L, M, or H, for Low, Moderate, and High.

All Seismicity Levels

For BSE-1E Tier 1, use PR (Position Retention)

Life S	Life Safety Systems							
	TING	-		DESCRIPTION	COMMENTS			
с		N/A	U	LS-LMH; PR-LMH. FIRE SUPPRESSION PIPING: Fire suppression piping is anchored and braced in accordance with NFPA-13. (Commentary: Sec. A.7.13.1. Tier 2: Sec. 13.7.4)				
c		N/A	U	LS-LMH; PR-LMH. FLEXIBLE COUPLINGS: Fire suppression piping has flexible couplings in accordance with NFPA-13. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.4)				
c		N/A		LS-LMH; PR-LMH. EMERGENCY POWER: Equipment used to power or control life safety systems is anchored or braced. (Commentary: Sec. A.7.12.1. Tier 2: Sec. 13.7.7)				
c		N/A	U	LS-LMH; PR-LMH. STAIR AND SMOKE DUCTS: Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Commentary: Sec. A.7.14.1. Tier 2: Sec. 13.7.6)				

Project Name City of Wilsonville Project Number 11962A.00

C	NC	N/A	U	LS-MH; PR-MH. SPRINKLER CEILING CLEARANCE: Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.4)	
C	NC	N/A	U	LS-not required; PR-LMH. EMERGENCY LIGHTING: Emergency and egress lighting equipment is anchored or braced. (Commentary: Sec. A.7.3.1. Tier 2: Sec. 13.7.9)	

Hazardous Materials

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-LMH; PR-LMH.	
		\times		HAZARDOUS MATERIAL EQUIPMENT: Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Commentary: Sec. A.7.12.2. Tier 2: 13.7.1)	
С	NC	N/A	U	LS-LMH; PR-LMH.	
		$\left \times \right $		HAZARDOUS MATERIAL STORAGE: Breakable containers that hold hazardous material,	
]]		including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Commentary: Sec. A.7.15.1. Tier 2: Sec. 13.8.4)	

C	N/A ×		LS-MH; PR-MH. HAZARDOUS MATERIAL DISTRIBUTION: Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and 13.7.5)	
c	N/A ×		LS-MH; PR-MH. SHUT-OFF VALVES: Piping containing hazardous material, including natural gas, has shut-off valves or other devices to limit spills or leaks. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.3 and 13.7.5)	
c	N/A		LS-LMH; PR-LMH. FLEXIBLE COUPLINGS: Hazardous material ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec. A.7.15.4, Tier 2: Sec.13.7.3 and 13.7.5)	
c	N/A	U	LS-MH; PR-MH. PIPING OR DUCTS CROSSING SEISMIC JOINTS: Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A.7.13.6. Tier 2: Sec.13.7.3, 13.7.5, and 13.7.6)	

Project Name Project Number 11962A.00

Partitions

	RATING DESCRIPTION COMMENTS							
KA	IING				COMIMENTS			
C	NC	N/A	U	LS-LMH; PR-LMH.				
				UNREINFORCED MASONRY: Unreinforced				
		\times		masonry or hollow-clay tile partitions are braced				
				at a spacing of at most 10 ft in Low or Moderate				
				Seismicity, or at most 6 ft in High Seismicity.				
				(Commentary: Sec. A.7.1.1. Tier 2: Sec. 13.6.2)				
				LS-LMH; PR-LMH.				
C	NC	N/A	U	HEAVY PARTITIONS SUPPORTED BY CEILINGS: The				
		\times		tops of masonry or hollow-clay tile partitions are				
				not laterally supported by an integrated ceiling				
				system. (Commentary: Sec. A.7.2.1. Tier 2: Sec.				
				13.6.2)				
				····,				
С	NC	N/A	U	LS-MH; PR-MH.				
	ne	11/7	0	DRIFT: Rigid cementitious partitions are detailed				
		\times		to accommodate the following drift ratios: in steel				
				moment frame, concrete moment frame, and				
				wood frame buildings, 0.02; in other buildings,				
				0.005. (Commentary A.7.1.2 Tier 2: Sec. 13.6.2)				
C	NC	N/A	U	LS-not required; PR-MH.				
				LIGHT PARTITIONS SUPPORTED BY CEILINGS: The				
$ $ \times				tops of gypsum board partitions are not laterally				
				supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)				
				(Commentary, Sec. A.7.2.1, Her 2, Sec. 15.0.2)				

 $\label{eq:Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown$

Rev. 41-31.1

Project Name Project Number 11962A.00

C	NC	N/A	U	LS-not required; PR-MH. STRUCTURAL SEPARATIONS: Partitions that cross structural separations have seismic or control joints. (Commentary: Sec. A.7.1.3. Tier 2. Sec. 13.6.2)	
c	NC	N/A	U	LS-not required; PR-MH. TOPS: The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft. (Commentary: Sec. A.7.1.4. Tier 2. Sec. 13.6.2)	

Ceilings

001111	3				
RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-MH; PR-LMH. SUSPENDED LATH AND PLASTER: Suspended lath	
		\times		and plaster ceilings have attachments that resist	
				seismic forces for every 12 ft ² of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)	
				(Commentary, sec. A.7.2.3, Her 2, sec. 15.0.4)	
С	NC	N/A	U	LS-MH; PR-LMH.	Gypsum board is nailed to roof framing.
\mathbf{X}				SUSPENDED GYPSUM BOARD: Suspended gypsum board ceilings have attachments that	
				resist seismic forces for every 12 ft ² of area.	
				(Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)	

Project Name Project Number City of Wilsonville 11962A.00

C	NC	N/A × N/A ×	U 	LS-not required; PR-MH. INTEGRATED CEILINGS: Integrated suspended ceilings with continuous areas greater than 144 ft ² , and ceilings of smaller areas that are not surrounded by restraining partitions, are laterally restrained at a spacing no greater than 12 ft with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Commentary: Sec. A.7.2.2. Tier 2: Sec. 13.6.4) LS-not required; PR-MH. EDGE CLEARANCE: The free edges of integrated suspended ceilings with continuous areas greater than 144 ft ² have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in.; in High Seismicity, 3/4 in. (Commentary: Sec. A.7.2.4. Tier 2: Sec. 13.6.4)	
c		N/A	U	LS-not required; PR-MH. CONTINUITY ACROSS STRUCTURE JOINTS: The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Commentary: Sec. A.7.2.5. Tier 2: Sec. 13.6.4)	
c		N/A	U	LS-not required; PR-H. EDGE SUPPORT: The free edges of integrated suspended ceilings with continuous areas greater than 144 ft ² are supported by closure angles or channels not less than 2 in. wide. (Commentary: Sec. A.7.2.6. Tier 2: Sec. 13.6.4)	

Project Name Project Number 11962A.00

Light Fixtures

•	RATING DESCRIPTION COMMENTS							
KA	IING			DESCRIPTION	COMMENTS			
c		N/A		LS-MH; PR-MH. INDEPENDENT SUPPORT: Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Commentary: Sec. A.7.3.2. Tier 2: Sec. 13.6.4 and 13.7.9)				
C		N/A		LS-not required; PR-H PENDANT SUPPORTS: Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigid supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Commentary: Sec. A.7.3.3. Tier 2: Sec. 13.7.9)				
C		N/A X	U	LS-not required; PR-H. LENS COVERS: Lens covers on light fixtures are attached with safety devices. (Commentary: Sec. A.7.3.4. Tier 2: Sec. 13.7.9)	Lights do not have lens covers			

Project Name City of Wilsonville Project Number 11962A.00

Cladding and Glazing

	RATING DESCRIPTION COMMENTS						
RA	TING			DESCRIPTION	COMMENTS		
C	NC	N/A	U	LS-MH; PR-MH.			
				CLADDING ANCHORS: Cladding components			
		\times		weighing more than 10 lb/ft ² are mechanically			
				anchored to the structure at a spacing equal to or			
				less than the following: for Life Safety in Moderate			
				Seismicity, 6 ft; for Life Safety in High Seismicity			
				and for Position Retention in any seismicity, 4 ft.			
				(Commentary: Sec. A.7.4.1. Tier 2: Sec. 13.6.1)			
C	NC	N/A	U	LS-MH; PR-MH			
				CLADDING ISOLATION: For steel or concrete			
		\times		moment-frame buildings, panel connections are detailed to accommodate a story drift ratio			
				by the use of rods attached to framing with			
				oversize holes or slotted holes of at least the			
				following: for Life Safety in Moderate			
				Seismicity, 0.01; for Life Safety in High			
				Seismicity and for Position Retention in any			
				seismicity, 0.02, and the rods have a			
				length-to-diameter ratio of 4.0 or less.			
				(Commentary: Sec. A.7.4.3. Tier 2: Sec.			
				13.6.1)			
C	NC	N/A	U	LS-MH; PR-MH			
				MULTI-STORY PANELS: For multi-story			
		X		panels attahed at more than one floor level panel connections are detailed to			
				accommodate a story drift ratio by the use of			
				rods attached to framing with oversize holes			
				or slotted holes of at least the following: for			
				Life Safety in Moderate Seismicity, 0.01; for			
				Life Safety in High Seismicity and for Position			
				Retention in any seismicity, 0.02, and the			
				rods have a length-to-diameter ratio of 4.0 or			
				less. (Commentary: Sec. A.7.4.4. Tier 2: Sec.			
				13.6.1)			
C	NC	N/A	U	LS-MH; PR-MH			
				THREADED RODS: Threaded rods for panel			
$ \Box $		×		connections detailed to accommodate drift by			
				bending of the rod have a length-to-diameter			
				ratio greater than 0.06 times the story height in inches for Life Safety in Moderate			
				Seismicity and 0.12 times the story height in			
				inches for Life Safety in High Seismicity and			
				for Position Retention in any seismicity.			
				(Commentary: Sec. A.7.4.9. Tier 2: Sec.			
				13.6.1)			

Project Name Project Number 11962A.00

C	NC	N/A	U	LS-MH; PR-MH. PANEL CONNECTIONS: Cladding panels are anchored out-of-plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Commentary: Sec. A.7.4.5. Tier 2: Sec. 13.6.1.4)	

Project Name City of Wilsonville Project Number 11962A.00

C	NC	N/A	U	LS-MH; PR-MH. BEARING CONNECTIONS: Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Commentary: Sec. A.7.4.6. Tier 2: Sec. 13.6.1.4)	
c		N/A		LS-MH; PR-MH. INSERTS: Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Commentary: Sec. A.7.4.7. Tier 2: Sec. 13.6.1.4)	
c		N/A		LS-MH; PR-MH. OVERHEAD GLAZING: Glazing panes of any size in curtain walls and individual interior or exterior panes over 16 ft ² in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Commentary: Sec. A.7.4.8: Tier 2: Sec. 13.6.1.5)	Windows are less than 16 ft2 requirement.

Masonry Veneer

RA	TING			DESCRIPTION	COMMENTS
		N/A	U	LS-LMH; PR-LMH. TIES: Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft ² , and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in.; for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (Commentary: Sec. A.7.5.1. Tier 2: Sec. 13.6.1.2)	COMMENTS

Project Name City of Wilsonville Project Number 11962A.00

c		N/A		LS-LMH; PR-LMH. SHELF ANGLES: Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Commentary: Sec. A.7.5.2. Tier 2: Sec. 13.6.1.2)	
с	NC	N/A	U	LS-LMH; PR-LMH.	
		\times		WEAKENED PLANES: Masonry veneer is anchored to the backup adjacent to weakened planes, such	
				as at the locations of flashing. (Commentary: Sec.	
				A.7.5.3. Tier 2: Sec. 13.6.1.2)	
				LS-LMH; PR-LMH.	
C	NC	N/A	U		
C	NC	N/A	U	UNREINFORCED MASONRY BACKUP: There is no	
c		N/A	U		
с				UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec.	
c				UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec.	
C				UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec.	
c				UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec.	
c				UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec.	
c c c			U 	UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec. A.7.7.2. Tier 2: Section 13.6.1.1 and 13.6.1.2) LS-MH; PR-MH	
		× N/A		UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec. A.7.7.2. Tier 2: Section 13.6.1.1 and 13.6.1.2) LS-MH; PR-MH STUD TRACKS: For veneer with cold-formed	
		X		UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec. A.7.7.2. Tier 2: Section 13.6.1.1 and 13.6.1.2) LS-MH; PR-MH STUD TRACKS: For veneer with cold-formed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less	
		× N/A		UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec. A.7.7.2. Tier 2: Section 13.6.1.1 and 13.6.1.2) LS-MH; PR-MH STUD TRACKS: For veneer with cold-formed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. on center. (Commentary: Sec.	
		× N/A		UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec. A.7.7.2. Tier 2: Section 13.6.1.1 and 13.6.1.2) LS-MH; PR-MH STUD TRACKS: For veneer with cold-formed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less	
		× N/A		UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec. A.7.7.2. Tier 2: Section 13.6.1.1 and 13.6.1.2) LS-MH; PR-MH STUD TRACKS: For veneer with cold-formed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. on center. (Commentary: Sec.	
		× N/A		UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec. A.7.7.2. Tier 2: Section 13.6.1.1 and 13.6.1.2) LS-MH; PR-MH STUD TRACKS: For veneer with cold-formed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. on center. (Commentary: Sec.	

Project Name Project Number 11962A.00

C	NC	N/A	U	LS-MH; PR-MH. ANCHORAGE: For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Commentary: Sec. A.7.7.1. Tier 2: Section 13.6.1.1 and 13.6.1.2)	
С	NC	N/A	U	LS-not required; PR-MH. WEEP HOLES: In veneer anchored to stud walls,	
		X		the veneer has functioning weep holes and base flashing. (Commentary: Sec. A.7.5.6. Tier 2: Section 13.6.1.2)	
C	NC	N/A	U	LS-not required; PR-MH OPENINGS: For veneer with cold-formed	
		\boxtimes		-steel stud backup, steel studs frame window and door openings. (Commentary: Sec. A.7.6.2. Tier 2: Sec. 13.6.1.1 and 13.6.1.2)	

Parapets, Cornices, Ornamentation, and Appendages

RA	TING			DESCRIPTION	COMMENTS
С		N/A	U	LS-LMH; PR-LMH. URM PARAPETS OR CORNICES: Laterally unsupported unreinforced masonry parapets or cornices have height-to-thickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Commentary: Sec. A.7.8.1. Tier 2:	
				Sec. 13.6.5)	

Project Name City of Wilsonville Project Number 11962A.00

C	NC	N/A	U	LS-LMH; PR-LMH. CANOPIES: Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft; for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft. (Commentary: Sec. A.7.8.2. Tier 2: Sec. 13.6.6)	
c		N/A	U	LS-MH; PR-LMH. CONCRETE PARAPETS: Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Commentary: Sec. A.7.8.3. Tier 2: Sec. 13.6.5)	
C	NC	N/A	U	LS-MH; PR-LMH. APPENDAGES: Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft. This checklist item does not apply to parapets or cornices covered by other checklist items. (Commentary: Sec. A.7.8.4. Tier 2: Sec. 13.6.6)	

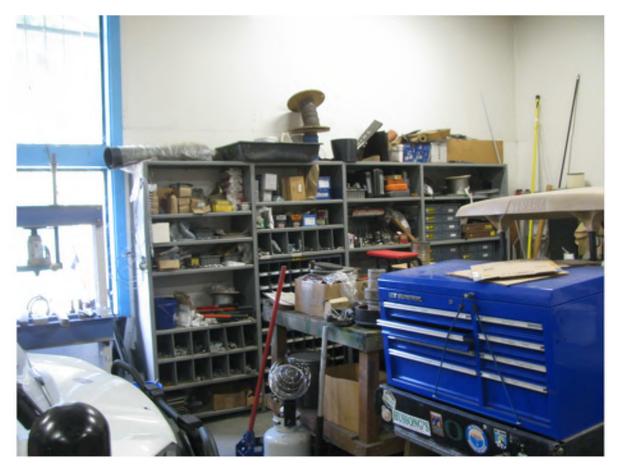
Masonry Chimneys

RA	TING		,	DESCRIPTION	COMMENTS
		N/A	U	LS-LMH; PR-LMH. URM CHIMNEYS: Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the	
				least dimension of the chimney. (Commentary: Sec. A.7.9.1. Tier 2: 13.6.7)	

С	NC	N/A	U	LS-LMH; PR-LMH. ANCHORAGE: Masonry chimneys are anchored at	
		\times		each floor level, at the topmost ceiling level, and at the roof. (Commentary: Sec. A.7.9.2. Tier 2:	
				13.6.7)	

Stairs

•				
TING			DESCRIPTION	COMMENTS
NC	N/A	U	LS-LMH; PR-LMH.	
\Box	\mathbf{X}		-	
			enclosures are restrained out-of-plane and have	
			u	
			Seismicity and for Position Retention in any	
			seismicity, 12-to-1. (Commentary: Sec. A.7.10.1.	
			Tier 2: Sec. 13.6.2 and 13.6.8)	
NC	NI/A		LS-LMH: PR-LMH	
		_	STAIR DETAILS: The connection between	
	\times			
			masonry, and the stair details are capable of	
			accommodating the drift calculated using the	
			other structures without including any lateral	
			13.6.8)	
	TING	NC N/A	NC N/A U 	DESCRIPTION NC N/A U LS-LMH; PR-LMH. STAIR ENCLOSURES: Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out-of-plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Commentary: Sec. A.7.10.1. Tier 2: Sec. 13.6.2 and 13.6.8) NC N/A U LS-LMH; PR-LMH STAIR DETAILS: The connection between the stairs and the structure does not rely on post-installed anchors in concrete or masonry, and the stair details are capable of accommodating the drift calculated using the Quick Check procedure of Section 4.4.3.1 for moment-frame structures or 0.5 in. for all other structures without including any lateral stiffness contribution from the stairs. (Commentary: Sec. A.7.10.2. Tier 2: Sec.


Contents and Furnishings

R	ATIN	G			DESCRIPTION	COMMENTS
С	N	: N	I/A	U	LS-MH; PR-MH.	
			\times		INDUSTRIAL STORAGE RACKS: Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/MH 16.1 as modified by ASCE 7 Chapter 15. (Commentary: Sec. A.7.11.1. Tier 2: Sec. 13.8.1)	

	c	NC	N/A	U	LS-H; PR-MH. TALL NARROW CONTENTS: Contents more than 6 ft high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Commentary: Sec. A.7.11.2. Tier 2: Sec. 13.8.2)	Storage racks within building are on wheels and lack anchorage to structure. In addition, along the south elevation wall, not all shelving units are secured to structure.
İ	С	NC	N/A	U	LS-H; PR-H.	
	\mathbf{X}				FALL-PRONE CONTENTS: Equipment, stored items, or other contents weighing more than 20	
					Ib whose center of mass is more than 4 ft above	
					the adjacent floor level are braced or otherwise restrained. (Commentary: Sec. A.7.11.3. Tier 2: Sec.	
					13.8.2)	
	С	NC	N/A	U	LS-not required; PR-MH.	
					ACCESS FLOORS: Access floors more than 9 in.	
			\times		high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.8.3)	
	с	NC	N/A	U	LS-not required; PR-MH.	
			\mathbf{X}		EQUIPMENT ON ACCESS FLOORS: Equipment and other contents supported by access floor systems	
					are anchored or braced to the structure	
					independent of the access floor. (Commentary: Sec. A.7.11.5. Tier 2: Sec. 13.7.7 and 13.8.3)	
					ן אריין א אריין אריין אריי	
I						
				1	1	

Storage rack shelves have wheels and free to move without restraint back to structure.

Not all storage rack shelves are anchored back to structure.

C ×	NC	N/A	U	LS-not required; PR-H. SUSPENDED CONTENTS: Items suspended without lateral bracing are free to swing from or move with the structure from which they are	
				suspended without damaging themselves or adjoining components. (Commentary. A.7.11.6. Tier 2: Sec. 13.8.2)	

Mechanical and Electrical Equipment

RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LS-H; PR-H. FALL-PRONE EQUIPMENT: Equipment weighing more than 20 lb whose center of mass is more than 4 ft above the adjacent floor level, and which is not in-line equipment, is braced. (Commentary: A.7.12.4. Tier 2: 13.7.1 and 13.7.7)	
c		N/A	U	LS-H; PR-H. IN-LINE EQUIPMENT: Equipment installed in-line with a duct or piping system, with an operating weight more than 75 lb, is supported and laterally braced independent of the duct or piping system. (Commentary: Sec. A.7.12.5. Tier 2: Sec. 13.7.1)	
C		N/A	U	LS-H; PR-MH. TALL NARROW EQUIPMENT: Equipment more than 6 ft high with a height-to-depth or height-to- width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Commentary: Sec. A.7.12.6. Tier 2: Sec. 13.7.1 and 13.7.7)	

c	NC	N/A	U	LS-not required; PR-MH. MECHANICAL DOORS: Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Commentary: Sec. A.7.12.7. Tier 2: Sec. 13.6.9)	
C	NC	N/A	U	LS-not required; PR-H. SUSPENDED EQUIPMENT: Equipment suspended	
\times				without lateral bracing is free to swing from or move with the structure from which it is	
				suspended without damaging itself or adjoining components. (Commentary: Sec. A.7.12.8. Tier 2:	
				Sec. 13.7.1 and 13.7.7)	
с	NC	N/A	υ	LS-not required; PR-H.	
	c			VIBRATION ISOLATORS: Equipment mounted on	
		\mathbf{X}		VIBRATION ISOLATORS: Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints	
				vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9.	
				vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9.	
		X		vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9.	
C			U	vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1) LS-not required; PR-H. HEAVY EQUIPMENT: Floor-supported or platform- supported equipment weighing more than 400 lb	
		N/A		vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1) LS-not required; PR-H. HEAVY EQUIPMENT: Floor-supported or platform-	
		N/A		vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1) LS-not required; PR-H. HEAVY EQUIPMENT: Floor-supported or platform- supported equipment weighing more than 400 lb is anchored to the structure. (Commentary: Sec.	
		N/A		vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1) LS-not required; PR-H. HEAVY EQUIPMENT: Floor-supported or platform- supported equipment weighing more than 400 lb is anchored to the structure. (Commentary: Sec.	

C	N/A	U	LS-not required; PR-H. ELECTRICAL EQUIPMENT: Electrical equipment is laterally braced to the structure. (Commentary: Sec. A.7.12.11. Tier 2: 13.7.7)	
c	N/A	U	LS-not required; PR-H. CONDUIT COUPLINGS: Conduit greater than 2.5 in. trade size that is attached to panels, cabinets, or other equipment and is subject to relative seismic displacement has flexible couplings or connections. (Commentary: Sec. A.7.12.12. Tier 2: 13.7.8)	

Piping

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-not required; PR-H.	
		X		FLEXIBLE COUPLINGS: Fluid and gas piping has flexible couplings. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.3 and 13.7.5)	
C	NC	N/A	U	LS-not required; PR-H. FLUID AND GAS PIPING: Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and 13.7.5)	

Project Name Project Number 11962A.00

С	NC	N/A	U	LS-not required; PR-H.	
				C-CLAMPS: One-sided C-clamps that support	
		\times		piping larger than 2.5 in. in diameter are	
				restrained. (Commentary: Sec. A.7.13.5. Tier 2: Sec. 13.7.3 and 13.7.5)	
				15.7.5 and 15.7.5)	
C	NC	N/A	U	LS-not required; PR-H.	
		$\left \times \right $		PIPING CROSSING SEISMIC JOINTS: Piping that	
				crosses seismic joints or isolation planes or is connected to independent structures has	
				couplings or other details to accommodate the	
				relative seismic displacements. (Commentary: Sec.	
				A7.13.6. Tier 2: Sec.13.7.3 and Sec. 13.7.5)	

Ducts

Duci					
RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-not required; PR-H. DUCT BRACING: Rectangular ductwork larger than	
		\times		6 ft ² in cross-sectional area and round ducts larger than 28 in. in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft. The maximum spacing of longitudinal bracing does not exceed 60 ft. (Commentary: Sec. A.7.14.2. Tier 2: Sec. 13.7.6)	
C	NC	N/A	U	LS-not required; PR-H. DUCT SUPPORT: Ducts are not supported by piping or electrical conduit. (Commentary: Sec. A.7.14.3. Tier 2: Sec. 13.7.6)	

Elevators

RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LS-H; PR-H. RETAINER GUARDS: Sheaves and drums have cable retainer guards. (Commentary: Sec. A.7.16.1. Tier 2: 13.8.6)	
с	NC	N/A	U	LS-H; PR-H. RETAINER PLATE: A retainer plate is present at the	
		X		top and bottom of both car and counterweight. (Commentary: Sec. A.7.16.2. Tier 2: 13.8.6)	
C	NC	N/A	U	LS-not required; PR-H. ELEVATOR EQUIPMENT: Equipment, piping, and other components that are part of the elevator system are anchored. (Commentary: Sec. A.7.16.3. Tier 2: 13.8.6)	

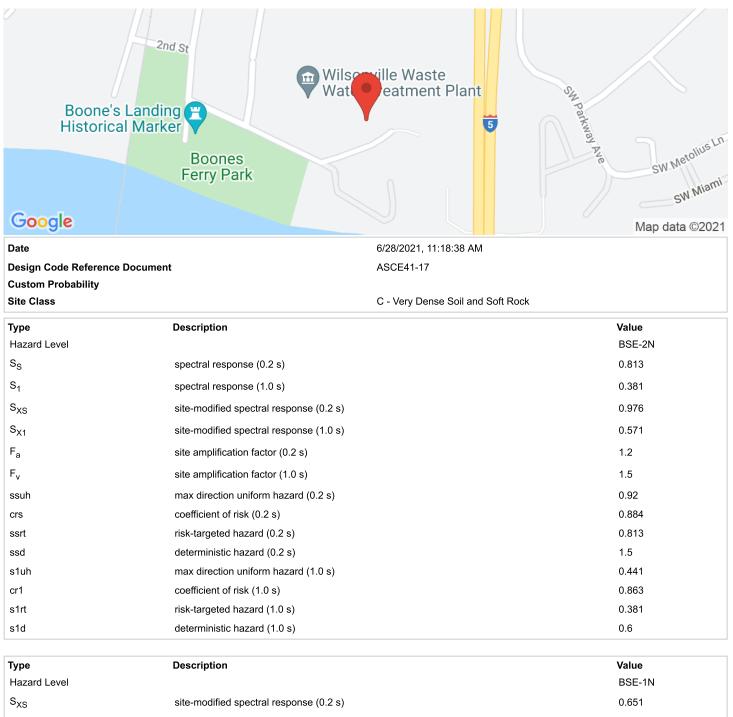
Project Name

C		N/A	U	LS-not required; PR-H. SEISMIC SWITCH: Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Commentary: Sec. A.7.16.4. Tier 2: 13.8.6)	
c		N/A		LS-not required; PR-H. SHAFT WALLS: Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Commentary: Sec. A.7.16.5. Tier 2: 13.8.6)	
C	NC	N/A	U	LS-not required; PR-H. COUNTERWEIGHT RAILS: All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Commentary: Sec. A.7.16.6. Tier 2: 13.8.6)	
C	NC	N/A	U	LS-not required; PR-H. BRACKETS: The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Commentary: Sec. A.7.16.7. Tier 2: 13.8.6)	

Project Name City of Wilsonville Project Number 11962A.00

c	N/A	LS-not required; PR-H. SPREADER BRACKET: Spreader brackets are not used to resist seismic forces. (Commentary: Sec. A.7.16.8. Tier 2: 13.8.6)	
c	N/A	LS-not required; PR-H. GO-SLOW ELEVATORS: The building has a go-slow elevator system. (Commentary: Sec. A.7.16.9. Tier 2: 13.8.6)	

City of Wilsonville


Workshop Tier 1 Structural Calculations

ASCE 41-17 Seismic Parameters	pg. 1
Building Weight	pg. 3
Seismic Base Shear	pg. 5
Wall Shear Stress Check	pg. 6

OSHPD

Latitude, Longitude: 45.294444, -122.77167

site-modified spectral response (1.0 s)

 S_{X1}

0.381

T-Sub-L

16

		210
Туре	Description	Value
Hazard Level		BSE-2E
S _S	spectral response (0.2 s)	0.589
S ₁	spectral response (1.0 s)	0.27
S _{XS}	site-modified spectral response (0.2 s)	0.744
S _{X1}	site-modified spectral response (1.0 s)	0.405
f _a	site amplification factor (0.2 s)	1.265
f _v	site amplification factor (1.0 s)	1.5
Туре	Description	Value
Hazard Level		BSE-1E

Hazard Level		TL Data
Туре	Description	Value
F _v	site amplification factor (1.0 s)	1.5
Fa	site amplification factor (0.2 s)	1.3
S _{X1}	site-modified spectral response (1.0 s)	0.123
S _{XS}	site-modified spectral response (0.2 s)	0.291
S ₁	spectral response (1.0 s)	0.082
SS	spectral response (0.2 s)	0.223
Hazard Level		BSE-1E

DISCLAIMER

Long-period transition period in seconds

While the information presented on this website is believed to be correct, <u>SEAOC</u> /<u>OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

Engineers V	Vorking	Wonders	With	Water **	
-------------	---------	---------	------	----------	--

BY:	BS	DATE Jul-2	CLIENT City of Wilsonville	SHEET
CHKD BY		DESCRIPTIO	Workshop Building	JOB NO. 11962A.00
DESIGN TA	SK	Workshop Buil	ng Seismic Weight	

Roof Loads

Roof EL 125.63

Description	Load	
1/2" plywood Rigid insulation w/ built-up roofing	1.5 psf 6.0	(See note 2)
2x12 wood joists @ 24" 3 1/8"x15" glulam beam 5/8" gypsum wall board interior finish	2.0 1.0 3.2	(See note 1)
Miscellaneous	3.0	
Dead Load for Gravity Design Roof Live Load	16.7 psf 20.0 psf	(Assumed)

Notes

1. Roof glulam beam self weight assumed unit beam weight, 13.2 lb/ft, divided by beam tributary width, 17.0 ft which is 13.2lb/ft/17.0ft = 0.78 lb/ft². Assume 1.0 psf.

2. Rigid insulation slopes from 1.5" to 6". The average insulation thickness is assumed to be 3".

Wall Loads

Wall Loads Description Load 2x6 @ 16" stud wall w/ 5/8" GWB int and 1/2" 11.5 psf gypsum sheathing ext 1.5 1/2" plywood siding 1.5 2x6 Stud Wall Load for Seismic 13.0 psf Seismic Weight

Roof Weight

Roof Seismic Weight	41.1 kip	
Wall Weight		
Wall Height to Roof	15.50 ft	
Stud Wall Length	212.00 ft	
Opening Length in Stud Wall	35.00 ft	
Roof Wall Seismic Weight	17.8 kip	
Total Seismic Weight	59.0 kip	

Notes

1. Wall seismic weight assumes half of the wall height associated with each level.

2. Per Section 4.5.2.1, the effective seismic weight includes the total dead load, 25% of the live load when area is used as storage, and 20% of the roof snow live load if greater than 30 psf (otherwise assume zero).

Ca	rollo
	an any star and the starters

Engineers, Working Wondors With Water *

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIPTION			Workshop	JOB NO.	11962A.00
DESIGN TA	SK			ASCE	E 41-17 - Tier 1 Screening (BSE-2	E Level)	

Table 4-7. Modification Factor, C

Wood and cold-formed stent

Shear wall (S4, S5, C2, C3,

Braced frame (S2)

wall (CP\$2)

RM1)

PC1a, PC2, RM2, URMa}

Cold-formed steel strap-brace

Flexible diaphragms (\$1a, \$2a, \$5a, \$2a, \$3a, \$21,

* Defined in Table 3-1.

Unreinforced masonry (URM) 1.0 1.0

shear wall (W1, W1a, W2, CFS1) Moment frame (S1, S3, C1,

Building Type⁴

PC2a)

Number of Stories

3

1.0

1.1

1.0

<u>></u>4

1.0

1.0

1.0

1 2

1.3 1,1

1.4 1.2

SEISMIC BASE SHEAR

4.4.2.1 Pseudo Seismic Force. The pseudo seismic force, in a given horizontal direction of a building, shall be calculated in accordance with Eq. (4-1).

V

$$= CS_a W$$
 (4-1)

where

V = Pseudo seismic force;

- C = Modification factor to relate expected maximum inelastic displacements to displacements calculated for linear elastic response; C shall be taken from Table 4-7;
- S_a = Response spectral acceleration at the fundamental period of the building in the direction under consideration. The value of S_a shall be calculated in accordance with the procedures in Section 4.4.2.3; and
- W = Effective seismic weight of the building, including the total dead load and applicable portions of other gravity loads listed below:

Process Gallery

Modification Factor, C =	1.3	
S _{X1} =	0.405	(BSE-2E seismic parameter)
T =	0.149	S
S _{XS} =	0.744	(BSE-2E seismic parameter)
Spectral Acceleration, $S_a =$	0.744	
Seismic Weight, W =	59.0	kip
Seismic Force, V =	57.1	kip

Engineers. Working Wondors With Water *

BY: BS DATE Aug-21 CLIENT CHKD BY DESCRIPTION **DESIGN TASK**

City of Wilsonville Workshop

ASCE 41-17 - Tier 1 Screening (BSE-2E Level)

11962A.00

WALL SHEAR STRESS CHECK

4.4.3.3 Shear Stress in Shear Walls. The average shear stress in shear walls, ving, shall be calculated in accordance with Eq. (4-8).

$$v_j^{srg} = \frac{1}{M_s} \left(\frac{V_j}{A_w} \right) \qquad (4-8)$$

- $V_j = \text{Story shear at level } j \text{ con}$ 4.4.2.2;
- $A_w =$ Summation of the hori shear walls in the direct taken into consideration ry walls, the net area walls, the length shall I
- $M_s =$ System modification 1 Table 4-8.

Table 4-8. M_s Factors for Shear Walls

$v_j^{avg} = \frac{1}{M_e} \left(\frac{V_j}{A_w} \right) \qquad (4-8)$		L	evel of Pe	erformance
where	Wall Type	CP	" LS"	10 ^a
 V_j = Story shear at level j computed in accordance with Section 4.4.2.2; A_w = Summation of the horizontal cross-sectional area of all shear walls in the direction of loading. Openings shall be 	Reinforced concrete, precasi concrete, wood, reinforced masonry, and cold-formed	i	3.0	1.5
taken into consideration where computing A_w . For mason- ry walls, the net area shall be used. For wood-framed	steel Unreinforced masonry	1.75	5 1.25	1.0
walls, the length shall be used rather than the area; and $M_s =$ System modification factor; M_s shall be taken from Table 4-8.	^a CP = Collapse Prevention, Occupancy.	LS == Li	ie Safety, I	0 = Immediate
Roof Story Base Shear, V _{roof} =	57.1 kips			
System Modification Factor, M_s =	3.75 (Interp	polated	between	LS & CP)
Roof Level <u>Shear Wall in N-S Direction</u> West Elevation Wall Line				
Total length of stud walls =	44.67 ft			
average shear stress, v _{avg,NS} =	340.9 lb/ft		1000.0	<u>Shear Stress</u>
East Elevation Wall Line	D	CR =	0.34	
Total length of stud walls =	15.00 ft			
average shear stress, v _{avg,NS} =	1015.1 lb/ft >	CR =	1000.0 1.02	<u>NG</u>
Shear Wall in E-W Direction				
North Elevation Wall Line Total length of stud walls =	29.33 ft			
average shear stress, v _{ava.EW} =		<	1000.0	Shear Stress
		CR =	0.52	
South Elevation Wall Line				
Total length of stud walls =	32.67 ft			
average shear stress, v _{avg,EW} =	466.1 lb/ft		1000.0	<u>Shear Stress</u>
Interior Wall Line	D	CR =	0.47	
Total length of stud walls =	36.00 ft			
average shear stress, v _{avg,EW} =	423.0 lb/ft	CR = 0	1000.0 0.42	<u>Shear Stress</u>

SHEET

JOB NO.

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Workshop
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	07/07/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-3. Immediate Occupancy Basic Configuration Checklist

Very Low Seismicity Structural Components

CSZ Seismic Level at Damage Control

<i>รแน</i> ต	Structural Components							
RA	TING			DESCRIPTION	COMMENTS			
C		N/A	U	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)				
C	NC	N/A X	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections shall have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.5.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	Workshop exterior walls are wood stud with plywood sheathing.			

Very Low Seismicity

Building System

General

RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	
C		N/A X	U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement need not apply for the following building types: W1, W1A, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)	
C	NC	N/A	U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)	

Building Configuration

RA	TING	-		DESCRIPTION	COMMENTS
c		N/A X	U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction shall not be less than 80% of the strength in the adjacent story above. (Commentary: Sec. A.2.2.2. Tier 2: Sec. 5.4.2.1)	Building is a one-story structure.
c	NC	N/A	U	SOFT STORY: The stiffness of the seismic-force- resisting system in any story shall not be less than 70% of the seismic-force-resisting system stiffness	Building is a one-story structure.
				in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)	
С	NC	N/A	U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous	
X				to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)	
С	NC		U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-	Building is a one-story structure.
		X		resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)	

Project Name Project Number City of Wilsonville - W

C	NC	N/A x	U	MASS: There is no change in effective mass more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	Building is a one-story structure.
C	NC	N/A X	U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	Torsion check applies to rigid diaphragms. Structure has a flexible diaphragm.

Low Seismicity

Geologic Site Hazards

	Seologic Site Hazarus						
RA	TING			DESCRIPTION	COMMENTS		
C		N/A	U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.		
C		N/A	U	SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)	Slope failure has been determined to not be an issue per NGI technical memorandum.		
C	NC	N/A		SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)	Surface fault rupture has been determined to not be an issue per NGI technical memorandum.		

Moderate and High Seismicity

Foundation Configuration

RA	TING		-	DESCRIPTION	COMMENTS
C X	NC	N/A	U	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/ height) is greater than 0.6S _a . (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	Height = 15.50 ft Base = 36.00 ft Sa = 0.446 B/H = 36 / 15.5 = 2.32 0.6*Sa = 0.6 * 0.446 = 0.27 2.32 > 0.27 (OK)

Project Name Project Number

C	NC	N/A	U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Workshop
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	07/07/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/03/21

Table 17-7. Immediate Occupancy Structural Checklist for Building Type W2

Very Low Seismicity

Seisn	Seismic-Force-Resisting System								
RA	TING			DESCRIPTION	COMMENTS				
C X	NC	N/A	U	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1)					
C	NC	N/A	U	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1):Structural panel sheathing1,000 lb/ftDiagonal sheathing700 lb/ftStraight sheathing100 lb/ftAll other conditions100 lb/ft	West Wall Line DCR = 0.34 (OK) East Wall Line DCR = 1.01 (Slightly overstressed but considered OK) North Wall Line DCR = 0.52 (OK) South Wall Line DCR = 0.47 (OK) Interior Wall Line DCR = 0.42 (OK)				
c		N/A	U	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. 5.5.3.6.1)					
C		N/A X	U	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or gypsum wallboard is not used as shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building. (Commentary: Sec. A.3.2.7.3. Tier 2: Sec. 5.5.3.6.1)	Structure is one story.				

Project Name Project Number 11962A.00

C	NC	N/A	U	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2- to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1)	East elevation wall segments all exceed the 2:1 requirement. E1 = 14.5ft/2.5ft = 5.8 : 1 (NG) E2 = 14.5ft/4.5ft = 3.2 : 1 (NG) E3 = 14.5ft/6ft = 2.4 : 1 (NG) E4 = 14.5ft/2ft = 7.3 : 1 (NG)
С	NC	N/A	U	WALLS CONNECTED THROUGH FLOORS: Shear	
				walls have an interconnection between stories to	
		X		transfer overturning and shear forces through the	
				floor. (Commentary: Sec. A.3.2.7.5. Tier 2: Sec. 5.5.3.6.2)	
С	NC	N/A	U	HILLSIDE SITE: For structures that are taller on at	
		x		least one side by more than one-half story because of a sloping site, all shear walls on the	
				downhill slope have an aspect ratio less than 1-	
				to-2. (Commentary: Sec. A.3.2.7.6. Tier 2: Sec.	
				5.5.3.6.3)	
С	NC	N/A	U	CRIPPLE WALLS: Cripple walls below first-floor-	
				level shear walls are braced to the foundation	
		X		with wood structural panels. (Commentary: Sec. A.3.2.7.7. Tier 2: Sec. 5.5.3.6.4)	
				ה.ש.ב.י.י. ווכו ב. שכנ. ש.ש.ש.ש.לי	

233 Project Name Project Number 11962A.00

C	NC	N/A x	U	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Commentary: Sec. A.3.2.7.8. Tier 2: Sec. 5.5.3.6.5)	extending 70% of the length.
С Х	NC	N/A	U	HOLD-DOWN ANCHORS: All shear walls have hold-down anchors, constructed per acceptable construction practices, attached to the end studs. (Commentary: Sec. A.3.2.7.9. Tier 2: Sec. 5.5.3.6.6)	

Connections

Project Name Project Number 11962A.00

1 c		N/A	U	GIRDER-COLUMN CONNECTION: There is a
	NC	IN/A	0	
				positive connection using plates, connection
X				hardware, or straps between the girder and the
				column support. (Commentary: Sec. A.5.4.1. Tier 2:
				Sec. 5.7.4.1)

Foundation System

RA	TING	-		DESCRIPTION	COMMENTS
С	NC	N/A	U	DEEP FOUNDATIONS: Piles and piers are capable of transferring the lateral forces between the	There are no deep foundation systems
		×		structure and the soil. (Commentary: Sec.A.6.2.3.)	supporting structure.
				SLOPING SITES: The difference in foundation	
C	NC	N/A	U	embedment depth from one side of the building	
		X		to another shall not exceed one story high.	
				(Commentary: Sec. A.6.2.4)	

Low, Moderate, and High Seismicity

Seismic-Force-Resisting System

RA	RATING		DESCRIPTION	COMMENTS	
C	NC	N/A	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 1.5- to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1)	East elevation wall segments all exceed the 1.5:1 requirement. E1 = 14.5ft/2.5ft = 5.8 : 1 (NG) E2 = 14.5ft/4.5ft = 3.2 : 1 (NG) E3 = 14.5ft/6ft = 2.4 : 1 (NG) E4 = 14.5ft/2ft = 7.3 : 1 (NG)	

235 Project Name Project Number 11962A.00

Diaphragms

RA	TING			DESCRIPTION	COMMENTS
C X		N/A	U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1)	
с	NC	N/A	U	ROOF CHORD CONTINUITY: All chord elements	
x				are continuous, regardless of changes in roof elevation. (Commentary: Sec. A.4.1.3. Tier 2: Sec.	
				5.6.1.1)	
С	NC	N/A	U	PLAN IRREGULARITIES: There is tensile capacity to develop the strength of the diaphragm at	No plan irregularities.
		X		reentrant corners or other locations of plan irregularities. (Commentary: Sec. A.4.1.7. Tier 2: Sec. 5.6.1.4)	
C	NC	N/A	U	DIAPHRAGM REINFORCEMENT AT OPENINGS: There is reinforcing around all diaphragm	
		X		openings larger than 50% of the building width in either major plan dimension. (Commentary: Sec. A.4.1.8. Tier 2: Sec. 5.6.1.5)	

_						
	с П		N/A	U	STRAIGHT SHEATHING: All straight sheathed diaphragms have aspect ratios less than 1-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2)	Drawings show 1/2" plywood diaphragm.
	С	NC	N/A	υ	SPANS: All wood diaphragms with spans greater	Drawings show 1/2" plywood diaphragm.
	×				than 12 ft consist of wood structural panels or diagonal sheathing. Wood commercial and industrial buildings may have rod-braced systems. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2)	
	С	NC	N/A	υ	DIAGONALLY SHEATHED AND UNBLOCKED	The roof uses bridging but it is unclear if
				X	DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 30 ft and aspect ratios less than or equal to 3-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)	blocking is used between members. The southern roof span over the shop does exceed the 30ft horizontal span requirement, but it meets aspect ratio of 3-to-1.
	С	NC	N/A	U	OTHER DIAPHRAGMS: The diaphragm does not consist of a system other than wood, metal deck,	
	X				concrete, or horizontal bracing. (Commentary:	
					Sec. A.4.7.1. Tier 2: Sec. 5.6.5)	

Project Name Project Number 237 City of Wilsonville - Wct

Connections

RATING				DESCRIPTION	COMMENTS
С	NC	N/A	U	WOOD SILL BOLTS: Sill bolts are spaced at 4 ft or	
×				less, with proper edge and end distance provided for wood and concrete. (Commentary: Sec. A.5.3.7. Tier 2: Sec. 5.7.3.3)	
				A.J.J. Hel Z. Jec. J.(.J.J)	

City of Wilsonville

Workshop Tier 1 Structural Calculations

CSZ Seismic Parameters	pg. 1
Building Weight	pg. 3
Seismic Base Shear	pg. 5
Wall Shear Stress Check	pg. 6

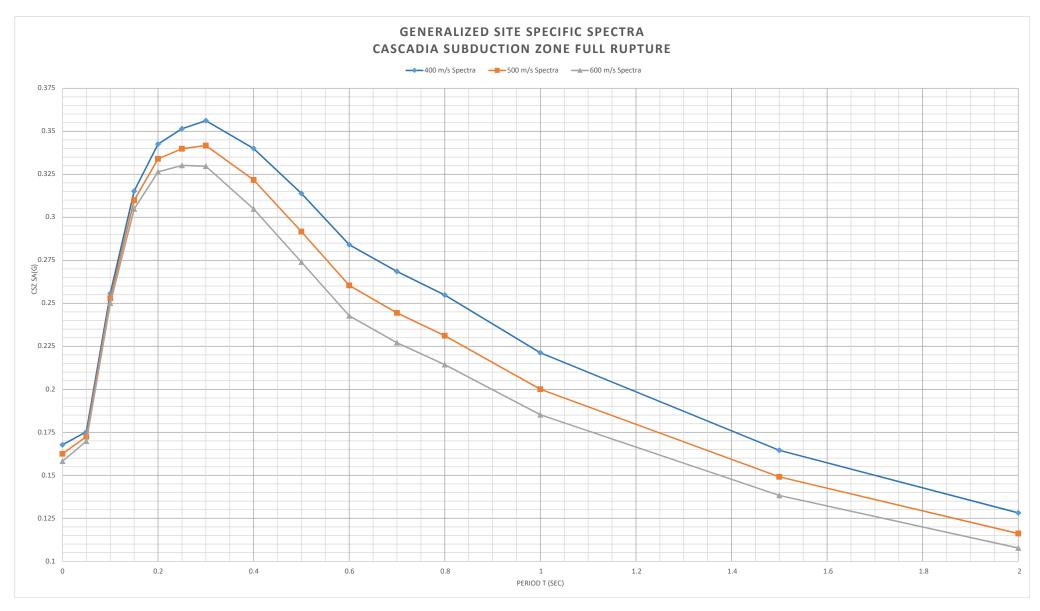


Figure No. 3

239

Table 2: CSZ Generalized Response Spectra Ordinates							
	Latitude 45.2	95155 degrees	5155 degrees Longitude -122.771810 degrees				
Vs30 =	400 m/s	Vs30 =	500 m/s	Vs30 = 600 m/s			
Period T(sec)	CSZ Sa(g)	Period T (sec)	CSZ Sa (g)	Period T (sec)	CSZ Sa (g)		
0	0.168	0	0.163	0	0.158		
0.05	0.175	0.05	0.172	0.05	0.170		
0.1	0.256	0.1	0.253	0.1	0.250		
0.15	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.15	0.310	0.15	0.305		
0.2	0.343	0.2	0.334	0.2	0.326		
0.25	0.352	0.25	0.340	0.25	0.330		
0.3	0.356	0.3	0.342	0.3	0.330		
0.4	0.340	0.4	0.322	0.4	0.305		
0.5	0.314	0.5	0.292	0.5	0.274		
0.6	0.284	0.6	0.260	0.6	0.243		
0.7	0.269	0.7	0.244	0.7	0.227		
0.8	0.255	0.8	0.231	0.8	0.214		
1	0.221	1	0.200	1	0.185		
1.5	0.165	1.5	0.149	1.5	0.138		
2	0.128	2	0.116	2	0.108		
2.5	0.104	2.5	0.094	2.5	0.087		
3	0.085	3	0.077	3	0.071		

Ss @ T=0.20 sec

Engineers V	Vorking	Wonders	With	Water **	
-------------	---------	---------	------	----------	--

BY:	BS	DATE	Jul-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRI	PTION	Workshop	Building	JOB NO.	11962A.00
DESIGN TA	SK	Worksho	p Building	Seismic W	/eight		

Roof Loads

Roof EL 125.63

Description	Load	
1/2" plywood Rigid insulation w/ built-up roofing	1.5 psf 6.0	(See note 2)
2x12 wood joists @ 24" 3 1/8"x15" glulam beam 5/8" gypsum wall board interior finish	2.0 1.0 3.2	(See note 1)
Miscellaneous	3.0	
Dead Load for Gravity Design Roof Live Load	16.7 psf 20.0 psf	(Assumed)

Notes

1. Roof glulam beam self weight assumed unit beam weight, 13.2 lb/ft, divided by beam tributary width, 17.0 ft which is 13.2lb/ft/17.0ft = 0.78 lb/ft². Assume 1.0 psf.

2. Rigid insulation slopes from 1.5" to 6". The average insulation thickness is assumed to be 3".

Wall Loads

Wall Loads Description Load 2x6 @ 16" stud wall w/ 5/8" GWB int and 1/2" 11.5 psf gypsum sheathing ext 1.5 1/2" plywood siding 1.5 2x6 Stud Wall Load for Seismic 13.0 psf Seismic Weight

_ _ _

Roof Weight

Roof Seismic Weight	41.1 kip	
Wall Weight		
Wall Height to Roof	15.50 ft	
Stud Wall Length	212.00 ft	
Opening Length in Stud Wall	35.00 ft	
Roof Wall Seismic Weight	17.8 kip	
Total Seismic Weight	59.0 kip	

Notes

1. Wall seismic weight assumes half of the wall height associated with each level.

2. Per Section 4.5.2.1, the effective seismic weight includes the total dead load, 25% of the live load when area is used as storage, and 20% of the roof snow live load if greater than 30 psf (otherwise assume zero).

Ca	rollo
	an ang panang

Engineers. Working Wondors Wish Water **

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIPTION			Workshop	JOB NO.	11962A.00
DESIGN TA	SK			ASCE	E 41-17 - Tier 1 Screening (BSE-2	E Level)	

Table 4-7. Modification Factor, C

Wood and cold-formed stent

Shear wall (S4, S5, C2, C3,

Braced frame (S2)

wall (CP\$2)

RM1)

PC1a, PC2, RM2, URMa}

Cold-formed steel strap-brace

Flexible diaphragms (\$1a, \$2a, \$5a, \$2a, \$3a, \$21,

* Defined in Table 3-1.

Unreinforced masonry (URM) 1.0 1.0

shear wall (W1, W1a, W2, CFS1) Moment frame (S1, S3, C1,

Building Type⁴

PC2a)

Number of Stories

3

1.0

1.1

1.0

<u>></u>4

1.0

1.0

1.0

1 2

1.3 1,1

1.4 1.2

SEISMIC BASE SHEAR

4.4.2.1 Pseudo Seismic Force. The pseudo seismic force, in a given horizontal direction of a building, shall be calculated in accordance with Eq. (4-1).

$$V = CS_{a}W$$
 (4-1)

where

- V = Pseudo seismic force;
- C = Modification factor to relate expected maximum inelastic displacements to displacements calculated for linear elastic response; C shall be taken from Table 4-7;
- S_a = Response spectral acceleration at the fundamental period of the building in the direction under consideration. The value of S_a shall be calculated in accordance with the procedures in Section 4.4.2.3; and
- W = Effective seismic weight of the building, including the total dead load and applicable portions of other gravity loads listed below:

Process Gallery

Modification Factor, C =	1.3	
S _s =	0.343	(CSZ spectral response)
S ₁ =	0.221	(CSZ spectral response)
F _a =	1.3	(Site amplication factor per ASCE 7-16)
F _v =	1.5	(Site amplication factor per ASCE 7-16)
$S_{X1} = S_1 * F_v =$	0.332	(CSZ seismic hazard)
T =	0.149	s
$S_{Xs} = S_s * F_a =$	0.446	(CSZ seismic hazard)
Spectral Acceleration, $S_a =$	0.446	
Seismic Weight, W =	59.0	kip
Seismic Force, V =	34.2	kip

Engineers, Working Wondors With Water *

BS DATE Aug-21 CLIENT BY: CHKD BY DESCRIPTION **DESIGN TASK**

City of Wilsonville Workshop

ASCE 41-17 - Tier 1 Screening (BSE-2E Level)

11962A.00

SHEET

JOB NO.

WALL SHEAR STRESS CHECK

4.4.3.3 Shear Stress in Shear Walls. The average shear stress in shear walls, v_i^{avg} , shall be calculated in accordance with Eq. (4-8).

$$v_j^{avg} = \frac{1}{M_s} \left(\frac{V_j}{A_w} \right) \qquad (4-8)$$

where

Roof Level

Shear Wall in N-S Direction West Elevation Wall Line

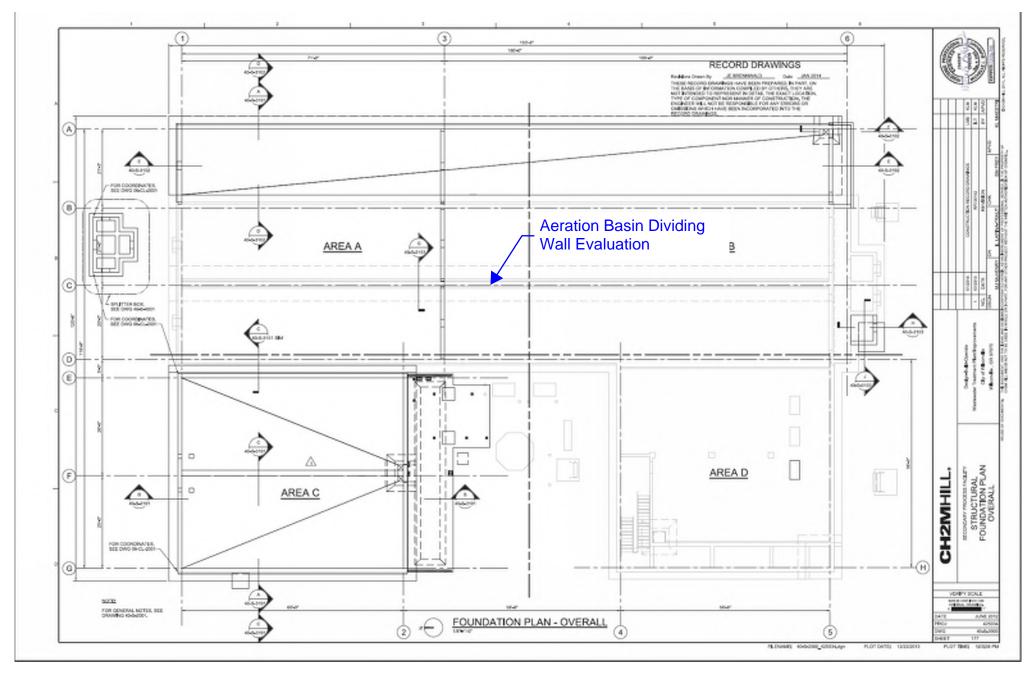
East Elevation Wall Line

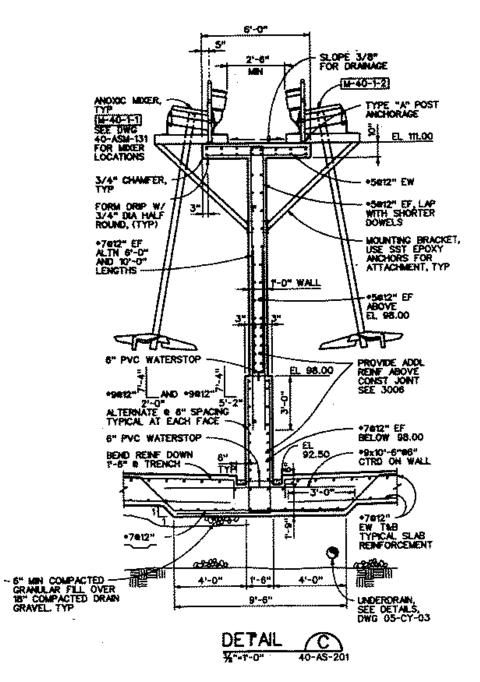
Shear Wall in E-W Direction North Elevation Wall Line

- V_j = Story shear at level j computed in accordance 4.4.2.2;
- A_w = Summation of the horizontal cross-section: shear walls in the direction of loading. Open taken into consideration where computing A, ry walls, the net area shall be used. For walls, the length shall be used rather than t
- M_s = System modification factor; M_s shall be Table 4-8.

Level of Performance

Table 4-8. M_s Factors for Shear Walls


	Wall Type		CP ^a	LSª	10 ^a
imputed in accordance with Section rizontal cross-sectional area of all ction of loading. Openings shall be n where computing A_w . For mason- shall be used. For wood-framed	Reinforced concre concrete, wood, masonry, and co steel Unreinforced maso	reinforced old-formed	4.5	3.0	1.5
be used rather than the area; and factor; M_s shall be taken from	^a CP == Collapse P Occupancy.				
Roof Story Base Shear, V _{roof} =	34.2 kips				
System Modification Factor, M_s =	2.25	(Interpol	ated be	etween L	S & IO)
<u>ection</u> ine					
Total length of stud walls =	44.67 ft				
average shear stress, v _{avg,NS} =	340.3 lb/ft	< DCF	100 R = 0.3	-	<u>Shear Stress OK</u>
	45.00 #				
Total length of stud walls =	15.00 ft		40		
average shear stress, v _{avg,NS} =	1013.3 lb/ft	DCF	R = 1.0	•	<u>NG</u>
<u>rection</u> .ine					
Total length of stud walls =	29.33 ft				


	Total length of stud walls =	29.33 ft			
	average shear stress, v _{avg,EW} =	518.2 lb/ft	<	1000.0	<u>Shear Stress OK</u>
			DCR =	= 0.52	
South Elevation Wall Li	ne				
	Total length of stud walls =	32.67 ft			
	average shear stress, v _{avg,EW} =	465.3 lb/ft	<	1000.0	<u>Shear Stress OK</u>
			DCR =	= 0.47	
Interior Wall Line					
	Total length of stud walls =	36.00 ft			
	average shear stress, v _{avg,EW} =	422.2 lb/ft	<	1000.0	<u>Shear Stress OK</u>
			DCR =	= 0.42	

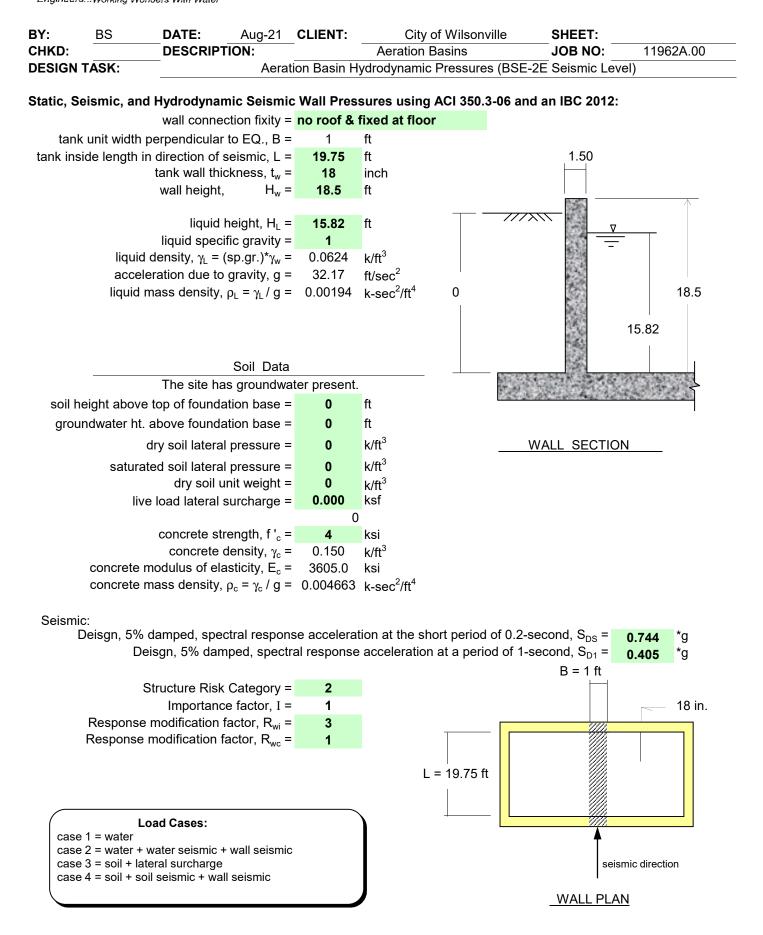
City of Wilsonville

Aeration Basins Structural Calculations

Aeration Basin Dividing Wall (BSE-2E Seismic Level)	pg. 1
Aeration Basin Dividing Wall (CSZ Seismic Level)	pg. 24
Stabilization Basin Perimeter Wall (BSE-2E Seismic Level)	pg. 43
Stabilization Basin Perimeter Wall (CSZ Seismic Level)	pg. 68

Dividing Wall Section Reinforcing

Carollo Engineers...Working Wonders With Water™


> BY BS DATE 7/8/21 SUBJECT City & Wilsonville SHEET NO. OF Arration Basins CHKD. BY____ DATE_ JOB NO. 11962 A.00 Aeration Basins - Dividing Wall Check The existing a cration basin dividing wall between 2.6814 Aeration Basing 1 # 2 will be checked for the seismic loads. Since there is water present on both sides, the wall will be 15.826 checked for the hydrodynamic load. The wall thickness is 18" at base and extends 5-6" with 49e6" Above this, the wall thickness is 12" with # 7e12" See attached spreadshart for hydro dynamic loading. Wall will be assumed to act as a contilever. Force is at BSE-2E level. Checking wall strongth at base (*4906" Nert reinforcing) \$Mn= 135.29 6.4/4 \$V=> 22 77 1.10 Mu= 50.81 12.4/4 Vu= 7.78 k/ft +V~= 22.77 k/ff Mommint DCR = 5081 = 0.38 (ob) Shear DCR = 7.78 = 0.34 (ole) Checking wall strength at start of 12" wall (\$7812" vert reinforcing) M_= 22.08/2. ft/ft dM_= 25.68 k. ft/ft Vu= 450 11/4 +VL = 13.66 2/ft Moment Dce = 27,00 = 0.86 (olc) Shear DCR = 13.66 = 0.33 (.6) Chacking Freeboard height in basin. For Risk Category III. S= 0.7 * dmax Stransurse = 0.7 (2.15 fr):= 1.51 ft Slangituitinal = 0.7 (3.40 ft) = 2.38 ft free board height: 2.68ft 2.68A71.5FFF (de) Free board is sufficient. 2.68ft 72.38.ft (ok) Free board is sufficient.

Engineers...Working Wonders With Water™

BY BS DATE 718/21 SUBJECT City of Wilsonville SHEET NO. OF Arration Basins CHKD. BY_____ DATE_____ JOB NO. 119624.00 Checking wall strength at base of 18" wall. Forces are at CSZ seismic level. MJ= 38.63 k.A/A+ \$Mn= 135.29 6.A+/A+ $V_{u} = 5.65 \text{ k/ft} \qquad p V_{h} = 22.77 \text{ k/ft}$ $Moment DCR = <math>\frac{38.63 \text{ k}}{135.24 \text{ k/ft}} = 0.29 \text{ (ok)}$ $Shear DCR = <math>\frac{5.05 \text{ k/ft}}{22.77 \text{ k/ft}} = 0.25 \text{ (ok)}$ Checking wall strength at start of 12" wall. $M_{-} = 17.08 \text{ b. fr/ff}$ $\Phi M_{n} = 25.68 \text{ b. fr/ff}$ $V_{0} = 3.50 \text{ b. fr/ff}$ $\Phi V_{n} = 13.66 \text{ b. fr/ff}$ $M_{0} = 17.08 \text{ b. fr/ff}$ $\Phi V_{n} = 13.66 \text{ b. fr/ff}$ $M_{0} = 13.66 \text{$

BS			CLIENT:		rille		11962A.00
			ion Basin H				
-on.		Acial	ION DASIN N	yurouynamic Fressures	5 (DOL-21		51)
unit 1-	ft width wall r	mass, W _w =	(1	8/12) * (18.5) * 0.15 =	4.16	kip	
wall c	.g. relative to	base, h _w =		18.5 / 2 =	9.250	ft	
unit	width liquid	mass, W _L =	(19.75) *	(1) * (15.82) * 32.17 =	19.50	kip	
	ASK: unit 1- wall c	DESCRIPT ASK: unit 1-ft width wall wall c.g. relative to	DESCRIPTION: ASK: Aerat unit 1-ft width wall mass, W _w = wall c.g. relative to base, h _w =	DESCRIPTION: ASK: Aeration Basin H unit 1-ft width wall mass, W _w = (1 wall c.g. relative to base, h _w =	DESCRIPTION:Aeration BasinsASK:Aeration Basin Hydrodynamic Pressuresunit 1-ft width wall mass, $W_w =$ $(18/12) * (18.5) * 0.15 =$ wall c.g. relative to base, $h_w =$ $18.5 / 2 =$	ASK: Aeration Basin Hydrodynamic Pressures (BSE-2E unit 1-ft width wall mass, W _w = (18/12) * (18.5) * 0.15 = 4.16	DESCRIPTION:Aeration BasinsJOB NO:ASK:Aeration Basin Hydrodynamic Pressures (BSE-2E Seismic Levelunit 1-ft width wall mass, $W_w =$ $(18/12) * (18.5) * 0.15 =$ 4.16wall c.g. relative to base, $h_w =$ $18.5 / 2 =$ 9.250ft

Seismic:

1). structure stiffness and dynamic property:

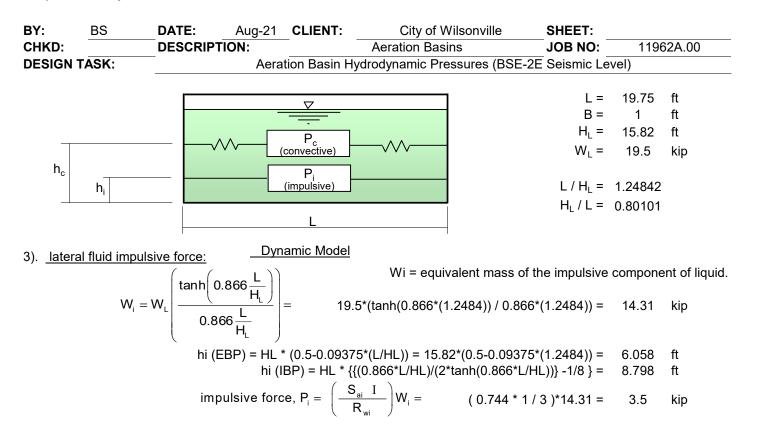
Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w / 12)^*\rho_c = 0.12939 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i / W_L)^*(L/2)^*\text{H}_L^*\rho_L = 0.22237 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 7.232 \text{ ft}$ wall fixity condition is no roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(tw/h)^3 / 48 = 1157.99 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (1157.99 / (0.1294 + 0.2224))^{*1/2} = 57.3756 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = 2\pi / 57.3756 = 0.1095 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = 0.744 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\lambda = \sqrt{3.16 \text{ g } \tanh\left(3.16\left(\frac{\text{H}_{\text{L}}}{\text{L}}\right)\right)} = (3.16*32.2*\tanh(3.16*(0.801)))^{1/2} = 10.0189$$

$$\omega_{\rm c} = \frac{\Lambda}{\sqrt{L}} = 10.0189 / (19.75)^{1/2} = 2.2544$$
 rad/sec,


period of the convective mass, T_c = $2\pi / \omega_c$ = $2\pi / 2.2544 = 2.7870$ sec

Long transition period (from map figure 22-15 ASCE 7), $T_L = 16$ sec

design spectral response acceleration for convective mass (
$$0.5\%$$
 damping), $S_{ac} = 1.5 * Sd1 / Tc = 0.218 g$

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.8063$

4). lateral fluid convective force:

Wc = equivalent mass of the convective component of liquid.

$$W_{c} = W_{L} \left(0.264 \left(\frac{L}{H_{L}} \right) tanh \left(3.16 \left(\frac{H_{L}}{L} \right) \right) \right) =$$

$$h_{c (EBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 10.491 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right)\sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 11.502 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.218 * 1 / 1)*6.35 = 1.4$$
 kip

BY: CHKD: DESIGN 1	BS	DATE: DESCRIPT	ION:	_ CLIENT:	Aeratio	ity of Wilsonville on Basins mic Pressures (BSE-	SHEET: JOB NO: 2E Seismic Le		62A.00
5). <u>latera</u>	I inertia force	e of the acce	lerating wa	<u>all:</u>		unit width wa	ll maga 14(-	4.40	Leine
						wall c.g. relative	ll mass, W _w = to base, h _w =	4.16 9.250	kip ft
	wal	I inertia forc	ce, $P_w = \left(\right)$	$\frac{S_{ai} I \epsilon}{R_{wi}} W_{w}$	v =	(0.744*1*0.80)63/3)*4.16 =	0.83	kip
6). <u>maxir</u>	num wave sl	losh height d	isplaceme	<u>nt:</u>					
			d _(max)	$= \left(\frac{L}{2}\right) \left(\frac{S_{ac}}{1.0}\right)$	_) =	(19.75 / 2) * (0.21	8 / 1.0 * 1) =	2.15	ft
7) vertie	al accelerati	.							

7). <u>vertical acceleration:</u>

design horizontal accereration, S_{DS} = 0.744 *g

P_c = 1.40

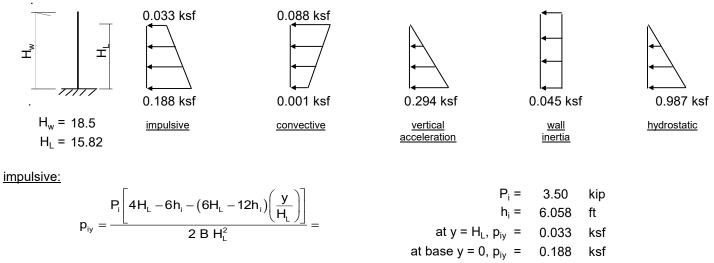
at y = H_L , $p_{cy} = 0.088$

at base $y = 0, p_{cy} = 0.001$

 $h_c = 10.491$ ft

kip

ksf


ksf

vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4*S_{DS} = 0.2976$ g

per ASCE 7-10 para. 15.7.7.2(b), use I = R_i = b = 1.0

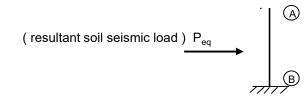
Design vertical acceleration, $\ddot{u} = \frac{S_{av} I b}{R_i} = 0.2976*1*1/1 = 0.2976 g$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

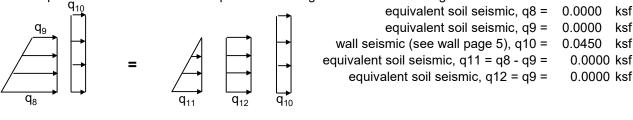
convective:

$$p_{cy} = \frac{P_{c} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]}{2 B H_{L}^{2}} =$$

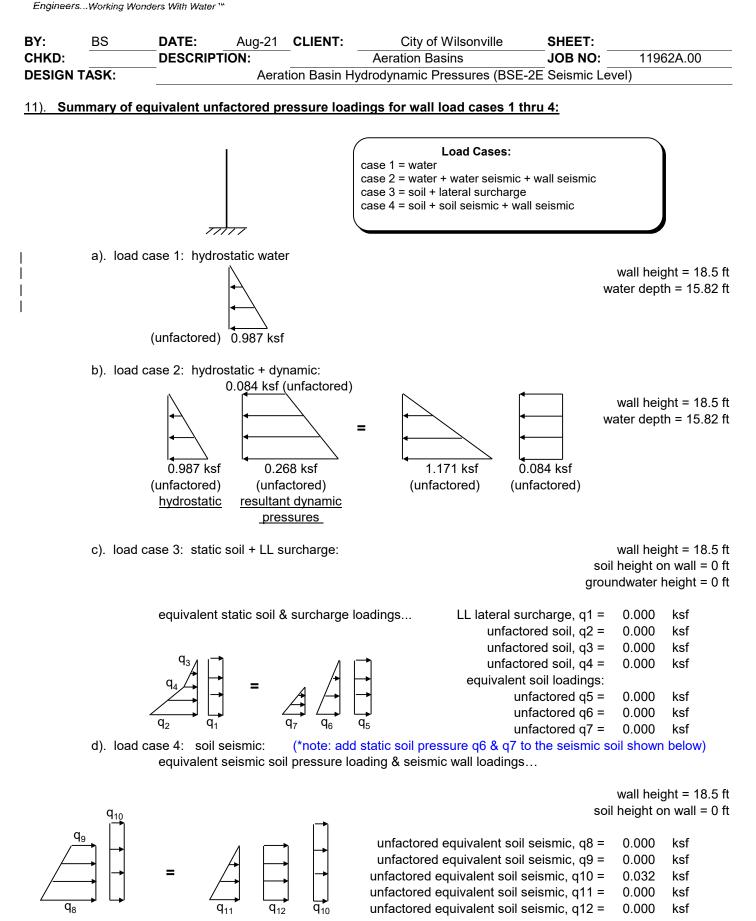
BY: BS DATE: Aug-21 **CLIENT**: City of Wilsonville SHEET: CHKD: **DESCRIPTION:** Aeration Basins JOB NO: 11962A.00 Aeration Basin Hydrodynamic Pressures (BSE-2E Seismic Level) **DESIGN TASK:** vertical acceleration: ü = 0.2976 $p_{vv} = \ddot{u} \gamma_L (H_L - y) =$ at $y = H_L, p_{vv} = 0.000$ ksf at base $y = 0, p_{vy} = 0.294$ ksf wall inertia: $p_{wy} = \frac{S_{ai} \ I \ \epsilon \ \gamma_c \ (t_w/12)}{R_{wi}} =$ $p_{wv} = 0.2000 * \gamma_c * (t_w/12)$ at y = H_w , $p_{wy} = 0.045$ ksf at base y = 0, $p_{wy} = 0.045$ ksf hydrostatic: at $y = H_L$, $q_{hy} = 0.000$ ksf $q_{hv} = \gamma_L (H_L - y) =$ at base y = 0, $q_{hy} = 0.987$ ksf combine the effects of the dynamic pressures on the wall: $p_{v} = \sqrt{(p_{v} + p_{wv})^{2} + p_{cv}^{2} + p_{w}^{2}} =$ at y = H_w , $p_v = 0.117$ ksf at base $y = 0, p_v = 0.375$ ksf 0.117 ksf (unfactored = 0.117 / 1.4 = 0.084 ksf) r₹ Ŧ 0.375 ksf (unfactored = 0.375 / 1.4 = 0.268 ksf) resultant dynamic pressures 9). wall design pressures for hydrostatic + dynamic: wall height, $H_w = 18.5$ ft liquid height, $H_1 = 15.82$ ft unfactored load = 0.084 ksf


> unfactored load = 0.268 ksf resultant dynamic pressures

0.987 ksf


hydrostatic

Aug-21 CLIENT: BY: City of Wilsonville SHEET: BS DATE: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Aeration Basin Hydrodynamic Pressures (BSE-2E Seismic Level) 10). wall design pressures for external soil loading: The site has groundwater present. static soil: wall height = 18.5 ft (A) soil height above top of base = 0 ft groundwater ht. above base = 0 ft k/ft³ dry soil lateral pressure = 0.000 k/ft³ sat. soil lateral pressure = 0.000 live load lateral surcharge = 0.000 ksf equivalent static soil loadings: LL lateral surcharge, q1 = 0.0000 ksf unfactored soil, q2 = 0.0000 ksf unfactored soil, q3 = 0.0000 ksf unfactored soil, q4 = 0.000 ksf equivalent soil loadings: unfactored q5 = 0.0000 ksf unfactored q6 =0.0000 ksf unfactored q7 = 0.0000 ksf soil seismic: resultant factored soil seismic load per foot of wall width, $P_{u (eq)}$ = k/ft 0 centroid location of the resultant soil seismic from the bottom of wall, heg = 0 ft The resultant soil seismic load will be resolved into an equivalent pressure loading...



Equivalent factored seismic soil pressure loading & seismic wall loadings...

- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.045 / 1.4 = 0.0321 ksf
- unfactored equivalent soil seismic, q11 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q12 =0 / 1.4 = 0.0000 ksf

page 7 of 8

BY: City of Wilsonville BS DATE: Aug-21 CLIENT: SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 Aeration Basin Hydrodynamic Pressures (BSE-2E Seismic Level - Longitudinal Direction) **DESIGN TASK:** Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012: wall connection fixity = no roof & fixed at floor tank unit width perpendicular to EQ., B = 1 ft tank inside length in direction of seismic, L = ft 1.50 175 tank wall thickness, $t_w =$ 18 inch wall height, H_w = 18.5 ft 7772 liquid height, $H_1 =$ 15.82 ft liquid specific gravity = 1 liquid density, $\gamma_{L} = (sp.gr.)^{*}\gamma_{w} =$ 0.0624 k/ft³ 32.17 acceleration due to gravity, g = ft/sec² liquid mass density, $\rho_L = \gamma_L / g = 0.00194$ 18.5 k-sec²/ft⁴ 0 15.82 Soil Data The site has groundwater present. soil height above top of foundation base = 0 ft groundwater ht. above foundation base = 0 ft k/ft³ dry soil lateral pressure = 0 WALL SECTION 0 k/ft³ saturated soil lateral pressure = dry soil unit weight = 0 k/ft³ 0.000 live load lateral surcharge = ksf 0 concrete strength, $f'_c =$ 4 ksi concrete density, γ_c = 0.150 k/ft³ concrete modulus of elasticity, $E_c =$ 3605.0 ksi concrete mass density, $\rho_c = \gamma_c / g = 0.004663 \text{ k-sec}^2/\text{ft}^4$ Seismic: Deisgn, 5% damped, spectral response acceleration at the short period of 0.2-second, S_{DS} = *g 0.744 Deisgn, 5% damped, spectral response acceleration at a period of 1-second, S_{D1} = 0.405 *g B = 1 ft Structure Risk Category = Importance factor, I = 1 18 in. Response modification factor, R_{wi} = 3 Response modification factor, R_{wc} = 1 L = 175 ft Load Cases: case 1 = water case 2 = water + water seismic + wall seismic case 3 = soil + lateral surcharge seismic direction case 4 = soil + soil seismic + wall seismic WALL PLAN

BY: CHKD:	BS	DATE: DESCRIPT	Aug-21	CLIENT:	City of Wilsonv Aeration Basins	ille	SHEET:	11962A.00
DESIGN 1	ASK:	Aerat	ion Basin H	ydrodynami	c Pressures (BSE-2E S	eismic Le	evel - Longitud	inal Direction)
Weights:		-ft width wall r c.g. relative to		· ·	8/12) * (18.5) * 0.15 = 18.5 / 2 =	4.16 9.250	kip ft	
	uni	it width liquid	mass, W_L =	· (175) *	(1) * (15.82) * 32.17 =	172.75	kip	

Seismic:

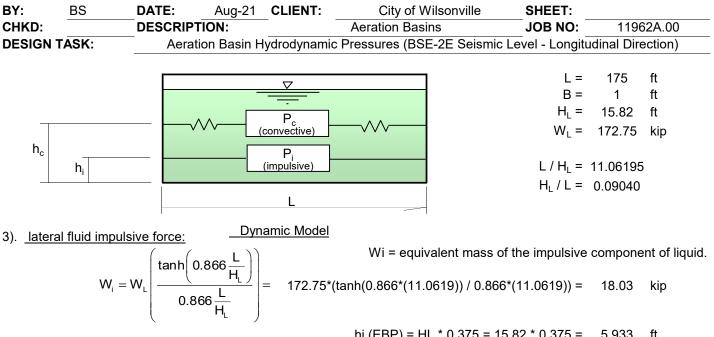
1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w/12)^*\rho_c = 0.12939 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i/W_L)^*(L/2)^*H_L^*\rho_L = 0.28024 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 6.981 \text{ ft}$ wall fixity condition is no roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(tw/h)^3 / 48 = 1287.44 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (1287.44 / (0.1294 + 0.2802))^*/_2 = 56.0621 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = 2\pi / 56.0621 = 0.1121 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = 0.744 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\lambda = \sqrt{3.16 \text{ g } \tanh\left(3.16\left(\frac{\text{H}_{\text{L}}}{\text{L}}\right)\right)} = (3.16*32.2*\tanh(3.16*(0.0904)))^{1/2} = 5.3174$$
$$\omega = \frac{\lambda}{100} = 5.3174 / (1.175)^{1/2} = 0.4020 \text{ rm}$$


$$\omega_{\rm c} = \frac{\pi}{\sqrt{L}} = 5.3174 / (175)^{1/2} = 0.4020 \text{ rad/sec},$$

 $\begin{array}{ccc} \mbox{period of the convective mass, } T_c = 2\pi \ / \ \omega_c = & 2\pi \ / \ 0.402 = & 15.6314 \ \ sec} \\ \mbox{Long transition period (from map figure 22-15 ASCE 7), } T_L = & 16 \ \ sec} \\ \mbox{design spectral response acceleration for convective mass (0.5\% \ damping), } S_{ac} = & 1.5 \ \ Sd1 \ / \ Tc = & 0.039 \ \ g \end{array}$

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.7581$

4). lateral fluid convective force:

hi (IBP) = HL * {{
$$(0.866*L/HL)/(2*tanh(0.866*L/HL))}$$
 -1/8 } = 73.798 ft

impulsive force,
$$P_i = \left(\frac{S_{ai} I}{R_{wi}}\right) W_i = (0.744 * 1 / 3) * 18.03 = 4.5 kip$$

Wc = equivalent mass of the convective component of liquid.

$$W_{c} = W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) tanh\left(3.16\left(\frac{H_{L}}{L}\right)\right)\right) = 172.75^{*}(0.264^{*}(11.0619)^{*} tanh(3.16^{*}(0.0904))) = 140.32 \text{ kip}$$

$$h_{c (EBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 7.963 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right)\sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 201.127 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.0389 * 1 / 1)*140.32 = 5.5 kip$$

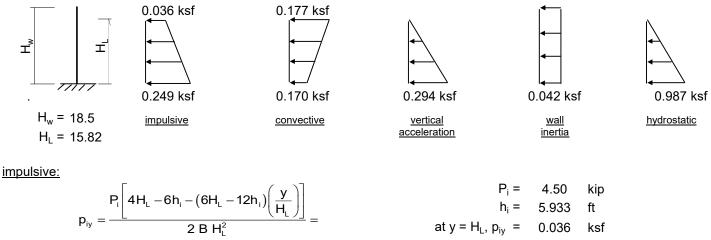
BY: CHKD:	BS	DATE: DESCRIP		CLIENT:	City of Wilsonville Aeration Basins	SHEET: JOB NO:	119	62A.00
DESIGN TASK:		Aerat	ion Basin H	ydrodynamic	c Pressures (BSE-2E Seismic	Level - Longitu	dinal Direction)	
5). <u>latera</u>	l inertia fo	orce of the acc	elerating wa	<u>all:</u>	unit width wa	ll mass, W _w =	4.16	kip

wall c.g. relative to base,
$$h_w = 9.250$$
 ft

wall inertia force,
$$P_w = \left(\frac{S_{ai} I \epsilon}{R_{wi}}\right) W_w = (0.744*1*0.7581/3)*4.16 = 0.78$$
 kip

6). maximum wave slosh height displacement:

$$d_{(max)} = \left(\frac{L}{2}\right) \left(\frac{S_{ac}}{1.0}I\right) = (175/2) * (0.0389/1.0 * 1) = 3.40 \text{ ft}$$


7). vertical acceleration:

- design horizontal accereration, $S_{DS} = 0.744$ *g
- vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4*S_{DS} = 0.2976$ g

per ASCE 7-10 para. 15.7.7.2(b), use $I = R_i = b = 1.0$

Design vertical acceleration,
$$\ddot{u} = \frac{S_{av} I b}{R_i} = 0.2976*1*1/1 = 0.2976 g$$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

convective:

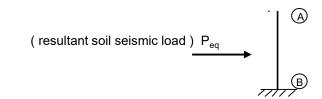
$$p_{cy} = \frac{P_{c} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]}{2 B H_{L}^{2}} =$$

at y = H_L, p_{iy} = 0.036 ksf
at base y = 0, p_{iy} = 0.249 ksf
$$P_c = 5.50$$
 kip
 $h_c = 7.963$ ft
at y = H_L, p_{cy} = 0.177 ksf
at base y = 0, p_{cy} = 0.170 ksf

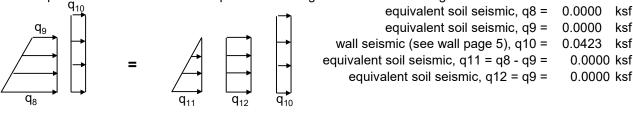
BY:	BS	DATE:		CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIP			Aeration Basins	JOB NO:	11962A.00
DESIGN 1	TASK:	Aera	tion Basin H	lydrodynami	c Pressures (BSE-2E Seismic Le	evel - Longi	tudinal Direction)
vertical ac	celeration:				Ü =	- 0.2976	
	$p_{vv} = \ddot{u} \gamma_{L}$ (I	$H_L - y) =$			at y = H _L , p _{vy} =		ksf
	-				at base $y = 0, p_{vy} =$		ksf
wall inertia							
	$p_{wy} = -\frac{S_a}{s_a}$	_{ai} Ιεγ _c (t	_w /12) =		p _{wy} =	= 0.1880	* γ _c * (t _w /12)
	Pwy —	R_{wi}			at y = H _w , p _{wy} =	0.042	ksf
<u>hydrostati</u>	c.				at base y = 0, p _{wy} =	- 0.042	ksf
nyurostati	<u>o.</u>				at y = H _L , q _{hy} =	- 0.000	ksf
	$q_{hy} = \gamma_L$ ($(H_L - y) =$			at base $y = 0$, $q_{hy} =$		ksf
combine t	he effects of	the dynam	ic pressures	on the wall:	,	0.307	NJI
	$\mathbf{p} = \sqrt{\mathbf{p}}$	$(p_{wv})^{2} + (p_{wv})^{2}$	$n^2 + n^2 =$		at y = H _w , p _y =	= 0.194	ksf
	$P_y = \gamma(P_y)$	'Pwy)'	Pcy ' Pwy =		at base $y = 0, p_y =$		ksf
	::		Ξ	+ + +	0.194 ksf (unfactored = 0.194		
			resulta	nt dynamic p	0.447 ksf (unfactored = 0.447 pressures	/ 1.4 = 0.32	KST)
<u>9). wall de</u>	esign pressu	ires for hyd	rostatic + dy	<u>namic:</u>	wall height, $H_w = 18.5$	ft	
					liquid height, $H_L = 15.82$	ft	
	Ì	A		•	unfactored load , ≮	<u>= 0.13</u> 8 ksf	

unfactored load = 0.320 ksf resultant dynamic pressures

B


77

0.987 ksf


hydrostatic

Aug-21 CLIENT: BY: City of Wilsonville BS DATE: SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Aeration Basin Hydrodynamic Pressures (BSE-2E Seismic Level - Longitudinal Direction) 10). wall design pressures for external soil loading: The site has groundwater present. static soil: wall height = 18.5 ft (A) soil height above top of base = 0 ft groundwater ht. above base = 0 ft k/ft³ dry soil lateral pressure = 0.000 k/ft³ sat. soil lateral pressure = 0.000 live load lateral surcharge = 0.000 ksf equivalent static soil loadings: LL lateral surcharge, q1 = 0.0000 ksf unfactored soil, q2 = 0.0000 ksf unfactored soil, q3 = 0.0000 ksf unfactored soil, q4 = 0.000 ksf equivalent soil loadings: unfactored q5 = 0.0000 ksf unfactored q6 =0.0000 ksf unfactored q7 = 0.0000 ksf soil seismic: resultant factored soil seismic load per foot of wall width, $P_{u (eq)}$ = k/ft 0 centroid location of the resultant soil seismic from the bottom of wall, heg = 0 ft The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading & seismic wall loadings...

- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0423 / 1.4 = 0.0302 ksf
- unfactored equivalent soil seismic, q11 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, g12 =0 / 1.4 = 0.0000 ksf

Aug-21 CLIENT: BY: City of Wilsonville BS DATE: SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 Aeration Basin Hydrodynamic Pressures (BSE-2E Seismic Level - Longitudinal Direction) **DESIGN TASK:** Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4: 11). Load Cases: case 1 = water case 2 = water + water seismic + wall seismic case 3 = soil + lateral surcharge case 4 = soil + soil seismic + wall seismic a). load case 1: hydrostatic water wall height = 18.5 ft water depth = 15.82 ft (unfactored) 0.987 ksf b). load case 2: hydrostatic + dynamic: 0.138 ksf (unfactored) wall height = 18.5 ft water depth = 15.82 ft = 0.320 ksf 1.169 ksf 0.138 ksf 0.987 ksf (unfactored) (unfactored) (unfactored) (unfactored) hydrostatic resultant dynamic pressures wall height = 18.5 ft c). load case 3: static soil + LL surcharge: soil height on wall = 0 ft groundwater height = 0 ft equivalent static soil & surcharge loadings... LL lateral surcharge, q1 = 0.000 ksf unfactored soil, q2 = 0.000 ksf unfactored soil, q3 = 0.000 ksf unfactored soil, q4 = 0.000 ksf equivalent soil loadings: unfactored q5 = 0.000 ksf unfactored q6 = 0.000 ksf unfactored q7 = 0.000 ksf (*note: add static soil pressure q6 & q7 to the seismic soil shown below) d). load case 4: soil seismic: equivalent seismic soil pressure loading & seismic wall loadings... wall height = 18.5 ft soil height on wall = 0 ft q₉ unfactored equivalent soil seismic, q8 = 0.000 ksf unfactored equivalent soil seismic, q9 = 0.000 ksf unfactored equivalent soil seismic, q10 = 0.030 ksf unfactored equivalent soil seismic, q11 = 0.000 ksf q₈ unfactored equivalent soil seismic, q12 = 0.000 ksf

Engineers...Working Wonders With Water "

BY: CHKD:	BS	DATE: DESCRIPT	Aug-21	CLIENT:	City o Aeration B	f Wilsonville	SHEET:	11962A.00
DESIGN	TASK:			all between		1&2 (Hydrodynamic		
<u>Wall Dat</u> De	<u>a:</u> sign for a sla Wall Sup Wa Thickness Depth to rei concrete sl prcing yield s	ab or a wall? pport Fixity = Span, L = all width, b = of Wall, h = nforcing, d = trength, f' _c = strength, f _y = ection, L/ Δ =	Wall	(design width)	trial moment of Inerti	a, $I_x = 0.5 I_g = \frac{c}{e}$	2916 in^4
<u>Wall Loa</u>	dings:					R _L x <u>Positive Lo</u>	oad Sign Conve	R _R
<u>(k/ft)</u> (0) (0)	<u>(k/ft</u> (0.2 (0)						<u>(k/ft)</u> (0.75) (0.75)	
	Ш.							

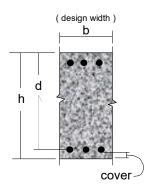
	I	Externally A	Applied Se	ervice Load	s to a Wall	with Cantil	ever Suppo	ort	
Uniform		Trapezoio	dal Loads		Point	Loads	Moment Loads		Concrete
	Be	egin	E	nd					Load
w	b	W _b	е	W _e	а	Р	с	М	Factors
(k/ft)	(ft)	(k/ft)	(ft)	(k/ft)	(ft)	(kip)	(ft)	(ft-k)	
	2.68	0.234	18.5	0.75					1
· · · · · · · · · · · · · · · · · · ·		•		optional e	nvironmenta	al load facto	r for momer	nt (ACI 350) =	1

Results:

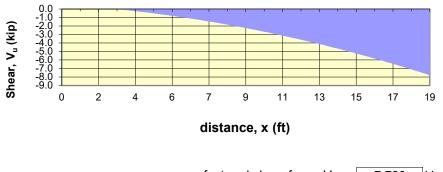
 * Deflection is based on the trial moment of Inertia of 0.5 * Ig.(actual deflection will be adjusted later on page 6.)

	Calculated Reactions, Moments, and Deflections for the Wall with Cantilever Support									
	Reactions	s, R or R _u	Max	kimum Mor	nents, M or	Mu	* Maximum Short Term Deflections			
Load	Left End	Right End	Max Positive Max Negative		egative	downward		upward		
Туре	RL	R _R	x distance	+M	x distance	-M	x distance	Δ	x distance	Δ
	(kip)	(kip)	(ft)	(ft-k)	(ft)	(ft-k)	(ft)	(in)	(ft)	(in)
service loads	0.00	7.78	0.000	0.00	18.500	-50.81	0.000	-0.584	18.500	0.000
factored loads	0.00	7.78	0.000	0.00	18.500	-50.81		10 ,Okay x = L/240 =		l0 ,Okay
	environmenta	ll factor, M _u =		0.00		-50.81				

_{file: Concrete} Jainga#29:@ 6" neg bars and # 9 @ 6" pos barspatheofinal adjusted long term deflection (see page 6), Δ = 0.788 "



Engineers...Working Wonders With Water "

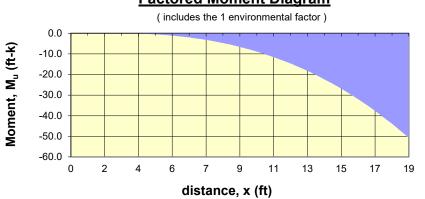

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPT	ION:		Aeration Basins	JOB NO:	11962A.00
DESIGN	TASK:	C	ividing Wa	II between A	eration Basins 1&2 (Hydrodyn	amic Loading Only	/) (BSE-2E)

Wall Shear Capacity (Based on ACI 318, 11.2.1.1):

Maximum Shear, V _u =	7.78	kip	concrete, f ' _c =	4	ksi
Wall width, b =	12	in	reinforcing, f _y =	60	ksi
Depth to reinforcing, d =	15	in	concrete modulus, $E_c = 57 * (f'_c)^{\frac{1}{2}} =$	3605	ksi
Thickness of wall, h =	18	in	φ, Shear =	1.00	

Factored Shear Diagram

	factored shear force, V $_{\rm u}$ =	7.780	kip
Concrete Shear Capacity,	$\phi V_{c} = \phi * 2^{*} b^{*} d^{*} (f'_{c})^{1/2} =$	22.768	kip


øVc > Vu, OK

Minimum shrinkage-temperature requirement in the flexure direction:	
wall minimum temperature / shrinkage steel ratio =	0.00500
number of layers of reinforcement in the wall (1 or 2 ?) =	2

Engineers...Working Wonders With Water "

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:		
CHKD:		DESCRIPT	ION:		Aeration Basins	JOB NO:	1196	52A.00
DESIGI	N TASK:	D	ividing Wa	all between A	eration Basins 1&2 (Hydrodynamic	Loading Only	y) (BSE-2	E)
Wall B	ending:							
	Service Mo	oment, M(+) =	0.00	ft-k	concrete str	ength, $f'_{c} =$	4	ksi
	Service M	oment, M(-) =	50.81	ft-k	reinforcing yield st	trength, f _y =	60	ksi
I	Factored Mo	ment, M _u (+) =	0.00	ft-k	concrete modulus, $E_c = 5$	$7 * (f'_{c})^{\frac{1}{2}} =$	3605	ksi
	Factored Mo	oment, M _u (-) =	50.81	ft-k	reinforcement mo	odulus, E _s =	29000	ksi
	V	Vall width, b =	12	in	r	$n = E_s / E_c =$	8.044	
	Depth to re	einforcing, d =	15	in		β ₁ =	0.85	
	Thickne	ss of wall, h =	18	in	φ	, Bending =	0.9	
	Inickne	ss of wall, h =	18	IN	φ	, Benaing =	0.9	
		Fact	ored Mo	oment Diag	<u>gram</u>	((design width) م	
		(ir	aludas tha 1	onvironmontal f	factor)	F	b	

00.0										
- 60.0- () :	2 4	4 (6 7	7	9 1	1 1	3 1	5 1	7
				dist	ance	, x (ft)				
<u>1). Ne</u>	egative	e Stee	l: (loo	cation	at x =	= 18.5 f	<u>"t)</u>			
Depth	to neg	gative	reinfo	rcing, o	d1 =	2.5	ir ir	า		
				Mu	(-) =	50.8	1 ft	-k		

M _u (-) =	50.81	ft-k
Wall width, b =	12	in
Depth to reinforcing, $d = h - d1 =$	15.5	in
Area steel required, $A'_{s (req'd)}$ =	0.756	in ²
Bar number size =	# 9	
Spacing of negative bars =	6	in
Area of steel provided, A'_s =	2.00	in ²
Min area steel req'd, $A_{s (min)}$ =	0.62	in ²
Min area steel req'd, A _{s (min)} = Max area allowed, A' _{s (max)} =	0.62 3.98	in ² in ²

2). Positive Steel: (location at x =	<u>0 ft)</u>	
concrete clear cover to positive steel =	2	in
M _u (+) =	0	ft-k
Wall width, b =	12	in
Depth to reinforcing, $d = $	15	in
Area steel required, $A_{s (req'd)} =$	0.000	in ²
Bar number size =	#9	
Spacing of positive bars =	6	
Area of bottom steel provided, A_s =	2.00	in ²
Min area steel req'd, A _{s (min)} =	0.54	in ²
Max area allowed, $A'_{s (max)}$ =	3.85	in ²

 $\begin{aligned} R_{u} &= M_{u} / (\phi^{*}b^{*}d^{2}) = 235.0 \\ \rho_{(\text{req'd})} &= \frac{0.85 \text{ f}_{c}^{'}}{f_{y}} \left(1 - \sqrt{1 - \frac{2 R_{u}}{0.85 \text{ f}_{c}^{'}}}\right) = 0.00406 \end{aligned}$

d

h

, $\rho = A_s$ / bd = 0.01075 , $\rho_{(min)} = 0.00333$, $\rho_{(max)} = 0.02138$

#9@6"

#9@6"

$$\begin{aligned} R_{u} &= M_{u} \,/ \,(\,\, \varphi^{*} b^{*} d^{2}\,) = \,0.0 \\ \rho_{(\text{reg'd})} &= \frac{0.85 \,\, f_{c}^{'}}{f_{y}} \,\, \left(1 \!-\! \sqrt{1 \!-\! \frac{2 \,R_{u}}{0.85 \,\, f_{c}^{'}}}\,\,\right) = \,0.00000 \end{aligned}$$

, $\rho = A_s$ / bd = 0.01111 , $\rho_{(min)} = 0.00300$, $\rho_{(max)} = 0.02138$ ∐d1

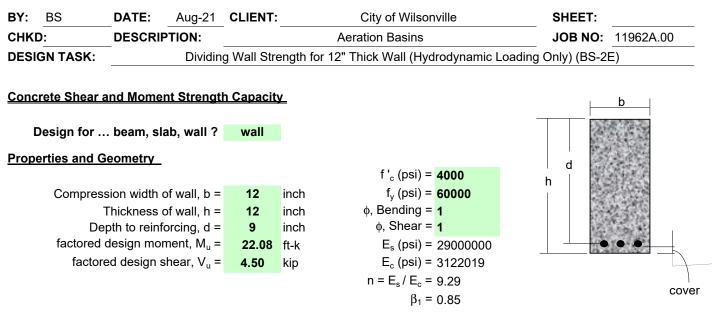
cover-

Reinforcement

	DESCRIPTION: ASK: Dividing Shear and Moment Strengt n for beam, slab, wall ?	h Capacit	•	Aeration Basins 18" Thick Wall (Hydrodynamic Load	JOB NO: ding Only) (BSE-2	
Concrete S	Shear and Moment Strengt	h Capacit	•	18" Thick Wall (Hydrodynamic Load	ding Only) (BSE-2	
			<u>v</u>			
200.9	,,,				A. 8 3	a de la composition
<u>Properties</u>	and Geometry			f' _c (psi) = 4000	d h	
Co	ompression width of wall, b =	12	inch	f _y (psi) = 60000		
	Thickness of wall, h =	18	inch	φ, Bending = 1		11 - CO
	Depth to reinforcing, d =	15	inch	φ, Shear = <mark>1</mark>	12	1.00.41
fa	ctored design moment, M _u =	50.81	ft-k	E _s (psi) = 29000000		• • •
	factored design shear, V _u =	7.78	kip	E _c (psi) = 3604997		
				$n = E_s / E_c = 8.04$		
				$\beta_1 = 0.85$		COV

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 22.77$$
 kip $\ge Vu$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**


Shear strength ≥ design shear, Okay

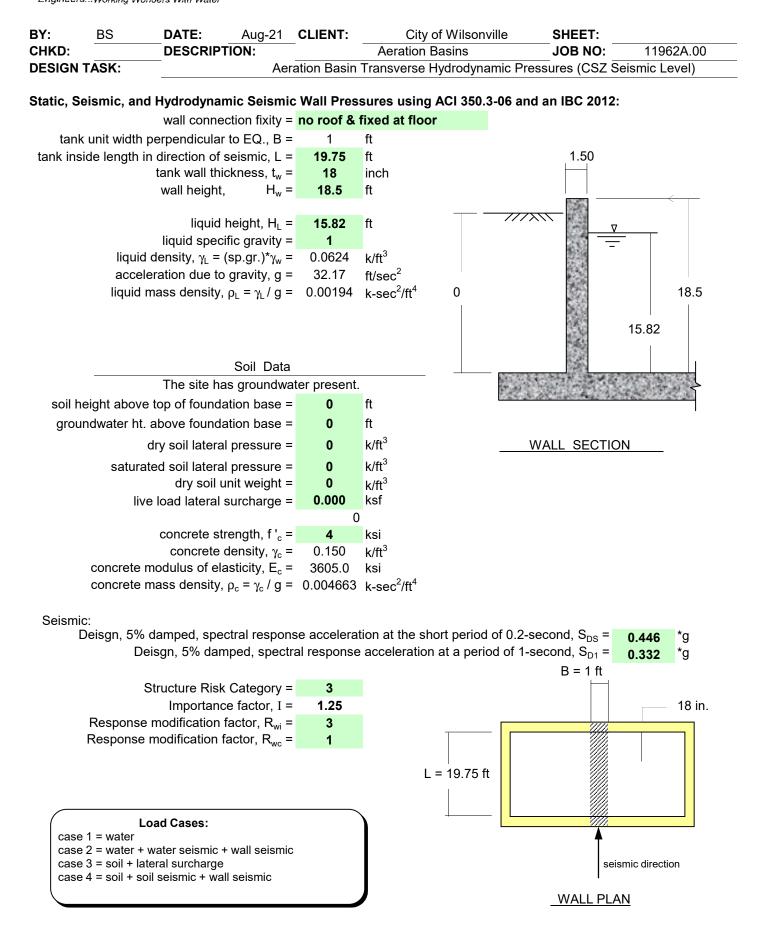
Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)

comment :Area steel provided, As =Existing 18" wall w/ #9@6"2in² $\rho = A_s / bd = 0.01111$
 $\rho(min) < As/bd < \rho(max) - OK</td>As (min) =0.32in²<math>\rho (min) = 0.00180$
 $A_{s (max)} = 3.85$ bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f_c}\right)$ $\phi^*M_n =$ 1*0.01111*60*12*15²*(1-0.588*0.01111*60/4)*(ft/12) = 135.294

Moment strength ≥ design moment, Okay

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 13.66$$
 kip $\ge Vu$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**


Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)

comment : existing 12" wall w/ #7@12" $\rho = A_s / bd = 0.00556$ Area steel provided, A_s = 0.6 in² $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} =$ 0.19 $\rho_{(min)} = 0.00180$ in² $A_{s (max)} =$ 1.73 in² $\rho_{(max)} = 0.01604$ bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f'}\right)$ $\phi^* M_n =$ 1*0.00556*60*12*9² *(1-0.588*0.00556*60/3)*(ft/12) = 25.235 ft-k ≥ Mu

Moment strength ≥ design moment, Okay

BY: CHKD:	BS	DATE: DESCRIPT	Aug-21 ION:	CLIENT:	City of Wilsonv Aeration Basins	ille	_SHEET:	11962A.00
DESIGN TASK:			Aeration Basin Transverse Hydrodynamic Pressures (CSZ Seismic Le					
Weights:		t width wall n g. relative to		•	8/12) * (18.5) * 0.15 = 18.5 / 2 =		kip ft	
	unit	width liquid r	mass, W _L =	· (19.75) *	(1) * (15.82) * 32.17 =	19.50	kip	

Seismic:

1). structure stiffness and dynamic property:

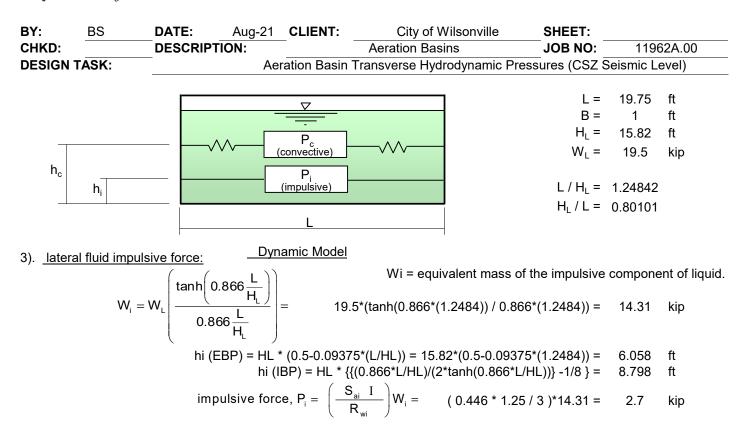
Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w/12)^*\rho_c = 0.12939 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i/W_L)^*(L/2)^*H_L^*\rho_L = 0.22237 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 7.232 \text{ ft}$ wall fixity condition is no roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(tw/h)^3 / 48 = 1157.99 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (1157.99 / (0.1294 + 0.2224))^{^1}_2 = 57.3756 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = 2\pi / 57.3756 = 0.1095$ sec (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = 0.446 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\lambda = \sqrt{3.16 \text{ g } \tanh\left(3.16\left(\frac{\text{H}_{\text{L}}}{\text{L}}\right)\right)} = (3.16*32.2*\tanh(3.16*(0.801)))^{1/2} = 10.0189$$

$$\omega_{\rm c} = \frac{\Lambda}{\sqrt{L}} = 10.0189 / (19.75)^{1/2} = 2.2544$$
 rad/sec,


period of the convective mass, T_c = 2π / ω_c =	2π / 2.2544 =	2.7870	sec

Long transition period (from map figure 22-15 ASCE 7), $T_L = 16$ sec

design spectral response acceleration for convective mass (0.5% damping),
$$S_{ac}$$
 = 1.5 * Sd1 / Tc = 0.179 g

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.8063$

4). lateral fluid convective force:

Wc = equivalent mass of the convective component of liquid.

$$W_{c} = W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) tanh\left(3.16\left(\frac{H_{L}}{L}\right)\right)\right) =$$

$$h_{c (EBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 10.491 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 11.502 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.1787 * 1.25 / 1)*6.35 = 1.4$$
 kip

BY: CHKD:	BS	DATE: DESCRIPTIC		CLIENT:	City of Wilsonville Aeration Basins	SHEET: JOB NO:	119	62A.00		
DESIGN TASK:			Aei	ration Basin	Seismic Level)					
5). <u>latera</u>	l inertia forc	e of the accele	erating wa	<u>all:</u>						
			-		unit width wa	ll mass, W _w =	4.16	kip		
					wall c.g. relative	to base, h _w =	9.250	ft		
	wal	I inertia force	$P_w = \left(\begin{array}{c} \\ \end{array} \right)$	$\frac{S_{ai} I \epsilon}{R_{wi}} \bigg) W$	V _w = (0.446*1.25*0.80	063/3)*4.16 =	0.62	kip		
6). maximum wave slosh height displacement:										
			d _(max)	$= \left(\frac{L}{2}\right) \left(\frac{S_{ac}}{1.4}\right)$	I) = (19.75 / 2) * (0.1787 /	1.0 * 1.25) =	2.20	ft		

7). vertical acceleration:

design horizontal accereration, S_{DS} = 0.446 *g

P_c = 1.40

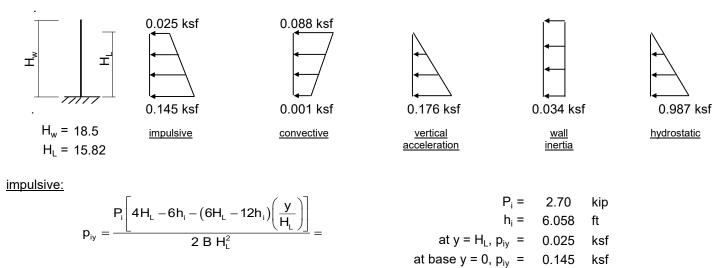
at y = H_L , $p_{cy} = 0.088$

at base $y = 0, p_{cy} = 0.001$

 $h_c = 10.491$ ft

kip

ksf


ksf

vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4*S_{DS} = 0.1784$ g

per ASCE 7-10 para. 15.7.7.2(b), use I = R_i = b = 1.0

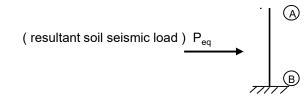
Design vertical acceleration, $\ddot{u} = \frac{S_{av} I b}{R_i} = 0.1784^{*}1^{*}1/1 = 0.1784 g$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

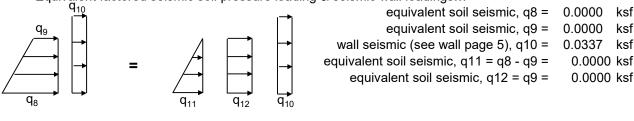
convective:

$$p_{cy} = \frac{P_{c} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]}{2 B H_{L}^{2}} =$$

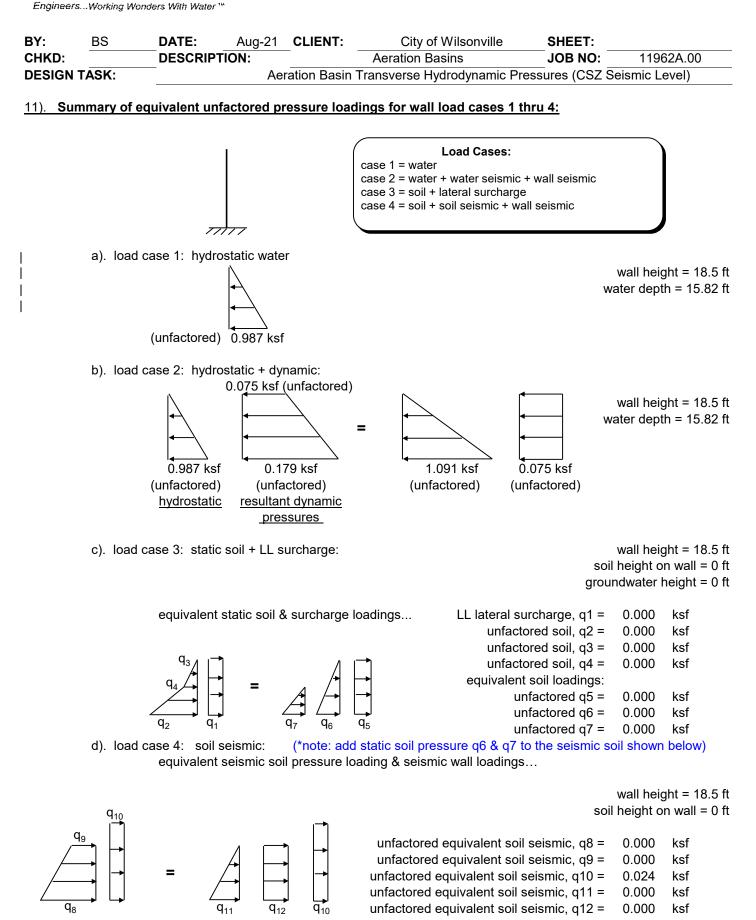
BY: BS DATE: Aug-21 **CLIENT:** City of Wilsonville SHEET: CHKD: **DESCRIPTION:** Aeration Basins JOB NO: 11962A.00 Aeration Basin Transverse Hydrodynamic Pressures (CSZ Seismic Level) **DESIGN TASK:** vertical acceleration: ü = 0.1784 $p_{vy} = \ddot{u} \gamma_L (H_L - y) =$ at $y = H_L, p_{vv} = 0.000$ ksf at base $y = 0, p_{vy} = 0.176$ ksf wall inertia: $p_{wy} = \frac{S_{ai} \ I \ \epsilon \ \gamma_c \ (t_w/12)}{R_{wi}} =$ $p_{wv} = 0.1498 * \gamma_c * (t_w/12)$ at y = H_w , $p_{wy} = 0.034$ ksf at base y = 0, $p_{wy} = 0.034$ ksf hydrostatic: at $y = H_L$, $q_{hy} = 0.000$ ksf $q_{hv} = \gamma_L (H_L - y) =$ at base y = 0, $q_{hy} = 0.987$ ksf combine the effects of the dynamic pressures on the wall: $p_{v} = \sqrt{(p_{v} + p_{wv})^{2} + p_{cv}^{2} + p_{w}^{2}} =$ at $y = H_w, p_v = 0.106$ ksf at base $y = 0, p_v = 0.251$ ksf 0.106 ksf (unfactored = 0.106 / 1.4 = 0.075 ksf) H 0.251 ksf (unfactored = 0.251 / 1.4 = 0.179 ksf) resultant dynamic pressures 9). wall design pressures for hydrostatic + dynamic: wall height, $H_w = 18.5$ ft liquid height, $H_1 = 15.82$ ft unfactored load = 0.075 ksf


unfactored load = 0.179 ksf resultant dynamic pressures

0.987 ksf


hydrostatic

BY: CHKD:	BS	DATE: DESCRIPTI	Aug-21	CLIENT:	City of Wilsonville	SHEET: JOB NO:	11962A.00
DESIGN T	ASK:			ration Basin	Transverse Hydrodynamic Press	_	
	design press	q_3			The site has groundwat wall height = soil height above top of base = groundwater ht. above base = dry soil lateral pressure = sat. soil lateral pressure =	er present. 18.5 0 0 0.000	
	$\frac{2}{q_2}$	\rightarrow q_1 γ_{γ}	77		live load lateral surcharge =		ksf
		static soil loa	dings:		LL lateral surcharge, q1 = unfactored soil, q2 = unfactored soil, q3 = unfactored soil, q4 = equivalent soil loadings:	0.0000 0.0000 0.0000 0.000	ksf ksf ksf ksf
		→ -		→	unfactored q5 =		ksf
	q_2	∠]	q_7 q_6	L_↓ q ₅	unfactored q6 = unfactored q7 =		ksf ksf
<u>soil se</u>	<u>ismic:</u>	resultant f	actored so	oil seismic lo	pad per foot of wall width, P _{u (eq)} =	0	k/ft
	centro	id location of	the result	ant soil seis	mic from the bottom of wall, h _{eq} =	0	ft
	The resulta	ant soil seism	ic load wil	l be resolved	d into an equivalent pressure load	ling	



Equivalent factored seismic soil pressure loading & seismic wall loadings...

- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0337 / 1.4 = 0.0241 ksf
- unfactored equivalent soil seismic, q11 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q12 =0 / 1.4 = 0.0000 ksf

BY: City of Wilsonville SHEET: BS DATE: Aug-21 CLIENT: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Aeration Basin Hydrodynamic Pressures (CSZ Seismic Level - Longitudinal Direction) Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012: wall connection fixity = no roof & fixed at floor tank unit width perpendicular to EQ., B = 1 ft tank inside length in direction of seismic, L = ft 1.50 175 tank wall thickness, $t_w =$ 18 inch wall height, H_w = 18.5 ft 77725 liquid height, $H_1 =$ 15.82 ft liquid specific gravity = 1 liquid density, $\gamma_{L} = (sp.gr.)^{*}\gamma_{w} =$ 0.0624 k/ft³ 32.17 acceleration due to gravity, g = ft/sec² liquid mass density, $\rho_L = \gamma_L / g = 0.00194$ k-sec²/ft⁴ 18.5 0 15.82 Soil Data The site has groundwater present. soil height above top of foundation base = 0 ft groundwater ht. above foundation base = 0 ft k/ft³ dry soil lateral pressure = 0 WALL SECTION 0 k/ft³ saturated soil lateral pressure = dry soil unit weight = 0 k/ft³ 0.000 live load lateral surcharge = ksf 0 concrete strength, $f'_c =$ 4 ksi concrete density, γ_c = 0.150 k/ft³ concrete modulus of elasticity, $E_c =$ 3605.0 ksi concrete mass density, $\rho_c = \gamma_c / g = 0.004663 \text{ k-sec}^2/\text{ft}^4$ Seismic: Deisgn, 5% damped, spectral response acceleration at the short period of 0.2-second, S_{DS} = *g 0.446 Deisgn, 5% damped, spectral response acceleration at a period of 1-second, S_{D1} = 0.332 *g B = 1 ft Structure Risk Category = 3 Importance factor, I = 1.25 18 in. Response modification factor, R_{wi} = 3 Response modification factor, R_{wc} = 1 L = 175 ft Load Cases: case 1 = water case 2 = water + water seismic + wall seismic case 3 = soil + lateral surcharge seismic direction case 4 = soil + soil seismic + wall seismic WALL PLAN

BY: CHKD:	BS	DATE: DESCRIPT	Aug-21	CLIENT:	City of Wilsonv Aeration Basins	ille	SHEET:	11962A.00	
DESIGN TASK:		Aer	ation Basin	Hydrodynan	nic Pressures (CSZ Se	ismic Lev	vel - Longitudinal Direction)		
Weights:		-ft width wall c.g. relative to		•	8/12) * (18.5) * 0.15 = 18.5 / 2 =	4.16 9.250	kip ft		
	un	it width liquid	mass, W_L =	· (175) *	(1) * (15.82) * 32.17 =	172.75	kip		

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w/12)^*\rho_c = 0.12939 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i/W_L)^*(L/2)^*H_L^*\rho_L = 0.28024 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 6.981 \text{ ft}$ wall fixity condition is no roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(t_W/h)^3 / 48 = 1287.44 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (1287.44 / (0.1294 + 0.2802))^*/_2 = 56.0621 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = 2\pi / 56.0621 = 0.1121 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = 0.446 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\lambda = \sqrt{3.16 \text{ g } \tanh\left(3.16\left(\frac{\text{H}_{\text{L}}}{\text{L}}\right)\right)} = (3.16*32.2*\tanh(3.16*(0.0904)))^{1/2} = 5.3174$$
$$\omega_{c} = \frac{\lambda}{\sqrt{11}} = 5.3174 / (175)^{1/2} = 0.4020 \text{ rad/sec},$$

$$\sqrt{L}$$

period of the convective mass, $T_c = 2\pi / \omega_c = 2\pi / 0.402 = 15.6314$ sec

Long transition period (from map figure 22-15 ASCE 7),
$$I_L = 16$$
 sec

design spectral response acceleration for convective mass (
$$0.5\%$$
 damping), $S_{ac} = 1.5 * Sd1 / Tc = 0.032 g$

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.7581$

4). lateral fluid convective force:

BY: BS DATE: Aug-21 **CLIENT:** City of Wilsonville SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Aeration Basin Hydrodynamic Pressures (CSZ Seismic Level - Longitudinal Direction) 175 ft L = ∇ B = 1 ft $H_L =$ 15.82 ft P_c (convective) W_L = 172.75 kip h_{c} P (impulsive) $L/H_{L} = 11.06195$ h_i $H_{I}/L = 0.09040$ L Dynamic Model 3). lateral fluid impulsive force: Wi = equivalent mass of the impulsive component of liquid. $W_{i} = W_{L} \left(\frac{\tanh\left(0.866\frac{L}{H_{L}}\right)}{0.866\frac{L}{H_{L}}} \right)$ 172.75*(tanh(0.866*(11.0619)) / 0.866*(11.0619)) = = 18.03 kip

hi (EBP) = HL *
$$0.375 = 15.82 * 0.375 = 5.933$$
 ft
bi (IBP) = HL * ((0.866*1 /HL))/(2*tapb(0.866*1 /HL))) 1/8] = 73.708 ft

impulsive force,
$$P_i = \left(\frac{S_{ai} I}{R_{wi}}\right)W_i = (0.446 * 1.25 / 3)*18.03 = 3.4 kip$$

Wc = equivalent mass of the convective component of liquid.

$$W_{c} = W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) tanh\left(3.16\left(\frac{H_{L}}{L}\right)\right)\right) = 172.75^{*}(0.264^{*}(11.0619)^{*} tanh(3.16^{*}(0.0904))) = 140.32 \text{ kip}$$

$$h_{c (EBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 7.963 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 201.127 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.0319 * 1.25 / 1)*140.32 = 5.6$$
 kip

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIP	TION:		Aeration Basins	JOB NO:	11962A.00
DESIGN TASK:		Ae	ration Basin	Hydrodynam	ic Pressures (CSZ Seismic L	evel - Longitudir	al Direction)

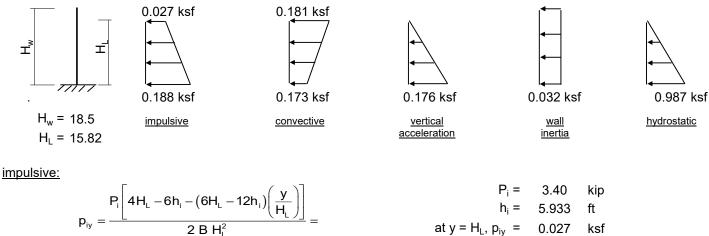
5). lateral inertia force of the accelerating wall:

unit width wall mass, W_w =	4.16	kip
wall c.g. relative to base, h_w =	9.250	ft

wall inertia force,
$$P_w = \left(\frac{S_{ai} \ I \ \epsilon}{R_{wi}}\right) W_w = (0.446*1.25*0.7581/3)*4.16 = 0.59$$
 kip

6). maximum wave slosh height displacement:

$$d_{(max)} = \left(\frac{L}{2}\right) \left(\frac{S_{ac}}{1.4} I\right) = (175/2) * (0.0319/1.0 * 1.25) = 3.49 \text{ ft}$$


7). vertical acceleration:

- design horizontal accereration, S_{DS} = 0.446 *g
- vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4^*S_{DS} = 0.1784$ g

per ASCE 7-10 para. 15.7.7.2(b), use $I = R_i = b = 1.0$

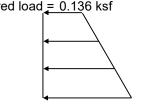
Design vertical acceleration,
$$\ddot{u} = \frac{S_{av} I b}{R_i} = 0.1784^{*}1^{*}1/1 = 0.1784 g$$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

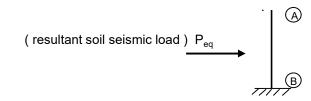
convective:

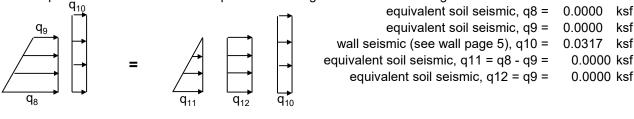
$$p_{cy} = \frac{P_{c} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]}{2 B H_{L}^{2}} =$$

$n_i =$	5.933	π
at y = H_L , p_{iy} =	0.027	ksf
at base $y = 0, p_{iy} =$	0.188	ksf
P _c =	5.60	kip
h _c =	7.963	ft
at y = H_L , p_{cy} =	0.181	ksf
at base y = 0, p_{cy} =	0.173	ksf



BY:	BS	DATE:	•	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIP			Aeration Basins	JOB NO:	
DESIGN 1	ASK:	Ae	ration Basin	Hydrodynam	nic Pressures (CSZ Seismic Lev	el - Longitu	dinal Direction)
ertical ac	celeration	<u>.</u>				0 4 7 0 4	
	$\mathbf{p}_{uv} = \mathbf{\ddot{u}} \gamma_{u}$	$(H_L - y) =$			u = at y = H _L , p _{vv} =	= 0.1784	ksf
	· vy • L				at base y = 0, p_{vy} =		ksf
					at base $y = 0, p_{yy}$	0.170	Kai
all inertia		S Low (t	(12)		n =	- 0 1400) * γ _c * (t _w /12)
	$p_{wy} = -$	S _{ai} Ιεγ _c (t _. R _{wi}	$\frac{1}{2} = \frac{1}{2}$		at y = H _w , p _{wy} =	- 0.1403	ksf
		• wi			at base y = 0, p_{wy} =		ksf
ydrostati	<u>c:</u>				αι 5000 y - 0, ρ _{wy} -	0.002	NOI
		(11			at y = H _L , q _{hy} =	0.000	ksf
	$q_{hy} = \gamma_L$	$(H_L - y) =$			at base y = 0, q _{hy} =		ksf
ombine t	he effects	of the dynam	ic pressures	on the wall:			
	$\mathbf{p} = \sqrt{0}$	$\left(p_{y} + p_{wy} \right)^2 + p_{wy}$	$n^2 + n^2 =$		at y = H _w , p _y =	= 0.190	ksf
	$P_y = \gamma($	My 'Pwy) 'F	cy 'Pwy ─		at base $y = 0, p_y =$	0.331	ksf
		Ľ Ľ	ד ק		0.190 ksf (unfactored = 0.19 /		
9). wall de	esign pres	sures for hydr		<u>nt dynamic p</u> mamic:	<u>ressures</u> wall height, H _w = 18.5 liquid height, H _L = 15.82	ft ft	
		A		\mathbf{A}	unfactored load - +	<u>= 0.13</u> 6 ksf	


0.987 ksf <u>hydrostatic</u>


unfactored load = 0.236 ksf resultant dynamic pressures

Aug-21 CLIENT: BY: City of Wilsonville BS DATE: SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Aeration Basin Hydrodynamic Pressures (CSZ Seismic Level - Longitudinal Direction) 10). wall design pressures for external soil loading: The site has groundwater present. static soil: wall height = 18.5 ft (A) soil height above top of base = 0 ft groundwater ht. above base = 0 ft k/ft³ dry soil lateral pressure = 0.000 k/ft³ sat. soil lateral pressure = 0.000 (в live load lateral surcharge = 0.000 ksf equivalent static soil loadings: LL lateral surcharge, q1 = 0.0000 ksf unfactored soil, q2 = 0.0000 ksf unfactored soil, q3 = 0.0000 ksf unfactored soil, q4 = 0.000 ksf equivalent soil loadings: unfactored q5 = 0.0000 ksf unfactored q6 =0.0000 ksf unfactored q7 = 0.0000 ksf soil seismic: resultant factored soil seismic load per foot of wall width, $P_{u (eq)}$ = k/ft 0 centroid location of the resultant soil seismic from the bottom of wall, heg = 0 ft The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading & seismic wall loadings...

- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0317 / 1.4 = 0.0226 ksf
- unfactored equivalent soil seismic, q11 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, g12 =0 / 1.4 = 0.0000 ksf

Aug-21 CLIENT: BY: BS DATE: City of Wilsonville SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Aeration Basin Hydrodynamic Pressures (CSZ Seismic Level - Longitudinal Direction) Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4: 11). Load Cases: case 1 = water case 2 = water + water seismic + wall seismic case 3 = soil + lateral surcharge case 4 = soil + soil seismic + wall seismic a). load case 1: hydrostatic water wall height = 18.5 ft water depth = 15.82 ft (unfactored) 0.987 ksf b). load case 2: hydrostatic + dynamic: 0.136 ksf (unfactored) wall height = 18.5 ft water depth = 15.82 ft = 0.236 ksf 1.087 ksf 0.136 ksf 0.987 ksf (unfactored) (unfactored) (unfactored) (unfactored) hydrostatic resultant dynamic pressures wall height = 18.5 ft c). load case 3: static soil + LL surcharge: soil height on wall = 0 ft groundwater height = 0 ft equivalent static soil & surcharge loadings... LL lateral surcharge, q1 = 0.000 ksf unfactored soil, q2 = 0.000 ksf unfactored soil, q3 = 0.000 ksf unfactored soil, q4 = 0.000 ksf equivalent soil loadings: unfactored q5 = 0.000 ksf unfactored q6 = 0.000 ksf unfactored q7 = 0.000 ksf d). load case 4: soil seismic: (*note: add static soil pressure q6 & q7 to the seismic soil shown below) equivalent seismic soil pressure loading & seismic wall loadings... wall height = 18.5 ft soil height on wall = 0 ft q₉ unfactored equivalent soil seismic, q8 = 0.000 ksf unfactored equivalent soil seismic, q9 = 0.000 ksf unfactored equivalent soil seismic, q10 = 0.023 ksf unfactored equivalent soil seismic, q11 = 0.000 ksf

q₈

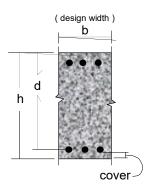
BY: CHKD:	BS	DATE: DESCRIPT	Aug-21	CLIENT:	City of Wilsonville Aeration Basins	SHEET: JOB NO:	11962A.00
DESIGN	TASK:			Vall between	Aeration Basins 1&2 (Hydrody		
	sign for a sl Wall Su W Thickness Depth to rei concrete s orcing yield	ab or a wall? pport Fixity = Span, L = 'all width, b = s of Wall, h = inforcing, d = trength, f ' _c = strength, f _y = lection, L/Δ =	Wall	(de	sign width) b b b b b b b b b b b b b b b b b b c	nertia, $I_x = 0.5 I_g = 2$ c e = 12 x 18	916 in ⁴
Wall Loa	adings:				R _L X Positive	L = 18.5 e Load Sign Convent	I R _R
<u>(k/ft)</u> (0) (0)	<u>(k/</u> (0.1 (0)	21)				<u>(k/ft)</u> (0.5) (0.5)	
_	ſ						

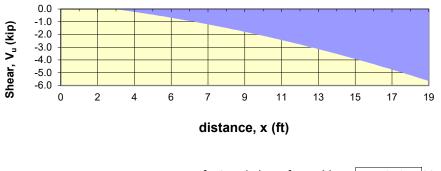
Externally Applied Service Loads to a Wall with Cantilever Support											
Uniform		Trapezoio	dal Loads		Point	Loads	Momen	Concrete			
	Be	egin	E	nd					Load		
w	b	W _b	е	W _e	а	Р	с	М	Factors		
(k/ft)	(ft)	(k/ft)	(ft)	(k/ft)	(ft)	(kip)	(ft)	(ft-k)			
	2.68	0.212	18.5	0.502					1		
LW		•		optional e	nvironmenta	al load facto	or for momer	nt (ACI 350) =	1		

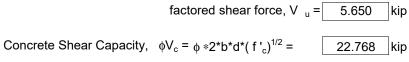
Results:

 * Deflection is based on the trial moment of Inertia of 0.5 * Ig.(actual deflection will be adjusted later on page 6.)

	Calculated Reactions, Moments, and Deflections for the Wall with Cantilever Support										
	Reactions	s, R or R _u	Max	kimum Mor	nents, M or	Mu	* Maxii	* Maximum Short Term Deflections			
Load	Left End Right End		Max Positive		Max Negative		downward		upward		
Туре	RL	R _R	x distance	+M	x distance	-M	x distance	Δ	x distance	Δ	
	(kip)	(kip)	(ft)	(ft-k)	(ft)	(ft-k)	(ft)	(in)	(ft)	(in)	
service loads	0.00	5.65	0.000	0.00	18.500	-38.63	0.000	-0.455	18.500	0.000	
factored loads	0.00	5.65	0.000	0.00	18.500	-38.63	Δ ≤ L/240 ,Okay Δ ≤ L/240 ,Okay Δmax = L/240 = 0.925 "				
	environmenta	ll factor, M _u =		0.00		-38.63					

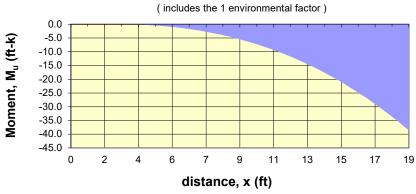

file: Concrete using # 20 6" neg bars and # 9 @ 6" pos bars be final adjusted long term deflection (see page 6), Δ = 0.509 "


BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPT	ION:		Aeration Basins	JOB NO:	11962A.00
DESIGN	TASK:		Dividing V	all between	Aeration Basins 1&2 (Hydrody	namic Loading O	nly) (CSZ)


Wall Shear Capacity (Based on ACI 318, 11.2.1.1):

5.65	kip	concrete, f ' _c =	4	ksi
12	in	reinforcing, f _y =	60	ksi
15	in	concrete modulus, $E_c = 57 * (f'_c)^{\frac{1}{2}} =$	3605	ksi
18	in	φ, Shear =	1.00	
	5.65 12 15 18	12 in 15 in	12inreinforcing, $f_y =$ 15inconcrete modulus, $E_c = 57 * (f_c)^{\frac{1}{2}} =$	12 in reinforcing, $f_y = 60$ 15 in concrete modulus, $E_c = 57 * (f_c)^{\frac{1}{2}} = 3605$

Factored Shear Diagram



øVc > Vu, OK

Minimum shrinkage-temperature requirement in the flexure direction:						
wall minimum temperature / shrinkage steel ratio =	0.00500					
number of layers of reinforcement in the wall (1 or 2 ?) =	2					

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:		
CHKD:		DESCRIPT	ION:	-	Aeration Basins	JOB NO:	1196	62A.00
DESIG	N TASK:		Dividing V	Vall between /	Aeration Basins 1&2 (Hydrodyn	amic Loading O	nly) (CSZ)
Wall B	ending:							
	Service M	oment, M(+) =	0.00	ft-k	concrete	e strength, f $'_{c}$ =	4	ksi
	Service M	loment, M(-) =	38.63	ft-k	reinforcing yiel	ld strength, f _y =	60	ksi
F	actored Mo	oment, M _u (+) =	0.00	ft-k	concrete modulus, E _c	= 57 * (f _c) ^{1/2} =	3605	ksi
	Factored Mo	oment, M _u (-) =	38.63	ft-k	reinforcement	t modulus, E _s =	29000	ksi
	V	Vall width, b =	12	in		$n = E_s / E_c =$	8.044	
	Depth to re	einforcing, d =	15	in		β ₁ =	0.85	
	Thickne	ss of wall, h =	18	in		φ, Bending =	0.9	
		Faa	torod Ma	mant Diag		()	design width)	
				oment Diag		((b b	
		(i	ncludes the 1	environmental fa	,			
•	-5.0				#9@	<u>vy</u> 6"		d1
ft-k)	-10.0					d		

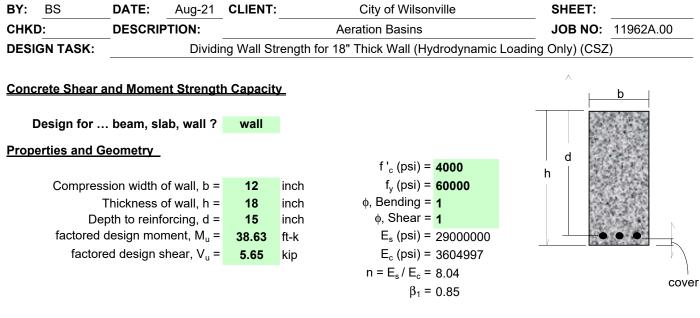
1). Negative Steel: (location at x =	= 18.5 ft <u>)</u>	
Depth to negative reinforcing, d1 =	2.5	in
M _u (-) =	38.63	ft-k
Wall width, b =	12	in
Depth to reinforcing, d = h - d1 =	15.5	in
Area steel required, $A'_{s (req'd)}$ =	0.569	in ²
Bar number size =	# 9	
Spacing of negative bars =	6	in
Area of steel provided, A'_s =	2.00	in ²
Min area steel req'd, $A_{s (min)}$ =	0.62	in ²
Max area allowed, $A'_{s (max)}$ =	3.98	in ²

<u>2). Positive Steel: (location at $x =$</u>	<u>0 ft)</u>	
concrete clear cover to positive steel =	2	in
M _u (+) =	0	ft-k
Wall width, b =	12	in
Depth to reinforcing, $d = $	15	in
Area steel required, $A_{s (req'd)} =$	0.000	in ²
Bar number size =	#9	
Spacing of positive bars =	6	
Area of bottom steel provided, A_s =	2.00	in ²
Min area steel req'd, A _{s (min)} =	0.54	in ²
Max area allowed, $A'_{s (max)}$ =	3.85	in ²

 $\begin{aligned} R_{u} &= M_{u} \,/ \left(\,\, \varphi^{*} b^{*} d^{2} \,\, \right) = \,\, 178.7 \\ \rho_{(req^{\prime} d)} &= \frac{0.85 \,\, f_{c}^{'}}{f_{y}} \,\, \left(\,\, 1 - \sqrt{ \,\, 1 - \frac{2 \,\, R_{u}}{0.85 \,\, f_{c}^{'}}} \,\, \right) = \,\, 0.00306 \end{aligned}$

h

#9@6"

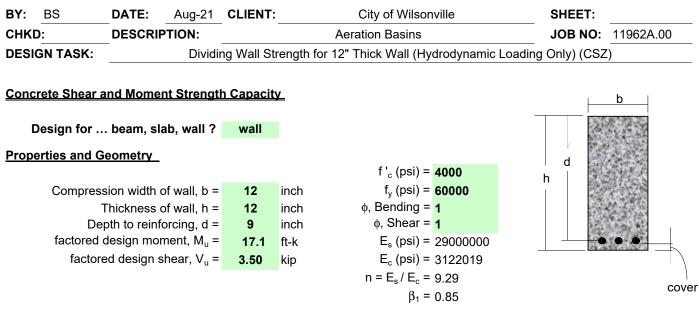

, $\rho = A_s$ / bd = 0.01075 , $\rho_{(min)} = 0.00333$, $\rho_{(max)} = 0.02138$

$$\begin{aligned} R_{u} &= M_{u} \,/ \,(\,\phi^{\star}b^{\star}d^{2}\,) = \,0.0 \\ \rho_{(\text{reg'd})} &= \frac{0.85 \,\,f_{c}^{'}}{f_{y}} \,\,\left(1 \!-\!\sqrt{1 \!-\!\frac{2 \,R_{u}}{0.85 \,\,f_{c}^{'}}}\,\,\right) = \,0.00000 \end{aligned}$$

, $\rho = A_s$ / bd = 0.01111 , $\rho_{(min)} = 0.00300$, $\rho_{(max)} = 0.02138$ cover-

Reinforcement

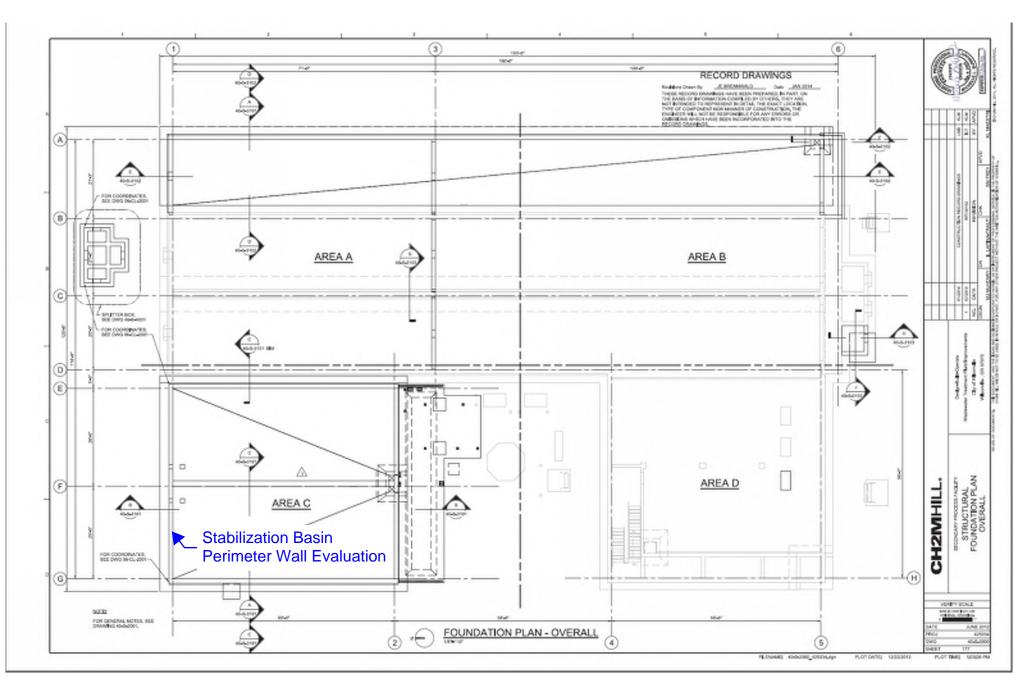
Nominal Shear Strength (Based on ACI 318-11.3.1.1)

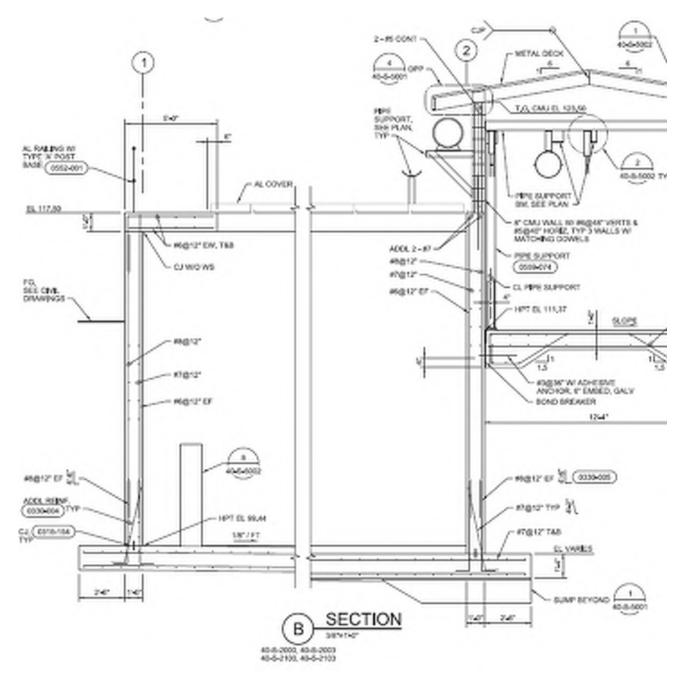

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 22.77$$
 kip $\ge Vu$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)

comment : Existing 18" wall w/ #9@6" Area steel provided, A_s = 2 in² $\rho = A_s / bd = 0.01111$ $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} =$ 0.32 $\rho_{(min)} = 0.00180$ in² $\rho_{(max)} = 0.02138$ $A_{s (max)} =$ 3.85 in² bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f'}\right)$ $\phi^* M_n =$ 1*0.01111*60*12*15² *(1-0.588*0.01111*60/4)*(ft/12) = 135.294 ft-k ≥ Mu


Nominal Shear Strength (Based on ACI 318-11.3.1.1)

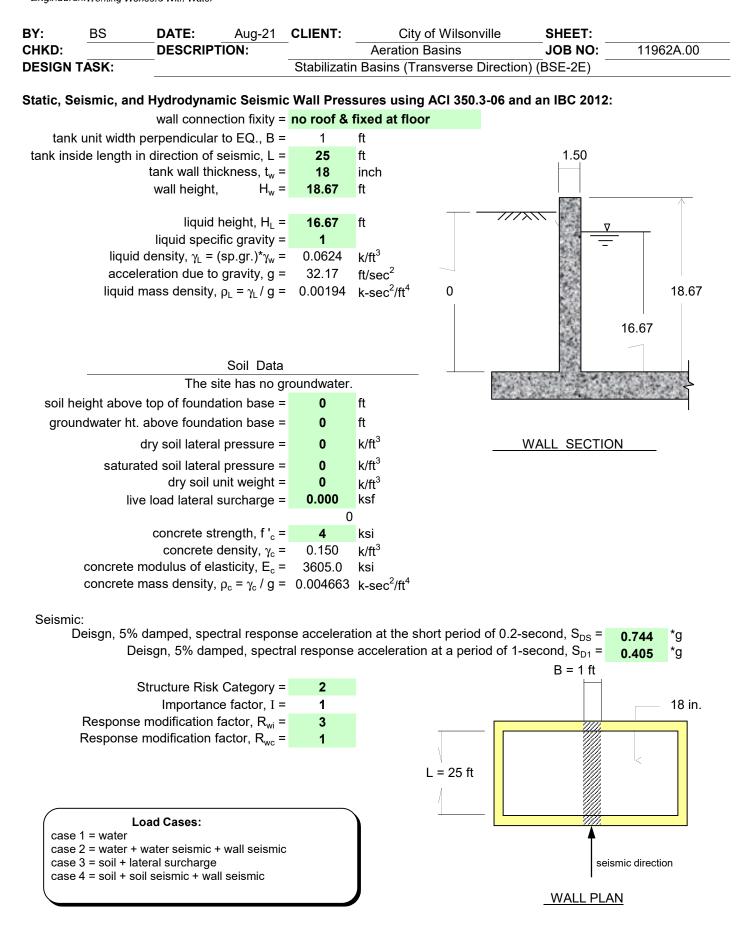

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 13.66$$
 kip $\ge Vu$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)

comment : existing 12" wall w/ #7@12" Area steel provided, A_s = $\rho = A_s / bd = 0.00556$ 0.6 in² $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} =$ 0.19 $\rho_{(min)} = 0.00180$ in² 1.73 $A_{s (max)} =$ in² $\rho_{(max)} = 0.01604$ bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f'}\right)$ $\phi^* M_n =$ 1*0.00556*60*12*9² *(1-0.588*0.00556*60/3)*(ft/12) = 25.235 ft-k ≥ Mu

Stabilization Basin Perimeter Wall Section Reinforcing


BYBSDATESUBJECT_City of Wilsonville SHEET NOOF CHKD. BYDATEArcotion Basins JOB NO. 11962A.00
Arration Basins Area C - Parimeter Bosin Wall The existing stabilization preimeter walls along the north and south elevations will be checked for the seismic loads Since the basin is partially buried, there will be soil pressures present to resist the seismic effects. The perimeter walls are 12" thick with # 80212" vertical reinforcing and # 7012" horizontal reinforcing inside face and #8012" horizontal reinforcing artside face.
For soil pressure on wall, assume a load of 40pcf triangular. See attached spreadsheet for hydrostatic & hydrodynamic loads on wall.
Checking wall strength vertically ($482(2'' \text{ vert reinf})$). Forces are at BSE-2E. May = 18.35 k.ft/ft $\Phi M_n = 33.26 k.ft/ft$ Nay = 7.26 k /ft $\Phi N_n = 13.66 k / ft$ Moment DCR = $\frac{18.35}{33.26} = 0.55 (ak)$ Shear DCR = $\frac{7.26}{(3.66)} = 0.53 (ak)$
Checking wall strength horizontally (#8012" O.F. \$ #7012" I.F. horiz rant) $M_{0x4} = 14.45 \ k.47/ff \qquad 0 M_{n} = 38.26 \ k.67/ff M_{0x-} = -7.03 \ k.67/ff \qquad 0 M_{n} = 25.68 \ k.67/ff M_{0x} = 4.61 \ k/ff \qquad 0 M_{n} = 13.66 \ k/ff + Moment DCR = \frac{14.45}{33.76} = 0.43 \ (ok) = Moment DCR = \frac{7.03}{75.68} = 0.27 \ (ok) Showr DCR = \frac{4.61}{13.66} = 0.34 \ (ok)$
Checking free board height in bosin. For Risk Cotegory III, S = 0.7× donore. Stanswere = 0.7(2.40fr) = 1.68 ft Stanswere = 0.7(3.17fr) = 2.22 ft free board height = 2.00ft 2.00ft > 1.68 ft (ole) Free board is sufficient. 2.00ft 2.22ft (NG) Free board is not sufficient.

N.

BY BS DATE 7/1 CHKD. BY DATE	9/2) SUBJECT City of Wilsonville Arration Basins	SHEET NO OF JOB NO. <u>11962 A.00</u>
Muy = 20.22 4.4	$\begin{array}{rcl} & & \text{the vertically. Forces are at CS} \\ & & \text{iff} & & \text{oH}_{n} \sim 33.26 & \text{k-felff} \\ & & & \text{oH}_{n} \sim 33.26 & \text{k-felff} \\ & & & \text{oH}_{n} \sim 33.26 & \text{k-felff} \\ & & & \text{oH}_{n} \sim 33.26 & \text{k-felff} \\ & & & \text{show } \text{iff} = 0.61 & (\text{ok}) \\ & & & & \frac{7.62 & \text{klff}}{13.66 & \text{klff}} = 0.58 & (\text{ok}) \\ \end{array}$	E seismic level.
Checking wall stren Mux = 16.25 4. ft/f Vux = 5.18 WAF Moment De Shear De	$\Phi M_{n} = 33.26 \text{ k.ft/ft} \\ \Phi V_{n} = 13.66 \text{ k.ft} \\ H_{1} = \frac{16.27 \text{ k.ft/ft}}{33.26 \text{ k.ft/ft}} = 0.49 \text{ (sle)}$	

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonv	ille	_SHEET:	110624 00
CHKD: DESIGN T	ASK	DESCRIP	HON:	Stabilizatir	Aeration Basins Stabilizatin Basins (Transverse Direction			11962A.00
BEGION				Glashizath				
Weights:								
-	unit 1-	ft width wall	mass, W _w =	(18/	/12) * (18.67) * 0.15 =	4.20	kip	
	wall o	.g. relative t	o base, h _w =		18.67 / 2 =	9.335	ft	
	uni	t width liquid	mass. W ₁ =	(25) * ((1) * (16.67) * 32.17 =	26.01	kip	

Seismic:

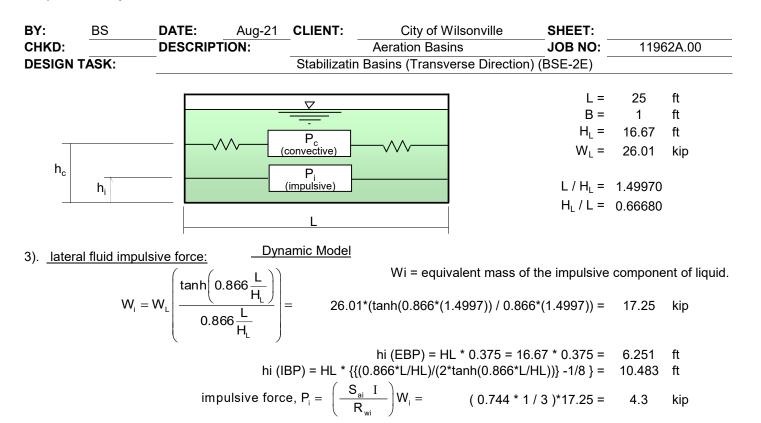
1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w/12)^*\rho_c = 0.13058 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i/W_L)^*(L/2)^*H_L^*\rho_L = 0.26806 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 7.261 \text{ ft}$ wall fixity condition is no roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(tw/h)^3 / 48 = 1144.17 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (1144.17 / (0.1306 + 0.2681))^2/_2 = 53.5744 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = 2\pi / 53.5744 = 0.1173 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = 0.744 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\omega_c = \frac{1}{\sqrt{L}} = \frac{9.93457(25)}{2} = 1.9869$$
 rad/sec,
period of the convective mass, $T_c = 2\pi / \omega_c = \frac{2\pi}{1.9869} = 3.1623$ sec


Long transition period (from map figure 22-15 ASCE 7),
$$T_L = 16$$
 sec

design spectral response acceleration for convective mass (0.5% damping),
$$S_{ac}$$
 = 1.5 * Sd1 / Tc = 0.192 g

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.7688$

- -1/- - ----

4). <u>lateral fluid convective force:</u>

Wc = equivalent mass of the convective component of liquid.

$$W_{c} = W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) tanh\left(3.16\left(\frac{H_{L}}{L}\right)\right)\right) =$$

$$h_{c (EBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 10.474 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 12.446 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.1921 * 1 / 1)*10 = 1.9$$
 kip

BY: CHKD: DESIGN 1	BS	DATE: Aug-21 CLIENT: City of Wilsonville SHEET: DESCRIPTION: Aeration Basins JOB NO: Stabilizatin Basins (Transverse Direction) (BSE-2E)		119	62A.00				
5). <u>latera</u>	l inertia forc	e of the acce	lerating wa	<u>all:</u>				4.00	
						unit width wall	••	4.20	kip
						wall c.g. relative t	o base, h _w =	9.335	ft
	wal	I inertia forc	se, $P_w = \left(\right)$	$\frac{S_{ai} I \epsilon}{R_{wi}} W$	V _w =	(0.744*1*0.76	588/3)*4.2 =	0.80	kip
6). <u>maxir</u>	num wave s	losh height d			I) =	(25 / 2) * (0.192	l / 1.0 * 1) =	2.40	ft

7). <u>vertical acceleration:</u>

design horizontal accereration, S_{DS} = 0.744 *g

P_c = 1.90

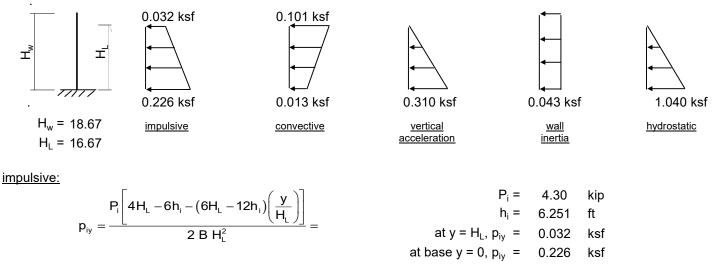
at y = H_L , $p_{cy} = 0.101$

at base $y = 0, p_{cy} = 0.013$

 $h_c = 10.474$ ft

kip

ksf


ksf

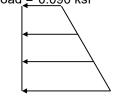
vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4*S_{DS} = 0.2976$ g

per ASCE 7-10 para. 15.7.7.2(b), use I = R_i = b = 1.0

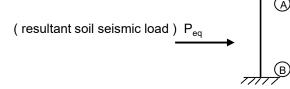
Design vertical acceleration, $\ddot{u} = \frac{S_{av}I \ b}{R_i} = 0.2976*1*1/1 = 0.2976 \ g$

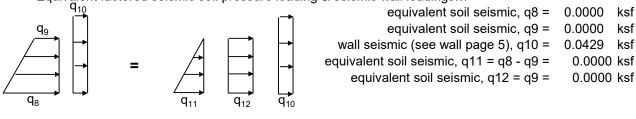
8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

convective:


$$p_{cy} = \frac{P_{c} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]}{2 B H_{L}^{2}} =$$

BY: BS DATE: Aug-21 **CLIENT:** City of Wilsonville SHEET: CHKD: **DESCRIPTION:** Aeration Basins JOB NO: 11962A.00 Stabilizatin Basins (Transverse Direction) (BSE-2E) **DESIGN TASK:** vertical acceleration: ü = 0.2976 $p_{vv} = \ddot{u} \gamma_L (H_L - y) =$ at $y = H_L, p_{vv} = 0.000$ ksf at base $y = 0, p_{vy} = 0.310$ ksf wall inertia: $p_{wy} = \frac{S_{ai} I \epsilon \gamma_c (t_w/12)}{R_{wi}} =$ $p_{wv} = 0.1907 * \gamma_c * (t_w/12)$ at y = H_w , $p_{wy} = 0.043$ ksf at base y = 0, $p_{wy} = 0.043$ ksf hydrostatic: at $y = H_L$, $q_{hy} = 0.000$ ksf $q_{hv} = \gamma_L (H_L - y) =$ at base y = 0, $q_{hy} = 1.040$ ksf combine the effects of the dynamic pressures on the wall: $p_{y} = \sqrt{(p_{iy} + p_{wy})^{2} + p_{cv}^{2} + p_{w}^{2}} =$ at $y = H_w, p_v = 0.126$ ksf at base $y = 0, p_y = 0.410$ ksf 0.126 ksf (unfactored = 0.126 / 1.4 = 0.09 ksf) r₹ 0.410 ksf (unfactored = 0.41 / 1.4 = 0.293 ksf) resultant dynamic pressures 9). wall design pressures for hydrostatic + dynamic: wall height, $H_w = 18.67$ ft liquid height, $H_1 = 16.67$ ft unfactored load = 0.090 ksf

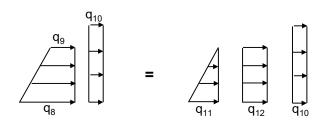

1.040 ksf <u>hydrostatic</u>


unfactored load = 0.293 ksf resultant dynamic pressures

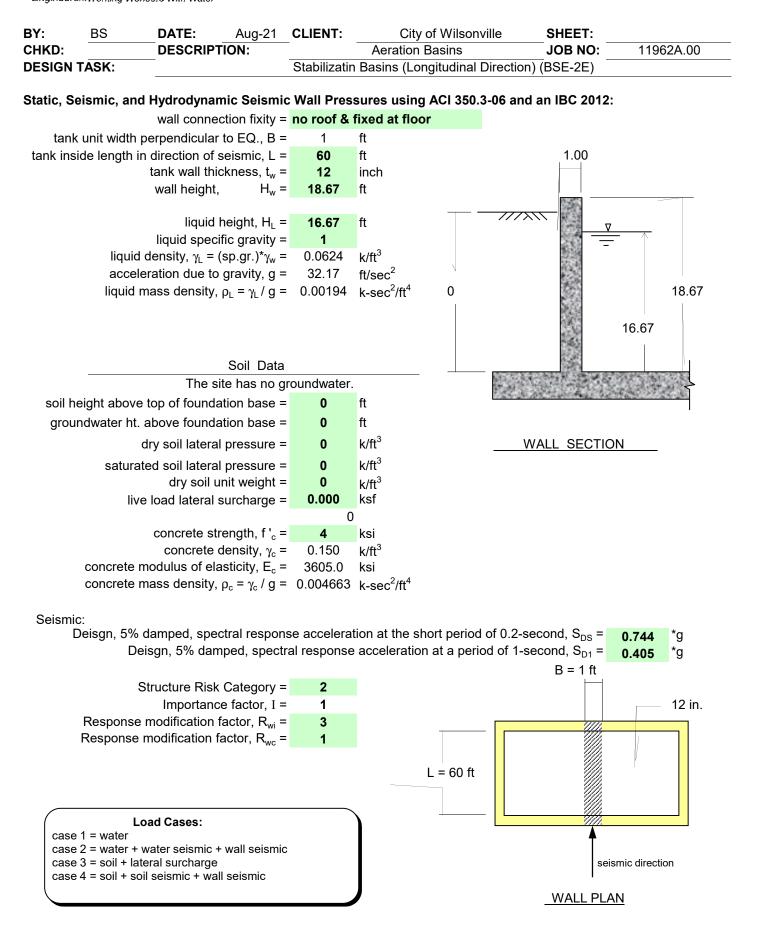
BY: CHKD:	BS	DATE: DESCRIPTI	Aug-21	CLIENT:	City of Wilsonville	SHEET: JOB NO:	11962A.00
DESIGN	TASK			Stabilizati	n Basins (Transverse Direction) (-	11302A.00
DESIGN	IAGN.			Otabilizati		DOL-2L)	
<u>10).</u> wall	design press	ures for exte	rnal soil lo	ading:			
static	soil:			-	The site has no gro	oundwater.	
			A		wall height =		ft
	D.		Ŭ		soil height above top of base =	0	ft
	43	1 []			groundwater ht. above base =	0	ft
	_	▶ →			dry soil lateral pressure =	0.000	k/ft ³
		▶ ─▶	B		sat. soil lateral pressure =	0.000	k/ft ³
	q_2	$q_1 q_1$	77		live load lateral surcharge =	0.000	ksf
	equivalent	static soil loa	dings:		LL lateral surcharge, q1 =	0.0000	ksf
	·		Ū		unfactored soil, q2 =		ksf
					unfactored soil, q3 =	0.0000	ksf
	q _{3/1} –	→ 1	1			0.000	
		→ =		 →	equivalent soil loadings:		
		→ -		▶	unfactored q5 =	0.0000	ksf
			q_6	q ₅	unfactored q6 =	0.0000	ksf
soil se	eismic:						
301 30	<u>5151110.</u>	resultant f	actored so	oil seismic lo	pad per foot of wall width, P _{u (eq)} =	0	k/ft
	centro	id location of	the result	ant soil seisi	mic from the bottom of wall, h_{eq} =	0	ft
	The resulta	ant soil seism	ic load wil	l be resolved	d into an equivalent pressure load	ling	
						-	
					· A		
			<i>/ //</i>				

Equivalent factored seismic soil pressure loading & seismic wall loadings...

- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0429 / 1.4 = 0.0306 ksf
- unfactored equivalent soil seismic, q11 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q12 =0 / 1.4 = 0.0000 ksf



BY: City of Wilsonville BS DATE: Aug-21 CLIENT: SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Stabilizatin Basins (Transverse Direction) (BSE-2E) 11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4: Load Cases: case 1 = water case 2 = water + water seismic + wall seismic case 3 = soil + lateral surcharge case 4 = soil + soil seismic + wall seismic a). load case 1: hydrostatic water wall height = 18.67 ft water depth = 16.67 ft (unfactored) 1.040 ksf b). load case 2: hydrostatic + dynamic: 0.09 ksf (unfactored) wall height = 18.67 ft water depth = 16.67 ft = 1.040 ksf 0.293 ksf 1.243 ksf 0.090 ksf (unfactored) (unfactored) (unfactored) (unfactored) hydrostatic resultant dynamic pressures c). load case 3: static soil + LL surcharge: wall height = 18.67 ft soil height on wall = 0 ft equivalent static soil & surcharge loadings... LL lateral surcharge, q1 = 0.000 ksf unfactored soil, q2 = 0.000 ksf unfactored soil, q3 = 0.000 ksf 0.000 equivalent soil loadings: unfactored q5 = 0.000 ksf unfactored q6 = 0.000 ksf


d). load case 4: soil seismic: (*note: add static soil pressure q6 & q7 to the seismic soil shown below) equivalent seismic soil pressure loading & seismic wall loadings...

wall height = 18.67 ft
soil height on wall = 0 ft

unfactored equivalent soil seismic, q8 =	0.000	ksf
unfactored equivalent soil seismic, q9 =	0.000	ksf
unfactored equivalent soil seismic, q10 =	0.031	ksf
unfactored equivalent soil seismic, q11 =	0.000	ksf
unfactored equivalent soil seismic, q12 =	0.000	ksf

BY: CHKD:	BS	DATE: DESCRIPT	Aug-21	CLIENT:	City of Wilsonv Aeration Basins	ille	_SHEET:	11962A.00
DESIGN 1	ASK:		ION.	Stabilizatin	Stabilizatin Basins (Longitudinal Direction			11902A.00
Weights:								
weights.	unit 1-	ft width wall r	nass, W _w =	(12	/12) * (18.67) * 0.15 =	2.80	kip	
	wall c	.g. relative to	base, h _w =	•	18.67 / 2 =	9.335	ft	
	unit	width liquid r	mass, W _L =	(60) *	(1) * (16.67) * 32.17 =	62.41	kip	

Seismic:

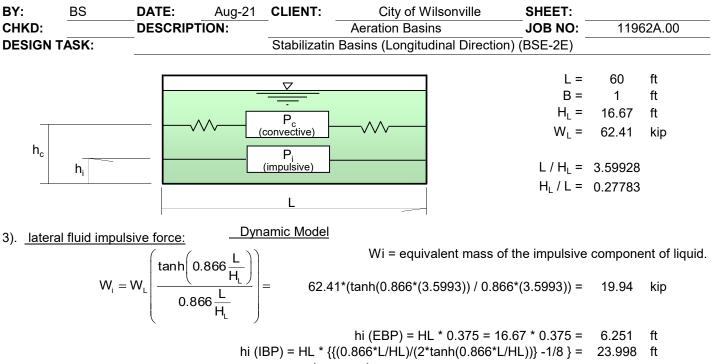
1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w/12)^*\rho_c = 0.08705 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i/W_L)^*(L/2)^*H_L^*\rho_L = 0.30993 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 6.927 \text{ ft}$ wall fixity condition is no roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(tw/h)^3 / 48 = 390.46 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (390.46 / (0.0871 + 0.3099))^{^{2}}/_{^{2}} = 31.3618 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = 2\pi / 31.3618 = 0.2003 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = 0.744 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\lambda = \sqrt{3.16 \text{ g } \tanh\left(3.16\left(\frac{\text{H}_{\text{L}}}{\text{L}}\right)\right)} = (3.16^{*}32.2^{*}\tanh(3.16^{*}(0.2778)))^{1}/_{2} = 8.4681$$
$$\omega = \frac{\lambda}{1000} = 8.4681 / (.60)^{1}/_{2} = 1.0932 \text{ rm}$$


$$\omega_{\rm c} = \frac{\pi}{\sqrt{L}} = 8.4681 / (60)^{1/2} = 1.0932 \text{ rad/sec},$$

period of the convective mass,
$$T_c = 2\pi / \omega_c = 2\pi / 1.0932 = 5.7474$$
 sec
Long transition period (from map figure 22-15 ASCE 7), $T_L = 16$ sec

design spectral response acceleration for convective mass (
$$0.5\%$$
 damping), S_{ac} = $1.5 * Sd1 / Tc = 0.106 g$

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.5299$

impulsive force,
$$P_i = \left(\frac{S_{ai} I}{R_{wi}}\right)W_i = (0.744 * 1 / 3)*19.94 = 4.9$$
 kip

4). lateral fluid convective force:

$$W_{c} = W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) tanh\left(3.16\left(\frac{H_{L}}{L}\right)\right)\right) =$$

$$h_{c \text{ (EBP)}} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 8.832 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 28.102 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.1057 * 1 / 1)*41.83 = 4.4$$
 kip

BY:	BS		Aug-21	CLIENT:	City of Wilsonville		440	CO A . O O
CHKD: DESIGN TASK:		DESCRIP	_ DESCRIPTION: Aeration Ba Stabilizatin Basins (Longi		Aeration Basins asins (Longitudinal Directio	JOB NO:	11962A.00	
5). <u>latera</u>	al inertia f	orce of the acc	elerating wa	<u>all:</u>				
					unit width wa	ll mass, W _w =	2.80	kip
					wall c.g. relative	to base, h _w =	9.335	ft
	١	wall inertia for	rce, $P_w = \left(\right)$	$\frac{S_{ai} I \epsilon}{R_{wi}} W_{w}$	= (0.744*1*0.5	5299/3)*2.8 =	0.37	kip
6). <u>maxi</u>	mum wav	e slosh height	displacemer	<u>nt:</u>				
			d	$-(L)(S_{ac})$	- (60/2)*(0.10)	57/10*1)-	2 1 7	ft

$$d_{(max)} = \left(\frac{L}{2}\right) \left(\frac{S_{ac}}{1.4}I\right) = (60/2) * (0.1057/1.0*1) = 3.17 \text{ ft}$$

Wave height is greater than the freeboard of 2-ft. Check effects of wave spillage.

7). vertical acceleration:

design horizontal accereration, S_{DS} = 0.744 *g

at base $y = 0, p_{iy} = 0.257$

at y = H_L , $p_{cy} = 0.156$

at base $y = 0, p_{cy} = 0.108$

P_c = 4.40

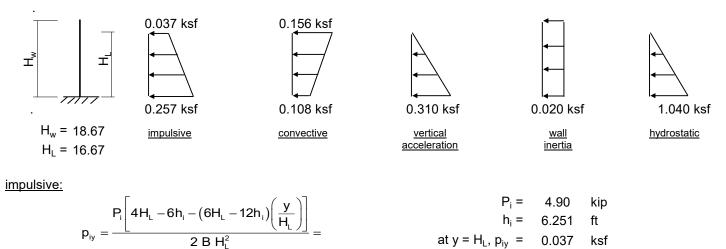
 $h_c = 8.832$

ksf

kip

ksf

ksf


ft

vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4*S_{DS} = 0.2976$ g

per ASCE 7-10 para. 15.7.7.2(b), use I = R_i = b = 1.0

Design vertical acceleration, $\ddot{u} = \frac{S_{av} I b}{R_i} = 0.2976*1*1/1 = 0.2976 g$

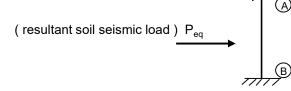
8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

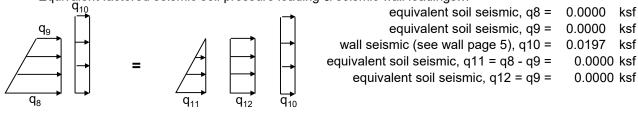
convective:

file: wall pressures IBC2013

$$p_{cy} = \frac{P_{c} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]}{2 B H_{L}^{2}} =$$

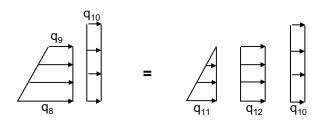
BY: BS DATE: Aug-21 **CLIENT:** City of Wilsonville SHEET: CHKD: **DESCRIPTION:** Aeration Basins JOB NO: 11962A.00 Stabilizatin Basins (Longitudinal Direction) (BSE-2E) **DESIGN TASK:** vertical acceleration: ü = 0.2976 $p_{vv} = \ddot{u} \gamma_L (H_L - y) =$ at $y = H_L, p_{vv} = 0.000$ ksf at base $y = 0, p_{vy} = 0.310$ ksf wall inertia: $p_{wy} = \frac{S_{ai} I \epsilon \gamma_c (t_w/12)}{R_{wi}} =$ $p_{wv} = 0.1314 * \gamma_c * (t_w/12)$ at y = H_w , $p_{wy} = 0.020$ ksf at base y = 0, $p_{wy} = 0.020$ ksf hydrostatic: at $y = H_L$, $q_{hy} = 0.000$ ksf $q_{hv} = \gamma_L (H_L - y) =$ at base y = 0, $q_{hy} = 1.040$ ksf combine the effects of the dynamic pressures on the wall: $p_{y} = \sqrt{(p_{iy} + p_{wy})^{2} + p_{cv}^{2} + p_{w}^{2}} =$ at $y = H_w, p_v = 0.166$ ksf at base $y = 0, p_v = 0.429$ ksf 0.166 ksf (unfactored = 0.166 / 1.4 = 0.118 ksf) H 0.429 ksf (unfactored = 0.429 / 1.4 = 0.307 ksf) resultant dynamic pressures 9). wall design pressures for hydrostatic + dynamic: wall height, $H_w = 18.67$ ft liquid height, $H_1 = 16.67$ ft unfactored load = 0.118 ksf

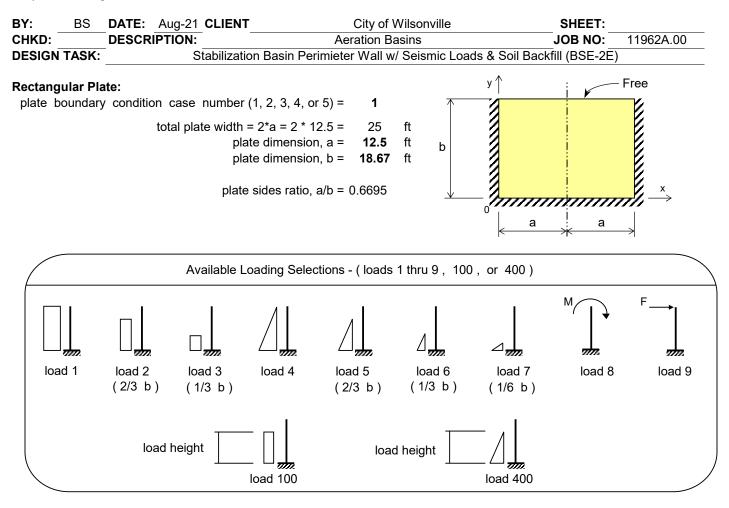

1.040 ksf <u>hydrostatic</u>


unfactored load = 0.307 ksf resultant dynamic pressures

BY: CHKD: DESIGN 1	BS	DATE: DESCRIPTI	Aug-21 ON:	CLIENT: Stabilizatir	City of Wilsonville Aeration Basins Basins (Longitudinal Direction) (SHEET: JOB NO: BSE-2E)	11962A.00
<u>10). wall (</u> static			r <u>nal soil lo</u> A	<u>ading:</u>	The site has no gro wall height = soil height above top of base = groundwater ht. above base = dry soil lateral pressure =	18.67 0 0	ft ft ft k/ft ³
		•	B 77		sat. soil lateral pressure = live load lateral surcharge =	0.000	k/ft ³ ksf
	equivalent q _{3∕1} ∣_	static soil loa ➔	dings:	∣ •]	LL lateral surcharge, q1 = unfactored soil, q2 = unfactored soil, q3 =	0.0000	ksf ksf ksf
	-	→ = q ₁	q ₆	q ₅	equivalent soil loadings: unfactored q5 = unfactored q6 =	0.0000	ksf ksf
<u>soil se</u>	eismic:	resultant f	actored s	oil seismic lo	bad per foot of wall width, $P_{u(eq)}$ =	0	k/ft
	centro	id location of	the result	ant soil seis	mic from the bottom of wall, h_{eq} =	0	ft
	The resulta	ant soil seism	ic load wil	l be resolved	d into an equivalent pressure load	ling	

Equivalent factored seismic soil pressure loading & seismic wall loadings...


- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0197 / 1.4 = 0.0141 ksf
- unfactored equivalent soil seismic, q11 = 0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q12 =0 / 1.4 = 0.0000 ksf


BY: City of Wilsonville BS DATE: Aug-21 CLIENT: SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Stabilizatin Basins (Longitudinal Direction) (BSE-2E) 11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4: Load Cases: case 1 = water case 2 = water + water seismic + wall seismic case 3 = soil + lateral surcharge case 4 = soil + soil seismic + wall seismic a). load case 1: hydrostatic water wall height = 18.67 ft water depth = 16.67 ft (unfactored) 1.040 ksf b). load case 2: hydrostatic + dynamic: 0.118 ksf (unfactored) wall height = 18.67 ft water depth = 16.67 ft = 1.040 ksf 0.307 ksf 1.229 ksf 0.118 ksf (unfactored) (unfactored) (unfactored) (unfactored) hydrostatic resultant dynamic pressures c). load case 3: static soil + LL surcharge: wall height = 18.67 ft soil height on wall = 0 ft equivalent static soil & surcharge loadings... LL lateral surcharge, q1 = 0.000 ksf unfactored soil, q2 = 0.000 ksf unfactored soil, q3 = 0.000 ksf 0.000 equivalent soil loadings: unfactored q5 = 0.000 ksf unfactored q6 = 0.000 ksf (*note: add static soil pressure q6 & q7 to the seismic soil shown below) d). load case 4: soil seismic: equivalent seismic soil pressure loading & seismic wall loadings...

wall height = 18.67 ft
soil height on wall = 0 ft

unfactored equivalent soil seismic, q8 =	0.000	ksf
unfactored equivalent soil seismic, q9 =	0.000	ksf
unfactored equivalent soil seismic, q10 =	0.014	ksf
unfactored equivalent soil seismic, q11 =	0.000	ksf
unfactored equivalent soil seismic, q12 =	0.000	ksf

	Choice of Available Loadings												
load	load type	load height, (ft)	unfactored loads:	concrete lo	oad factors								
conditions	Loading	only for custom	q, M, or F	for	for								
(4 max)	Selection Number	loads 100 or 400	(ksf, ft-k/ft, k/ft)	moment	shear								
A	100	16.670	0.166	1	1								
В	400	16.670	0.263	1	1								
С	400	16.670	1.040	1	1								
D	400	10.280	-0.411	0.9	0.9								

Notes: 1). Load 100 = uniform load of any load height \ge b/3; Load 400 = triangular load of any load height \ge b/6.

2). load height must be less than or equal to "b", and uniform load height ≥ "b / 3", and triangular load height ≥ "b / 6".

3). loads may be positive or negative.

plate thickness, h =	12	in
concrete strength, f 'c = reinforcing steel strength, fy = reinforcing clear cover to face of concrete = number of curtains of reinforcing, (1 or 2) = Are bars in "x" or "y" direction closest to face of concrete ? minimum ratio of horizontal shrinkage-temperature steel = minimum ratio of vertical shrinkage-temperature steel =	4 60 2 2 y 0.00500 0.00500	ksi ksi in

bar locations	d (in)	d' (in)
Mx bending	9"	3"
My bending	9.5"	2.5"

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCR	IPTION:		Aeration Basins	JOB NO:	11962A.00
DESIGN	TASK:		S	Stabilization	n Basin Perimieter Wall w/ Seismic Loads & Soil Bac	kfill (BSE-2E)	

					М,	<mark>، - Mom</mark>	ent Sum	mary					
	40 F		oads: q	1							SUMM	ARY	
a = b =	12.5 18.67	0.166 Mome	0.263 1.040 -0.411 Boundary Case 1					Reinfo	orcing:				
	0.6695		91.674		-143.262					Final Moments		(d = 9")	
		N	Ioment C	oefficien	ts	M _x Moments, ft-k/ft				M _x	M _{ux}	A _{s(req'd)}	A _{s(min)}
x/a	y/b	А	В	С	D	Α	В	С	D	ft-k/ft	ft-k/ft	in²/ft	in ² /ft
0	1	0.1035	0.0228	0.0228	0.0037	5.99	2.09	8.28	-0.52	15.84	15.89	0.41	0.36
0	0.8	0.0996	0.0272	0.0272	0.0067	5.76	2.50	9.88	-0.96	17.18	17.27	0.44	0.36
0	0.6	0.0900	0.0303	0.0303	0.0105	5.21	2.78	10.99	-1.50	17.47	17.62	0.45	0.36
0	0.4	0.0668	0.0284	0.0284	0.0134	3.87	2.60	10.30	-1.92	14.85	15.04	0.38	0.36
0	0.2	0.0272	0.0150	0.0150	0.0092	1.57	1.37	5.43	-1.32	7.05	7.19	0.18	0.36
0	0	0.0000	0.0000	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.36
0.2	0	0.0034	0.0022	0.0022	0.0015	0.20	0.20	0.79	-0.21	0.97	0.99	0.02	0.36
0.4	0	0.0089	0.0050	0.0050	0.0032	0.51	0.46	1.80	-0.45	2.32	2.36	0.06	0.36
0.6	0	0.0139	0.0071	0.0071	0.0043	0.80	0.65	2.58	-0.61	3.43	3.49	0.09	0.36
0.8	0	0.0171	0.0085	0.0085	0.0049	0.99	0.78	3.07	-0.70	4.14	4.21	0.10	0.36
1	0	0.0182	0.0089	0.0089	0.0051	1.05	0.82	3.24	-0.73	4.38	4.45	0.11	0.36
1	0.2	-0.0070	-0.0039	-0.0039	-0.0024	-0.41	-0.35	-1.40	0.34	-1.82	-1.86	-0.05	-0.36
1	0.4	-0.0288	-0.0115	-0.0115	-0.0051	-1.66	-1.06	-4.18	0.74	-6.17	-6.24	-0.16	-0.36
1	0.6	-0.0417	-0.0138	-0.0138	-0.0048	-2.41	-1.27	-5.02	0.68	-8.02	-8.08	-0.20	-0.36
1	0.8	-0.0473	-0.0136	-0.0136	-0.0037	-2.74	-1.25	-4.92	0.53	-8.38	-8.43	-0.21	-0.36
1	1	-0.0516	-0.0134	-0.0134	-0.0031	-2.99	-1.23	-4.85	0.45	-8.61	-8.66	-0.22	-0.36
0.8	1	-0.0459	-0.0117	-0.0117	-0.0027	-2.66	-1.07	-4.25	0.38	-7.60	-7.64	-0.19	-0.36
0.8	0.8	-0.0424	-0.0121	-0.0121	-0.0032	-2.45	-1.11	-4.38	0.46	-7.48	-7.52	-0.19	-0.36
0.8	0.6	-0.0379	-0.0127	-0.0127	-0.0044	-2.19	-1.16	-4.59	0.63	-7.32	-7.38	-0.19	-0.36
0.8	0.4	-0.0266	-0.0109	-0.0109	-0.0049	-1.54	-1.00	-3.94	0.70	-5.77	-5.84	-0.15	-0.36
0.8	0.2	-0.0066	-0.0038	-0.0038	-0.0024	-0.38	-0.35	-1.39	0.35	-1.78	-1.81	-0.04	-0.36
max r	negative	moment,	M _{ux} (-) =	-8.66	ft-k/ft			ma	ax positiv	e moment	, M _{ux} (+) =	17.62	ft-k/ft
max n	egative s							ma	x positive	e steel req	d, A _s (+) =		in²/ft
	minin	num stee	el req'd =	-0.36	in²/ft]			mi	nimum ste	el req'd =	0.36	in²/ft
	Use												
						1				L			

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCR	IPTION:		Aeration Basins	JOB NO:	11962A.00
DESIGN	TASK:		S	Stabilization	n Basin Perimieter Wall w/ Seismic Loads & Soil Bac	kfill (BSE-2E)	

					M	, - Mom	ent Sumi	mary					
	40.5		oads: q								SUMM	ARY	
a = b =	12.5 18.67	0.166 Mome	0.263 nt Coeffi	1.040 cient Mul	-0.411 tipliers		Boundary	/ Case 1				Reinfo	orcing:
	0.6695		91.674		-143.262					Final Moments		(d = 9.5")	
		N	loment C	oefficien	ts	M _y Moments, ft-k/ft				My	M _{uy}	A _{s(req'd)}	A _{s(min)}
x/a	y/b	А	В	С	D	A	В	С	D	ft-k/ft	ft-k/ft	in ² /ft	in ² /ft
0	1	0.0000	0.0000	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.36
0	0.8	0.0199	0.0055	0.0055	0.0014	1.15	0.50	1.99	-0.20	3.45	3.47	0.08	0.36
0	0.6	0.0180	0.0061	0.0061	0.0021	1.04	0.56	2.21	-0.30	3.50	3.53	0.08	0.36
0	0.4	0.0134	0.0057	0.0057	0.0027	0.77	0.52	2.06	-0.38	2.97	3.01	0.07	0.36
0	0.2	0.0055	0.0030	0.0030	0.0018	0.32	0.28	1.09	-0.26	1.42	1.45	0.03	0.36
0	0	0.0000	0.0000	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.36
0.2	0	0.0170	0.0109	0.0109	0.0077	0.98	1.00	3.97	-1.11	4.85	4.96	0.12	0.36
0.4	0	0.0446	0.0248	0.0248	0.0158	2.58	2.27	8.99	-2.26	11.59	11.81	0.28	0.38
0.6	0	0.0692	0.0357	0.0357	0.0213	4.01	3.28	12.96	-3.06	17.19	17.49	0.42	0.38
0.8	0	0.0854	0.0424	0.0424	0.0244	4.94	3.88	15.36	-3.50	20.68	21.03	0.51	0.38
1	0	0.0910	0.0445	0.0445	0.0254	5.26	4.08	16.15	-3.64	21.86	22.22	0.54	0.38
1	0.2	0.0101	-0.0015	-0.0015	-0.0041	0.58	-0.14	-0.56	0.58	0.47	0.41	0.01	0.36
1	0.4	-0.0211	-0.0132	-0.0132	-0.0079	-1.22	-1.21	-4.79	1.13	-6.09	-6.20	-0.15	-0.36
1	0.6	-0.0245	-0.0099	-0.0099	-0.0036	-1.42	-0.90	-3.58	0.51	-5.39	-5.44	-0.13	-0.36
1	0.8	-0.0125	-0.0037	-0.0037	-0.0004	-0.72	-0.34	-1.34	0.05	-2.35	-2.36	-0.06	-0.36
1	1	0.0000	0.0000	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.36
1	0.4	-0.0211	-0.0132	-0.0132	-0.0079	-1.22	-1.21	-4.79	1.13	-6.09	-6.20	-0.15	-0.36
0.8	0.4	-0.0199	-0.0126	-0.0126	-0.0075	-1.15	-1.15	-4.55	1.07	-5.78	-5.89	-0.14	-0.36
0.6	0.4	-0.0161	-0.0104	-0.0104	-0.0063	-0.93	-0.96	-3.78	0.90	-4.77	-4.86	-0.11	-0.36
0.4	0.4	-0.0094	-0.0067	-0.0067	-0.0041	-0.54	-0.61	-2.42	0.59	-2.98	-3.04	-0.07	-0.36
0.2	0.4	0.0007	-0.0010	-0.0010	-0.0010	0.04	-0.09	-0.37	0.14	-0.29	-0.30	-0.01	-0.36
max ı	negative	moment,	M _{uy} (-) =	-6.20	ft-k/ft			ma	ax positiv	e moment	, M _{uy} (+) =	22.22	ft-k/ft
max n	egative s							max	k positive	steel req	d, A _s (+) =		in²/ft
	minin	num stee	el req'd =	-0.36	in²/ft]			mi	nimum ste	el req'd =	0.38	in²/ft
	Use												
						1				L			

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCR	IPTION:		Aeration Basins	JOB NO:	11962A.00
DESIGN	TASK:		S	tabilizatio	n Basin Perimieter Wall w/ Seismic Loads & Soil Bacl	(fill (BSE-2E)	1

						ear Sun	nmary					
	12.5	Loads: q, M, or F 0.166 0.263 1.040 -0.411							s	SUMMARY		
a = b =	12.5		r Coeffic		-		Boundary	/ Case 1				
	0.6695		4.910	19.417	-7.673					Fi	nal Shear	5
			Shear Co				Shears			V	Vu	φV _c
x/a	y/b	A	В	С	D	A	В	С	D	k/ft	k/ft	k/ft
0	1	0.4370	0.0425	0.0425	-0.0160	1.35	0.21	0.83	0.12	2.51	2.50	10.81
0	0.8	0.5116	0.1304	0.1304	0.0208	1.59	0.64	2.53	-0.16	4.60	4.61	10.81
0	0.6	0.5283	0.1797	0.1797	0.0567	1.64	0.88	3.49	-0.44	5.57	5.62	10.81
0	0.4	0.4585	0.2287	0.2287	0.1202	1.42	1.12	4.44	-0.92	6.06	6.15	10.81
0	0.2	0.1599	0.1437	0.1437	0.1168	0.50	0.71	2.79	-0.90	3.09	3.18	10.81
0	0.00	-0.0543	-0.0108	-0.0108	0.0075	-0.17	-0.05	-0.21	-0.06	-0.49	-0.48	10.81
0.2	0	0.0863	0.1156	0.1156	0.1155	0.27	0.57	2.24	-0.89	2.19	2.28	10.81
0.4	0	0.3128	0.2396	0.2396	0.1922	0.97	1.18	4.65	-1.48	5.32	5.47	10.81
0.6	0	0.4704	0.3103	0.3103	0.2286	1.46	1.52	6.02	-1.75	7.25	7.43	10.81
0.8	0	0.5594	0.3460	0.3460	0.2448	1.73	1.70	6.72	-1.88	8.27	8.46	10.81
1	0	0.5880	0.3568	0.3568	0.2494	1.82	1.75	6.93	-1.91	8.59	8.78	10.81

Concrete strength reduction factor for shear, $\phi = 0.75$

 $\label{eq:Vc} \begin{array}{rll} d = & 9.5 & \mbox{in} \\ maximum shear, V_u = & 8.78 & \mbox{k/ft} \\ \phi V_c = \phi^* 2^* (f\, 'c)^{1/2} * b^* d = & (0.75^* 2^* (4000)^{-1/2} * 12^* 9.5)/1000 = & 10.81 & \mbox{k/ft} \end{array}$

Reference:

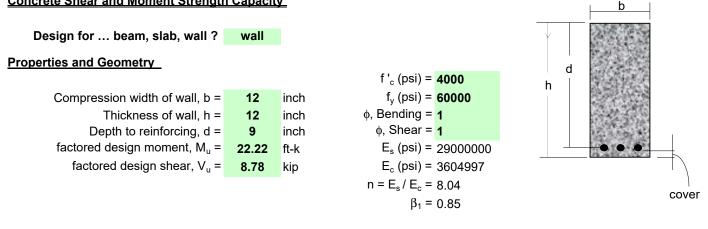
"Moments and Reactions for Rectangular Plates"

Engineering Monograph No. 27

By: W. T. Moody, United States Bureau of Reclamation

Notes:

Quadratic interpolation is used for intermediate values within the Moody tables and between Moody figures.


The positive sign convention for moments M_x and M_y is tension on the loaded face of the plate.

The M_x moment is in the direction of the x-axis and the M_y moment is in the direction of the y-axis by plate sign convention.

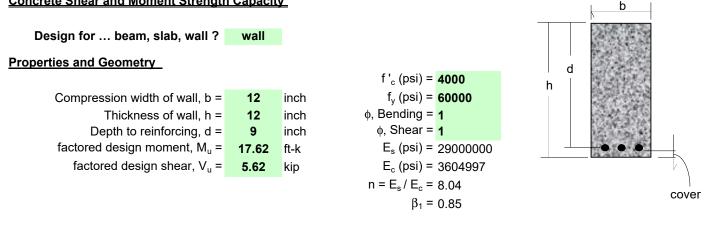
BY: BS DATE: Aug-21 CLIENT: City of Wilsonville SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Stabilization Basins Perimeter Wall Strength (Vertical Reinforcing) (BSE-2E)

Concrete Shear and Moment Strength Capacity

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 13.66$$
 kip $\ge Vu$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay


Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)

comment : existing 12" wall w/ #8@12" vert reinf Area steel provided, A_s = 0.79 in² $\rho = A_s / bd = 0.00731$ $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} =$ 0.19 $\rho_{(min)} = 0.00180$ in² $\rho_{(max)} = 0.02138$ $A_{s (max)} =$ 2.31 in² bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f'}\right)$ $\phi^* M_n =$ 1*0.00731*60*12*92 *(1-0.588*0.00731*60/4)*(ft/12) = 33.256 ft-k ≥ Mu

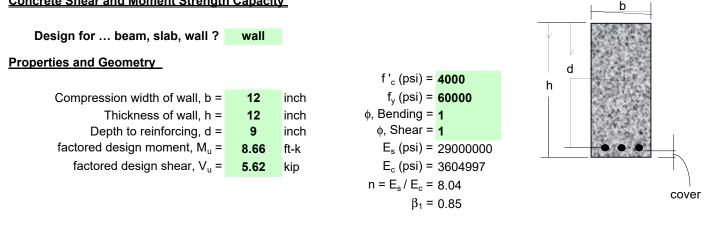
BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD: DESCRIPTION:		PTION:		Aeration Basins	JOB NO: 11962A.00		
DESIC	GN TASK:	_	Stabili	zation Basir	ns Perimeter Wall Strength (Horizontal Reinforc	ing) (BSE-2E	Ξ)

Concrete Shear and Moment Strength Capacity

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 13.66$$
 kip $\geq V u$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay

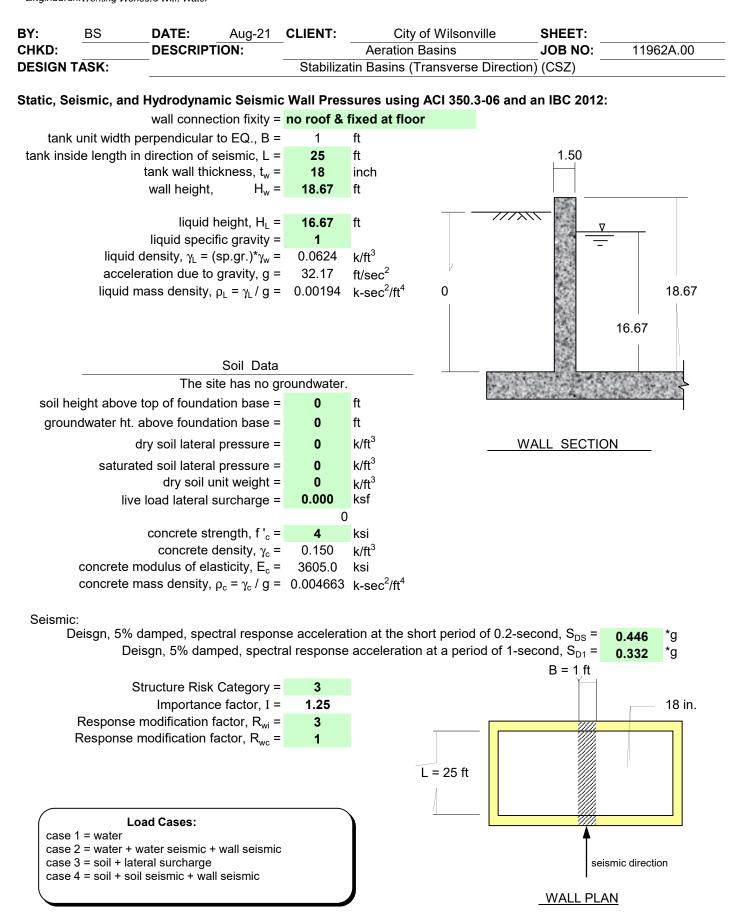

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)

comment : existing 12" wall w/ #8@12" horiz reinf outside face Area steel provided, A_s = **0.79** in² $\rho = A_s / bd = 0.00731$ $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} = 0.19$ $\rho_{(min)} = 0.00180$ in² $A_{s (max)} =$ 2.31 $\rho_{(max)} = 0.02138$ in² bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f_a}\right)$ $\phi^* M_n =$ 1*0.00731*60*12*9² *(1-0.588*0.00731*60/4)*(ft/12) = 33.256 ft-k ≥ Mu

BY: BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD: DESCRIPTION:		PTION:		Aeration Basins	JOB NO:	11962A.00
DESIGN TASK		Stabili	zation Basins	s Perimeter Wall Strength (Horizontal Reinford	cing) (BSE-2E	Ξ)

Concrete Shear and Moment Strength Capacity

Nominal Shear Strength (Based on ACI 318-11.3.1.1)


concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 13.66$$
 kip $\geq V u$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)

comment : existing 12" wall w/ #7@12" horiz reinf inside face $\rho = A_s / bd = 0.00556$ Area steel provided, A_s = 0.6 in² $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} = 0.19$ $\rho_{(min)} = 0.00180$ in² $A_{s (max)} =$ 2.31 $\rho_{(max)} = 0.02138$ in² bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f_a}\right)$ $\phi^* M_n =$ 1*0.00556*60*12*9² *(1-0.588*0.00556*60/4)*(ft/12) = 25.676 ft-k ≥ Mu

BY: CHKD:	BS		Aug-21	CLIENT:	City of Wilsonv Aeration Basins	ille	_SHEET:	11962A.00	
CHKD: DESCRIPTION: DESIGN TASK:			Stabiliza	Stabilizatin Basins (Transverse Direction) (CS					
Weights:									
	unit 1	-ft width wall	mass, $W_w =$	(18	/12) * (18.67) * 0.15 =	4.20	kip		
	wall	c.g. relative t	o base, h _w =		18.67 / 2 =	9.335	ft		
	uni	t width liquid	mass, W_L =	(25) *	(1) * (16.67) * 32.17 =	26.01	kip		

Seismic:

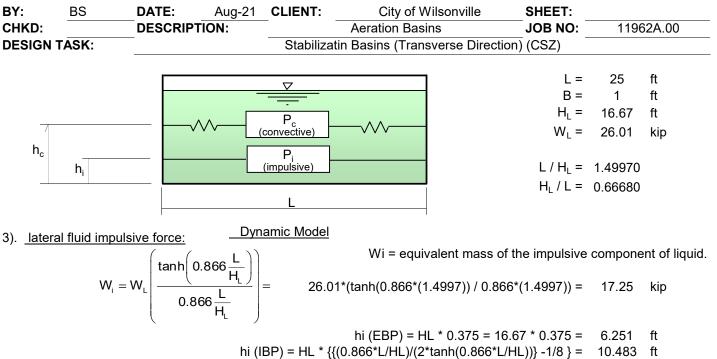
1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w/12)^*\rho_c = 0.13058 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i/W_L)^*(L/2)^*H_L^*\rho_L = 0.26806 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 7.261 \text{ ft}$ wall fixity condition is no roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(tw/h)^3 / 48 = 1144.17 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (1144.17 / (0.1306 + 0.2681))^{n}/_2 = 53.5744 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = 2\pi / 53.5744 = 0.1173 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = 0.446 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\lambda = \sqrt{3.16 \text{ g } \tanh\left(3.16\left(\frac{\text{H}_{\text{L}}}{\text{L}}\right)\right)} = (3.16^*32.2^*\tanh(3.16^*(0.6668)))^{1/2} = 9.9345$$
$$\omega_c = \frac{\lambda}{\sqrt{1}} = 9.9345 / (25)^{1/2} = 1.9869 \text{ rad/sec},$$


period of the convective mass,
$$T_c = 2\pi / \omega_c = 2\pi / 1.9869 = 3.1623$$
 sec

Long transition period (from map figure 22-15 ASCE 7),
$$T_L = 16$$
 sec

design spectral response acceleration for convective mass (0.5% damping),
$$S_{ac}$$
 = 1.5 * Sd1 / Tc = 0.158 g

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.7688$

impulsive force,
$$P_i = \left(\frac{S_{ai} I}{R_{wi}}\right) W_i = (0.446 * 1.25 / 3) * 17.25 = 3.2 kip$$

4). lateral fluid convective force:

$$W_{c} = W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) tanh\left(3.16\left(\frac{H_{L}}{L}\right)\right)\right) =$$

$$h_{c \text{ (EBP)}} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 10.474 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 12.446 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.1575 * 1.25 / 1)*10 = 2.0 kip$$

BY: CHKD:	BS	DATE: DESCRIPTI	•	CLIENT:	Aerat	City of Wilsonville ion Basins	SHEET:	1196	62A.00
DESIGN T	ASK:			Stabilizat	in Basin	ns (Transverse Direct	ion) (CSZ)		
5). latera	inertia force	e of the accel	erating wa	ll:					
/				_		unit width wa	III mass, W _w =	4.20	kip
						wall c.g. relative	e to base, h _w =	9.335	ft
	wal	inertia force	$e, P_w = \left(\frac{1}{2} \right)$	$\frac{S_{ai} I \epsilon}{R_{wi}} W$	/ _w =	(0.446*1.25*0.	7688/3)*4.2 =	0.60	kip
6). <u>maxin</u>	num wave sl	osh height die	-		I) =	(25 / 2) * (0.1575 /	7 1.0 * 1.25) =	2.46	ft

7). <u>vertical acceleration:</u>

design horizontal accereration, S_{DS} = 0.446 *g

P_c = 2.00

at y = H_L , $p_{cy} = 0.106$

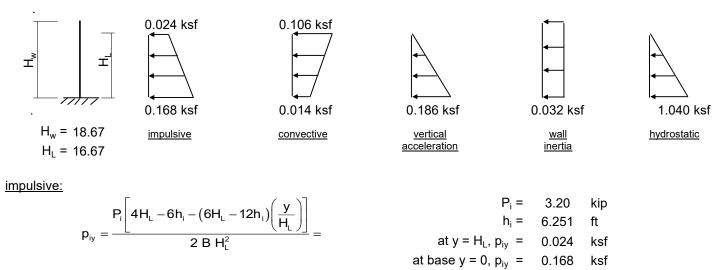
at base $y = 0, p_{cy} = 0.014$

 $h_c = 10.474$ ft

kip

ksf

ksf


316

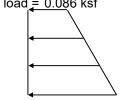
vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4*S_{DS} = 0.1784$ g

per ASCE 7-10 para. 15.7.7.2(b), use I = R_i = b = 1.0

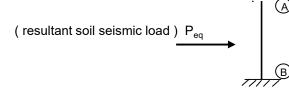
Design vertical acceleration, $\ddot{u} = \frac{S_{av} I b}{R_i} = 0.1784^{*}1^{*}1/1 = 0.1784 g$

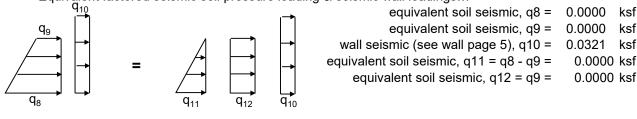
8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

convective:


$$p_{cy} = \frac{P_{c} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]}{2 B H_{L}^{2}} =$$

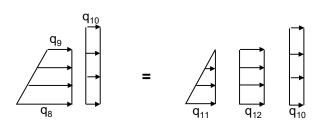
BY: BS DATE: Aug-21 **CLIENT:** City of Wilsonville SHEET: CHKD: **DESCRIPTION:** Aeration Basins JOB NO: 11962A.00 Stabilizatin Basins (Transverse Direction) (CSZ) **DESIGN TASK:** vertical acceleration: ü = 0.1784 $p_{vv} = \ddot{u} \gamma_L (H_L - y) =$ at $y = H_L, p_{vv} = 0.000$ ksf at base $y = 0, p_{vv} = 0.186$ ksf wall inertia: $p_{wy} = \frac{S_{ai} I \epsilon \gamma_c (t_w/12)}{R_{wi}} =$ $p_{wv} = 0.1429 * \gamma_c * (t_w/12)$ at $y = H_w, p_{wy} = 0.032$ ksf at base y = 0, $p_{wy} = 0.032$ ksf hydrostatic: at $y = H_L$, $q_{hy} = 0.000$ ksf $q_{hv} = \gamma_L (H_L - y) =$ at base y = 0, $q_{hy} = 1.040$ ksf combine the effects of the dynamic pressures on the wall: $p_{y} = \sqrt{(p_{iy} + p_{wy})^{2} + p_{cv}^{2} + p_{w}^{2}} =$ at $y = H_w, p_v = 0.120$ ksf at base $y = 0, p_y = 0.273$ ksf 0.120 ksf (unfactored = 0.12 / 1.4 = 0.086 ksf) H⊾ 0.273 ksf (unfactored = 0.273 / 1.4 = 0.195 ksf) resultant dynamic pressures 9). wall design pressures for hydrostatic + dynamic: wall height, $H_w = 18.67$ ft liquid height, $H_1 = 16.67$ ft unfactored load = 0.086 ksf

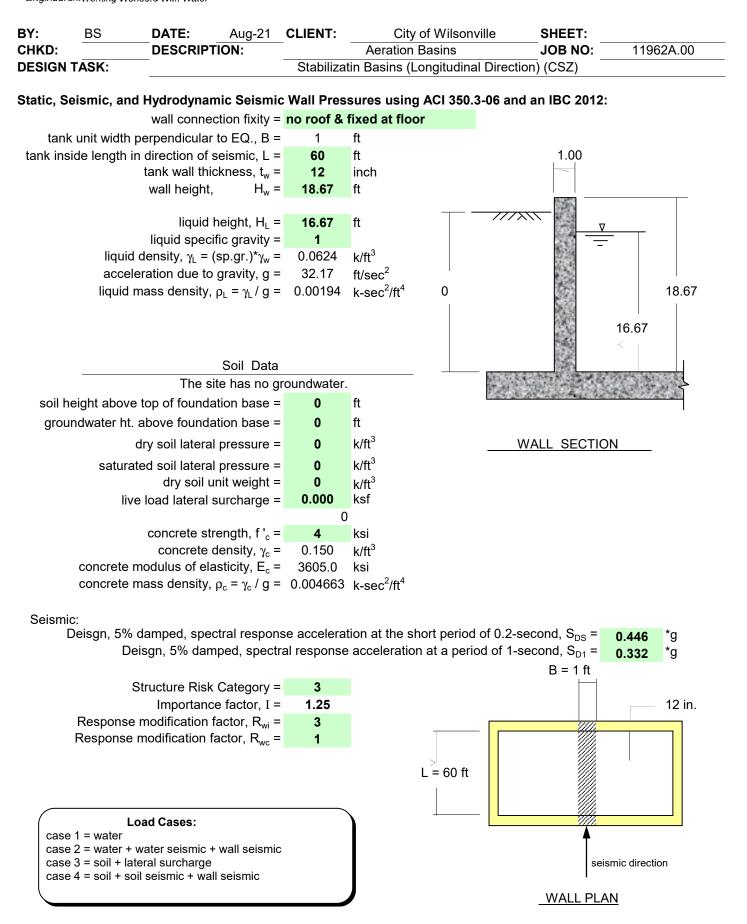

1.040 ksf <u>hydrostatic</u>


unfactored load = 0.195 ksf resultant dynamic pressures

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:			Aeration Basins		11962A.00
DESIGN ⁻	TASK:			Stabiliza	atin Basins (Transverse Direction)	(CSZ)	
<u>10). wall</u> static							
Statio	<u>5011.</u>		\bigcirc		The site has no gro wall height =		ft
					soil height above top of base =		ft
	q ₃				groundwater ht. above base =		ft
	-	́→			dry soil lateral pressure =		k/ft ³
	<u> </u>	▶ →	B		sat. soil lateral pressure =		k/ft ³
					live load lateral surcharge =	0.000	ksf
	q ₂	Y 1			live load lateral surcharge -	0.000	KSI
	equivalent	static soil loa	adings:		LL lateral surcharge, q1 =	0.0000	ksf
	•		Ū		unfactored soil, q2 =	0.0000	ksf
					unfactored soil, q3 =		ksf
	q _{3∕1 I} —	→ 1	1	 ──▶]		0.000	
		→ =	/ -	 →	equivalent soil loadings:		
		→ -		▶	unfactored q5 =	0.0000	ksf
					unfactored q6 =	0.0000	ksf
	q ₂	q ₁	q ₆	q_5			
soil se	eismic:						
		resultant	factored s	oil seismic lo	bad per foot of wall width, P _{u (eq)} =	0	k/ft
	centro	oid location o	f the result	ant soil seisi	mic from the bottom of wall, h _{eq} =	0	ft
		ant soil seisn	nic load wil	l he resolver	d into an equivalent pressure load	ling	
	THE TESUL					an 19	
					· A		

Equivalent factored seismic soil pressure loading & seismic wall loadings...


- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0321 / 1.4 = 0.0230 ksf
- unfactored equivalent soil seismic, q11 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q12 =0 / 1.4 = 0.0000 ksf


BY: City of Wilsonville BS DATE: Aug-21 CLIENT: SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Stabilizatin Basins (Transverse Direction) (CSZ) 11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4: Load Cases: case 1 = water case 2 = water + water seismic + wall seismic case 3 = soil + lateral surcharge case 4 = soil + soil seismic + wall seismic a). load case 1: hydrostatic water wall height = 18.67 ft water depth = 16.67 ft (unfactored) 1.040 ksf b). load case 2: hydrostatic + dynamic: 0.086 ksf (unfactored) wall height = 18.67 ft water depth = 16.67 ft = 1.040 ksf 0.195 ksf 1.149 ksf 0.086 ksf (unfactored) (unfactored) (unfactored) (unfactored) hydrostatic resultant dynamic pressures c). load case 3: static soil + LL surcharge: wall height = 18.67 ft soil height on wall = 0 ft equivalent static soil & surcharge loadings... LL lateral surcharge, q1 = 0.000 ksf unfactored soil, q2 = 0.000 ksf unfactored soil, q3 = 0.000 ksf 0.000 equivalent soil loadings: unfactored q5 = 0.000 ksf unfactored q6 = 0.000 ksf (*note: add static soil pressure q6 & q7 to the seismic soil shown below) d). load case 4: soil seismic: equivalent seismic soil pressure loading & seismic wall loadings...

wall height = 18.67 f	t
soil height on wall = 0 f	t

unfactored equivalent soil seismic, q8 =	0.000	ksf
unfactored equivalent soil seismic, q9 =	0.000	ksf
unfactored equivalent soil seismic, q10 =	0.023	ksf
unfactored equivalent soil seismic, q11 =	0.000	ksf
unfactored equivalent soil seismic, q12 =	0.000	ksf

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonv	ille	SHEET:	
CHKD:		DESCRIP	TION:		Aeration Basins		JOB NO:	11962A.00
DESIGN	TASK:			Stabilizat	in Basins (Longitudinal	Directio	n) (CSZ)	
Weights:								
	unit 1	-ft width wall	mass, W _w =	: (12	/12) * (18.67) * 0.15 =	2.80	kip	
	wall	c.g. relative t	o base, h _w =	:	18.67 / 2 =	9.335	ft	
	uni	t width liquid	mass, W _L =	= (60) * ((1) * (16.67) * 32.17 =	62.41	kip	

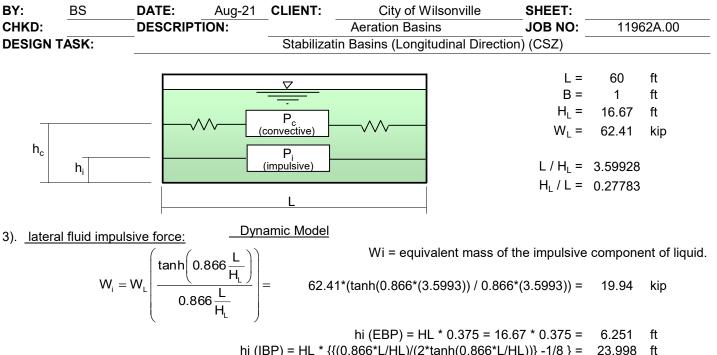
Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w/12)^*\rho_c = 0.08705 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i/W_L)^*(L/2)^*H_L^*\rho_L = 0.30993 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 6.927 \text{ ft}$ wall fixity condition is no roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(tw/h)^3 / 48 = 390.46 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (390.46 / (0.0871 + 0.3099))^{^{2}}/_{^{2}} = 31.3618 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = 2\pi / 31.3618 = 0.2003 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = 0.446 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:


$$\omega_c = \frac{1}{\sqrt{L}} = \frac{8.4681}{(60)} = \frac{1.0932}{2}$$
 rad/sec

Long transition period (from map figure 22-15 ASCE 7),
$$T_L = 16$$
 sec

design spectral response acceleration for convective mass (0.5% damping),
$$S_{ac}$$
 = 1.5 * Sd1 / Tc = 0.087 g

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.5299$

impulsive force,
$$P_i = \left(\frac{S_{ai} I}{R_{wi}}\right) W_i = (0.446 * 1.25 / 3) * 19.94 = 3.7$$
 kip

4). lateral fluid convective force:

$$W_{c} = W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) tanh\left(3.16\left(\frac{H_{L}}{L}\right)\right)\right) =$$

$$h_{c \text{ (EBP)}} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 8.832 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 28.102 \text{ ft}$$

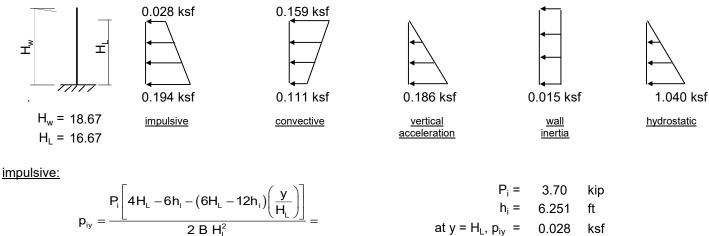
convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.0866 * 1.25 / 1)*41.83 = 4.5$$
 kip

		DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:		
CHKD:		DESCRIP	TION:		Aeration Basins	JOB NO:	11962A.00	
DESIGN 1	ASK:			Stabilizatir	n Basins (Longitudinal Direct	ion) (CSZ)		
5) latera	l inertia for	re of the acc	elerating wa	all·				
0). <u>Iatora</u>				<u>an.</u>	unit width wa	ll mass, W _w =	2.80	kip
					wall c.g. relative	to base, h _w =	9.335	ft
	Wa	III inertia fo	rce, $P_w = \left(\right)$	$\frac{S_{ai} I \epsilon}{R_{wi}} W_{v}$	w = (0.446*1.25*0.5	5299/3)*2.8 =	0.28	kip

6). maximum wave slosh height displacement:

$$d_{(max)} = \left(\frac{L}{2}\right) \left(\frac{S_{ac}}{1.4} I\right) = (60/2) * (0.0866/1.4 * 1.25) = 3.25 \text{ ft}$$

Wave height is greater than the freeboard of 2-ft. Check effects of wave spillage.


7). vertical acceleration:

- design horizontal accereration, $S_{DS} = 0.446$ *g
- vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4^*S_{DS} = 0.1784$ g

per ASCE 7-10 para. 15.7.7.2(b), use I = R_i = b = 1.0

Design vertical acceleration,
$$\ddot{u} = \frac{S_{av} I b}{R_i} = 0.1784^{*}1^{*}1/1 = 0.1784 g$$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

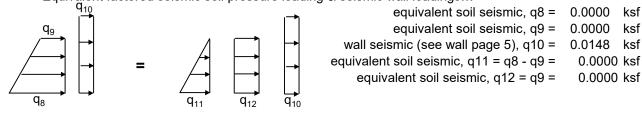
convective:

$$p_{cy} = \frac{P_{c} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]}{2 B H_{L}^{2}} =$$

at y = H_L, p_{iy} = 0.028 ksf
at base y = 0, p_{iy} = 0.194 ksf
$$P_c = 4.50$$
 kip
 $h_c = 8.832$ ft
at y = H_L, p_{cy} = 0.159 ksf
at base y = 0, p_{cy} = 0.111 ksf

BY: BS DATE: Aug-21 **CLIENT:** City of Wilsonville SHEET: CHKD: **DESCRIPTION:** Aeration Basins JOB NO: 11962A.00 Stabilizatin Basins (Longitudinal Direction) (CSZ) **DESIGN TASK:** vertical acceleration: ü = 0.1784 $p_{vv} = \ddot{u} \gamma_L (H_L - y) =$ at $y = H_L, p_{vv} = 0.000$ ksf at base $y = 0, p_{vy} = 0.186$ ksf wall inertia: $p_{wy} = \frac{S_{ai} I \epsilon \gamma_c (t_w/12)}{R_{wi}} =$ $p_{wv} = 0.0985 * \gamma_c * (t_w/12)$ at y = H_w , p_{wy} = 0.015 ksf at base $y = 0, p_{wy} = 0.015$ ksf hydrostatic: at $y = H_L$, $q_{hy} = 0.000$ ksf $q_{hv} = \gamma_L (H_L - y) =$ at base y = 0, $q_{hy} = 1.040$ ksf combine the effects of the dynamic pressures on the wall: $p_{v} = \sqrt{(p_{v} + p_{wv})^{2} + p_{cv}^{2} + p_{w}^{2}} =$ at $y = H_w, p_v = 0.165$ ksf at base $y = 0, p_v = 0.301$ ksf 0.165 ksf (unfactored = 0.165 / 1.4 = 0.118 ksf) r₹ Ī 0.301 ksf (unfactored = 0.301 / 1.4 = 0.215 ksf) resultant dynamic pressures 9). wall design pressures for hydrostatic + dynamic: wall height, $H_w = 18.67$ ft liquid height, $H_1 = 16.67$ ft unfactored load = 0.118 ksf

1.040 ksf hydrostatic


unfactored load = 0.215 ksf resultant dynamic pressures

324

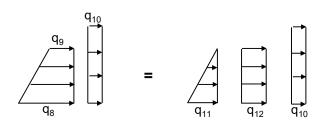
BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPT	ION:		Aeration Basins	JOB NO:	11962A.00
DESIGN 1	TASK:			Stabiliza	tin Basins (Longitudinal Direction)) (CSZ)	
<u>10).</u> wall	design press	ures for exte	ernal soil lo	ading:			
<u>static</u>	<u>soil:</u>				The site has no gro	oundwater.	
			IA		wall height =	18.67	ft
	G.				soil height above top of base =	0	ft
	43	1 []			groundwater ht. above base =	0	ft
					dry soil lateral pressure =	0.000	k/ft ³
			B		sat. soil lateral pressure =	0.000	k/ft ³
	q_2	$q_1 \sim q_1$	177		live load lateral surcharge =	0.000	ksf
	equivalent	static soil lo	adinas:		LL lateral surcharge, q1 =	0.0000	ksf
	equivalent	312110 3011 10	aungs.		unfactored soil, q2 =	0.0000	ksf
					unfactored soil, q2 =	0.0000	ksf
	q _{3∕1} ,—	→ 1	Λ	, ▶1		0.000	Kor
	Ă L	→			equivalent soil loadings:	0.000	
		→ =			unfactored q5 =	0.0000	ksf
		→			unfactored q6 =	0.0000	ksf
	q_2	q ₁	q ₆	q_5			
<u>soil se</u>	eismic:						
		resultant	factored so	oil seismic lo	ad per foot of wall width, $P_{u (eq)}$ =	0	k/ft
	centro	id location o	f the result	ant soil seisr	mic from the bottom of wall, h _{eq} =	0	ft
						U	
	The resulta	ant soil seisr	nic load wil	l be resolved	d into an equivalent pressure load	ling	
					·IA		
			(rooulto	nt opil opiem			
			(resulta	ni son seism	ic load)P _{eq}		

Equivalent factored seismic soil pressure loading & seismic wall loadings...

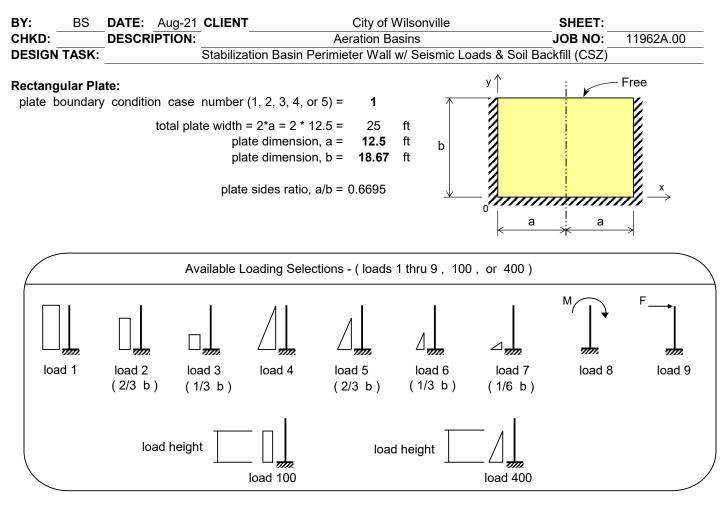
unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf

(в)

- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0148 / 1.4 = 0.0106 ksf
- unfactored equivalent soil seismic, q11 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q12 =0 / 1.4 = 0.0000 ksf



BY: City of Wilsonville BS DATE: Aug-21 CLIENT: SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Stabilizatin Basins (Longitudinal Direction) (CSZ) 11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4: Load Cases: case 1 = water case 2 = water + water seismic + wall seismic case 3 = soil + lateral surcharge case 4 = soil + soil seismic + wall seismic a). load case 1: hydrostatic water wall height = 18.67 ft water depth = 16.67 ft (unfactored) 1.040 ksf b). load case 2: hydrostatic + dynamic: 0.118 ksf (unfactored) wall height = 18.67 ft water depth = 16.67 ft = 1.040 ksf 0.215 ksf 1.137 ksf 0.118 ksf (unfactored) (unfactored) (unfactored) (unfactored) hydrostatic resultant dynamic pressures c). load case 3: static soil + LL surcharge: wall height = 18.67 ft soil height on wall = 0 ft equivalent static soil & surcharge loadings... LL lateral surcharge, q1 = 0.000 ksf unfactored soil, q2 = 0.000 ksf unfactored soil, q3 = 0.000 ksf 0.000 equivalent soil loadings: unfactored q5 = 0.000 ksf unfactored q6 = 0.000 ksf (*note: add static soil pressure q6 & q7 to the seismic soil shown below) d). load case 4: soil seismic:


equivalent seismic soil pressure loading & seismic wall loadings...

wall height = 18.67 f	t
soil height on wall = 0 f	t

00 ksf
00 ksf
11 ksf
00 ksf
00 ksf

Choice of Available Loadings									
load	load type	load height, (ft)	unfactored loads:	concrete lo	oad factors				
conditions	Loading	only for custom	q, M, or F	for	for				
(4 max)	Selection Number	loads 100 or 400	(ksf, ft-k/ft, k/ft)	moment	shear				
A	100	16.670	0.165	1	1				
В	400	16.670	0.136	1	1				
С	400	16.670	1.040	1	1				
D	400	10.280	-0.411	0.9	0.9				

Notes: 1). Load 100 = uniform load of any load height \ge b/3; Load 400 = triangular load of any load height \ge b/6.

2). load height must be less than or equal to "b", and uniform load height ≥ "b / 3", and triangular load height ≥ "b / 6".

3). loads may be positive or negative.

plate thickness, h =	12	in
concrete strength, f 'c = reinforcing steel strength, fy = reinforcing clear cover to face of concrete = number of curtains of reinforcing, (1 or 2) = Are bars in "x" or "y" direction closest to face of concrete ? minimum ratio of horizontal shrinkage-temperature steel = minimum ratio of vertical shrinkage-temperature steel =	4 60 2 2 y 0.00500 0.00500	ksi ksi in

bar locations	d (in)	d' (in)
Mx bending	9"	3"
My bending	9.5"	2.5"

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCR	IPTION :		Aeration Basins	JOB NO:	11962A.00
DESIGN	TASK:			Stabilizati	on Basin Perimieter Wall w/ Seismic Loads & Soil	Backfill (CSZ)	

					М,	<mark>، - Mom</mark>	ent Sum	mary					
	40 F		oads: q								SUMM	ARY	
a = b =	12.5 18.67	0.165 Mome	0.136 nt Coeffi	1.040 cient Mul	-0.411 tipliers		Boundary	/ Case 1				Reinfo	orcing:
	0.6695		47.405		362.512 -143.262					Final Moments		(d = 9")	
		N	Ioment C	oefficien	ts	M _x Moments, ft-k/ft				M _x	M _{ux}	A _{s(req'd)}	A _{s(min)}
x/a	y/b	А	В	С	D	Α	В	С	D	ft-k/ft	ft-k/ft	in²/ft	in²/ft
0	1	0.1035	0.0228	0.0228	0.0037	5.95	1.08	8.28	-0.52	14.79	14.84	0.38	0.36
0	0.8	0.0996	0.0272	0.0272	0.0067	5.73	1.29	9.88	-0.96	15.94	16.03	0.41	0.36
0	0.6	0.0900	0.0303	0.0303	0.0105	5.17	1.44	10.99	-1.50	16.10	16.25	0.42	0.36
0	0.4	0.0668	0.0284	0.0284	0.0134	3.84	1.35	10.30	-1.92	13.57	13.76	0.35	0.36
0	0.2	0.0272	0.0150	0.0150	0.0092	1.56	0.71	5.43	-1.32	6.38	6.51	0.16	0.36
0	0	0.0000	0.0000	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.36
0.2	0	0.0034	0.0022	0.0022	0.0015	0.19	0.10	0.79	-0.21	0.88	0.90	0.02	0.36
0.4	0	0.0089	0.0050	0.0050	0.0032	0.51	0.24	1.80	-0.45	2.09	2.14	0.05	0.36
0.6	0	0.0139	0.0071	0.0071	0.0043	0.80	0.34	2.58	-0.61	3.11	3.17	0.08	0.36
0.8	0	0.0171	0.0085	0.0085	0.0049	0.98	0.40	3.07	-0.70	3.76	3.83	0.10	0.36
1	0	0.0182	0.0089	0.0089	0.0051	1.05	0.42	3.24	-0.73	3.98	4.05	0.10	0.36
1	0.2	-0.0070	-0.0039	-0.0039	-0.0024	-0.40	-0.18	-1.40	0.34	-1.65	-1.68	-0.04	-0.36
1	0.4	-0.0288	-0.0115	-0.0115	-0.0051	-1.65	-0.55	-4.18	0.74	-5.65	-5.72	-0.14	-0.36
1	0.6	-0.0417	-0.0138	-0.0138	-0.0048	-2.40	-0.66	-5.02	0.68	-7.39	-7.46	-0.19	-0.36
1	0.8	-0.0473	-0.0136	-0.0136	-0.0037	-2.72	-0.64	-4.92	0.53	-7.76	-7.81	-0.20	-0.36
1	1	-0.0516	-0.0134	-0.0134	-0.0031	-2.97	-0.63	-4.85	0.45	-8.00	-8.05	-0.20	-0.36
0.8	1	-0.0459	-0.0117	-0.0117	-0.0027	-2.64	-0.56	-4.25	0.38	-7.07	-7.10	-0.18	-0.36
0.8	0.8	-0.0424	-0.0121	-0.0121	-0.0032	-2.44	-0.57	-4.38	0.46	-6.93	-6.97	-0.17	-0.36
0.8	0.6	-0.0379	-0.0127	-0.0127	-0.0044	-2.18	-0.60	-4.59	0.63	-6.75	-6.81	-0.17	-0.36
0.8	0.4	-0.0266	-0.0109	-0.0109	-0.0049	-1.53	-0.51	-3.94	0.70	-5.28	-5.35	-0.13	-0.36
0.8	0.2	-0.0066	-0.0038	-0.0038	-0.0024	-0.38	-0.18	-1.39	0.35	-1.61	-1.64	-0.04	-0.36
max r	negative	moment,	M _{ux} (-) =	-8.05	ft-k/ft	1		ma	ax positiv	e moment	, M _{ux} (+) =	16.25	ft-k/ft
max n	egative s	teel req'o	d, A _s (-) =	-0.20	in²/ft			max	x positive	steel req	d, A _s (+) =		in²/ft
	minin	num stee	el req'd =	-0.36	in²/ft	1			mi	nimum ste	el req'd =	0.36	in²/ft
	Use								Use				
						J				<u> </u>			

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCR	IPTION:		Aeration Basins	JOB NO:	11962A.00
DESIGN	TASK:			Stabilizati	on Basin Perimieter Wall w/ Seismic Loads & Soil B	ackfill (CSZ)	

					M	, - Mom	ent Sumi	mary					
	40 F		oads: q								SUMM	IARY	
a = b =	-	0.165 Mome	0.136 nt Coeffi	1.040 cient Mul	-0.411 tipliers		Boundary	/ Case 1				Reinfo	orcing:
	0.6695		47.405		-143.262					Final Moments		(d = 9.5")	
		N	Ioment C	oefficien	ts	1	M _y Momen	its, ft-k/i	ft	M _y	M _{uy}	A _{s(req'd)}	A _{s(min)}
x/a	y/b	А	В	С	D	Α	В	С	D	ft-k/ft	ft-k/ft	in²/ft	in ² /ft
0	1	0.0000	0.0000	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.36
0	0.8	0.0199	0.0055	0.0055	0.0014	1.14	0.26	1.99	-0.20	3.20	3.22	0.08	0.36
0	0.6	0.0180	0.0061	0.0061	0.0021	1.03	0.29	2.21	-0.30	3.22	3.25	0.08	0.36
0	0.4	0.0134	0.0057	0.0057	0.0027	0.77	0.27	2.06	-0.38	2.72	2.76	0.06	0.36
0	0.2	0.0055	0.0030	0.0030	0.0018	0.31	0.14	1.09	-0.26	1.29	1.31	0.03	0.36
0	0	0.0000	0.0000	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.36
0.2	0	0.0170	0.0109	0.0109	0.0077	0.98	0.52	3.97	-1.11	4.36	4.47	0.11	0.36
0.4	0	0.0446	0.0248	0.0248	0.0158	2.56	1.18	8.99	-2.26	10.47	10.70	0.26	0.36
0.6	0	0.0692	0.0357	0.0357	0.0213	3.98	1.69	12.96	-3.06	15.58	15.88	0.38	0.38
0.8	0	0.0854	0.0424	0.0424	0.0244	4.91	2.01	15.36	-3.50	18.78	19.13	0.46	0.38
1	0	0.0910	0.0445	0.0445	0.0254	5.23	2.11	16.15	-3.64	19.85	20.22	0.49	0.38
1	0.2	0.0101	-0.0015	-0.0015	-0.0041	0.58	-0.07	-0.56	0.58	0.53	0.47	0.01	0.36
1	0.4	-0.0211	-0.0132	-0.0132	-0.0079	-1.21	-0.63	-4.79	1.13	-5.50	-5.61	-0.13	-0.36
1	0.6	-0.0245	-0.0099	-0.0099	-0.0036	-1.41	-0.47	-3.58	0.51	-4.94	-4.99	-0.12	-0.36
1	0.8	-0.0125	-0.0037	-0.0037	-0.0004	-0.72	-0.18	-1.34	0.05	-2.18	-2.19	-0.05	-0.36
1	1	0.0000	0.0000	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.36
1	0.4	-0.0211	-0.0132	-0.0132	-0.0079	-1.21	-0.63	-4.79	1.13	-5.50	-5.61	-0.13	-0.36
0.8	0.4	-0.0199	-0.0126	-0.0126	-0.0075	-1.14	-0.60	-4.55	1.07	-5.22	-5.33	-0.13	-0.36
0.6	0.4	-0.0161	-0.0104	-0.0104	-0.0063	-0.92	-0.49	-3.78	0.90	-4.30	-4.39	-0.10	-0.36
0.4	0.4	-0.0094	-0.0067	-0.0067	-0.0041	-0.54	-0.32	-2.42	0.59	-2.68	-2.74	-0.06	-0.36
0.2	0.4	0.0007	-0.0010	-0.0010	-0.0010	0.04	-0.05	-0.37	0.14	-0.24	-0.26	-0.01	-0.36
	negative				ft-k/ft	•	-			e moment	•		ft-k/ft
max n	egative s							ma	x positive	e steel req	'd, A _s (+) =		in²/ft
	minin	num stee	el req'd =	-0.36	in²/ft]			mi	nimum ste	el req'd =	0.38	in²/ft
	Use								Use				
						l							

BY:	BS	DATE: Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A.00
DESIGN	TASK:		Stabilizati	on Basin Perimieter Wall w/ Seismic Loads & Soil Ba	ckfill (CSZ)	

	Shear Summary													
a =	12.5	0.165	0.136	, M , or 1.040	F -0.411					s	UMMARY	,		
a = b =	12.5		r Coeffic		-		Boundary	/ Case 1						
a / b =	0.6695		2.539	19.417	-7.673					FI	Final Shears			
		Shear Coefficients					Shears			V	Vu	φV _c		
x/a	y/b	A	В	С	D	A	В	С	D	k/ft	k/ft	k/ft		
0	1	0.4370	0.0425	0.0425	-0.0160	1.35	0.11	0.83	0.12	2.40	2.39	10.81		
0	0.8	0.5116	0.1304	0.1304	0.0208	1.58	0.33	2.53	-0.16	4.28	4.29	10.81		
0	0.6	0.5283	0.1797	0.1797	0.0567	1.63	0.46	3.49	-0.44	5.14	5.18	10.81		
0	0.4	0.4585	0.2287	0.2287	0.1202	1.41	0.58	4.44	-0.92	5.51	5.60	10.81		
0	0.2	0.1599	0.1437	0.1437	0.1168	0.49	0.36	2.79	-0.90	2.75	2.84	10.81		
0	0.00	-0.0543	-0.0108	-0.0108	0.0075	-0.17	-0.03	-0.21	-0.06	-0.46	-0.46	10.81		
0.2	0	0.0863	0.1156	0.1156	0.1155	0.27	0.29	2.24	-0.89	1.92	2.01	10.81		
0.4	0	0.3128	0.2396	0.2396	0.1922	0.96	0.61	4.65	-1.48	4.75	4.90	10.81		
0.6	0	0.4704	0.3103	0.3103	0.2286	1.45	0.79	6.02	-1.75	6.51	6.68	10.81		
0.8	0	0.5594	0.3460	0.3460	0.2448	1.72	0.88	6.72	-1.88	7.44	7.63	10.81		
1	0	0.5880	0.3568	0.3568	0.2494	1.81	0.91	6.93	-1.91	7.73	7.92	10.81		

Concrete strength reduction factor for shear, $\phi = 0.75$

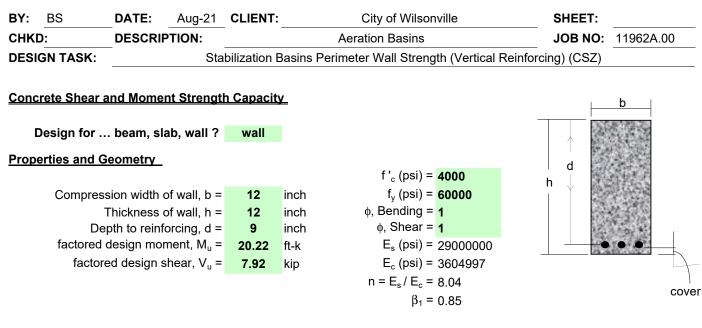
	d =	9.5	in	
	maximum shear, V _u =	7.92	k/ft	OK
$\phi V_{c} = \phi^{*}2^{*}(f'c)^{1/2}b^{*}d =$	(0.75*2*(4000)^1/2 *12*9.5)/1000 =	10.81	k/ft	

Reference:

"Moments and Reactions for Rectangular Plates"

Engineering Monograph No. 27

By: W. T. Moody, United States Bureau of Reclamation


Notes:

Quadratic interpolation is used for intermediate values within the Moody tables and between Moody figures.

The positive sign convention for moments $M_{\!x}$ and $M_{\!y}$ is tension on the loaded face of the plate.

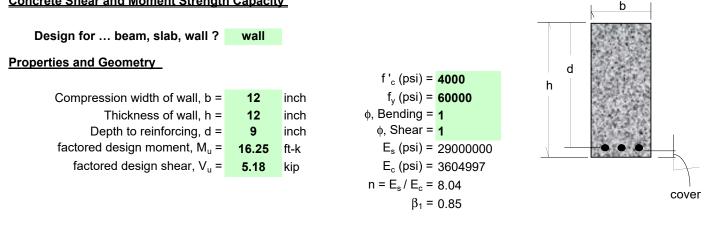
The M_x moment is in the direction of the x-axis and the M_y moment is in the direction of the y-axis by plate sign convention.

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 13.66$$
 kip $\geq V u$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)


comment : existing 12" wall w/ #8@12" vert reinf Area steel provided, A_s = 0.79 in² $\rho = A_s / bd = 0.00731$ $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} =$ 0.19 $\rho_{(min)} = 0.00180$ in² $\rho_{(max)} = 0.02138$ $A_{s (max)} =$ 2.31 in² bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f'}\right)$ $\phi^* M_n =$ 1*0.00731*60*12*92 *(1-0.588*0.00731*60/4)*(ft/12) = 33.256 ft-k ≥ Mu

Moment strength ≥ design moment, Okay

BY: BS DATE: Aug-21 CLIENT: City of Wilsonville SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Stabilization Basins Perimeter Wall Strength (Horizontal Reinforcing) (CSZ)

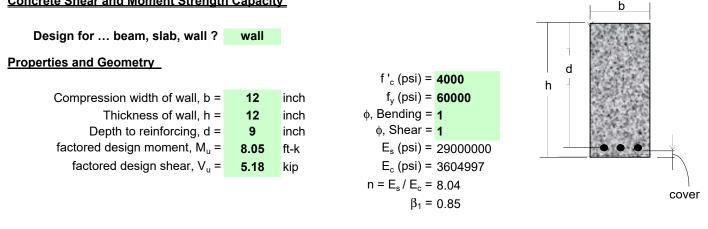
Concrete Shear and Moment Strength Capacity

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 13.66$$
 kip $\geq Vu$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)


comment : existing 12" wall w/ #8@12" horiz reinf outside face Area steel provided, A_s = 0.79 in² $\rho = A_s / bd = 0.00731$ $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} =$ 0.19 $\rho_{(min)} = 0.00180$ in² $\rho_{(max)} = 0.02138$ $A_{s (max)} =$ 2.31 in² bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f'}\right)$ $\phi^* M_n =$ 1*0.00731*60*12*92 *(1-0.588*0.00731*60/4)*(ft/12) = 33.256 ft-k ≥ Mu

Moment strength ≥ design moment, Okay

BY: BS DATE: Aug-21 CLIENT: City of Wilsonville SHEET: CHKD: **DESCRIPTION: Aeration Basins** JOB NO: 11962A.00 **DESIGN TASK:** Stabilization Basins Perimeter Wall Strength (Horizontal Reinforcing) (CSZ)

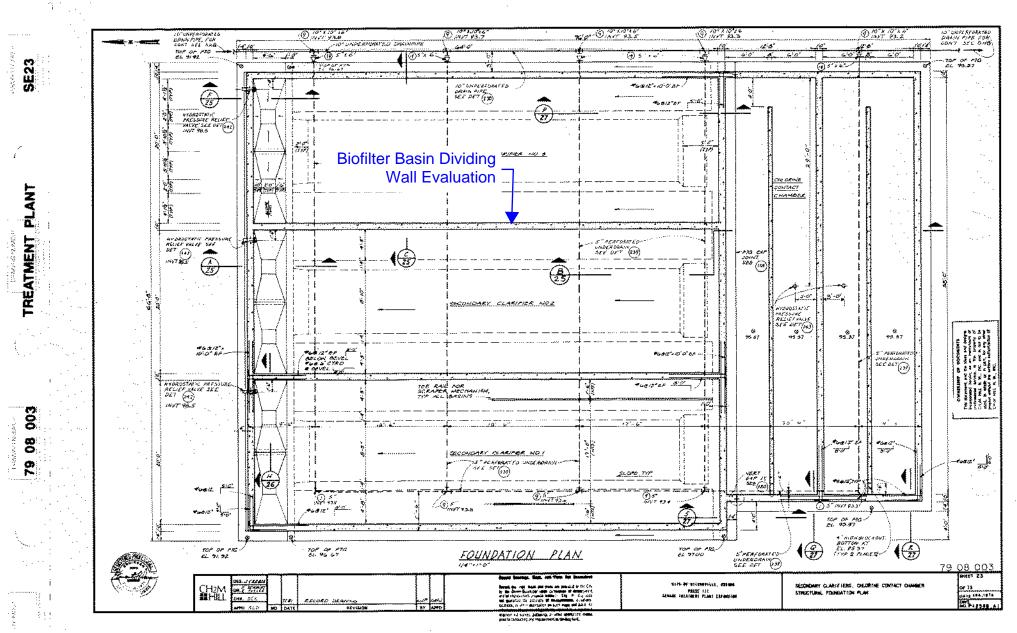
Concrete Shear and Moment Strength Capacity

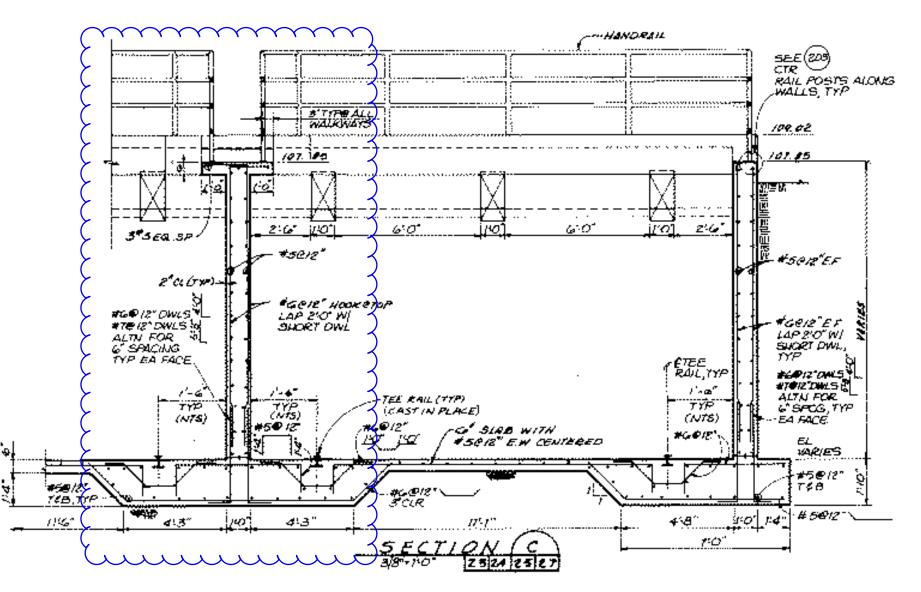
Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 13.66$$
 kip $\ge Vu$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)


comment : existing 12" wall w/ #7@12" horiz reinf inside face Area steel provided, A_s = 0.6 in² $\rho = A_s / bd = 0.00556$ $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} =$ 0.19 $\rho_{(min)} = 0.00180$ in² $\rho_{(max)} = 0.02138$ $A_{s (max)} =$ 2.31 in² bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f'}\right)$ $\phi^* M_n =$ 1*0.00556*60*12*92 *(1-0.588*0.00556*60/4)*(ft/12) = 25.676 ft-k ≥ Mu


Moment strength ≥ design moment, Okay

City of Wilsonville

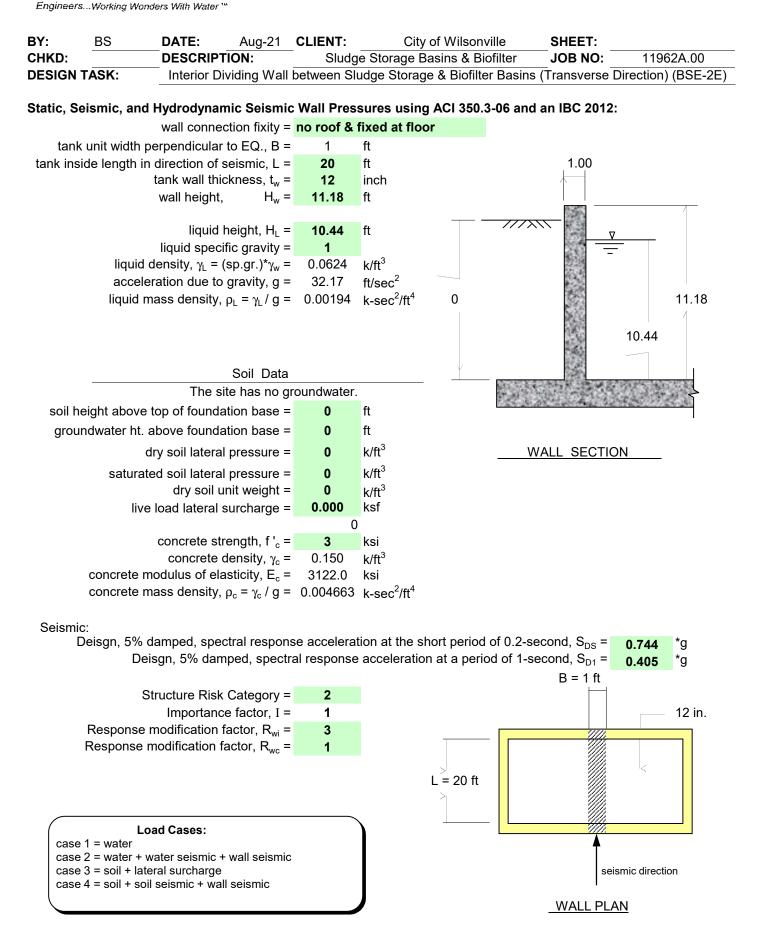
Sludge Storage Basins and Biofilter Structural Calculations

Biofilter Basin Dividing Wall Check (BSE-2E Seismic Level)	pg. 1
Biofilter Basin Dividing Wall Check (CSZ Seismic Level)	pg. 25
WAS Basin Dividing Wall Check (BSE-2E Seismic Level)	pg. 45
WAS Basin Dividing Wall Check (CSZ Seismic Level)	pg. 61

Dividing Wall Section Reinforcing

CCarolla

Engineers...Working Wonders With Water "


DATE 7/8/21 SUBJECT City of Wilsonville SHEET NO. OF by <u>135</u> Sludge Storage & Biofiltors JOB NO. 119624.00 CHKD. BY_____ DATE_ Sludge Storage & Biofiltors - Dividing Wall Check The existing interior wall between The 0.74A sludge storage and biofilters will be evaluated to resist the hydrostatic # hydro dynamic loads from basins. The 10.44/4 forces will be evaluated per ACI 350 and using the CSZ seismic coefficient. For the dividing wall between the sludge storage & biofilter basins, The assumption made is water is present on one side only. The dividing wall is . 12" thick with #6@12" & #7@12" alternating dowels at base of wall, and #6@12" wall reinforcing The dowels extend up into wall 2'-2" & 3'-5" respectively. See attached spreadsheet for hydrostatic & hydrodynamic loads. Checking wall strength for out-it-plane flexure and shear demands. Using ASCE 41-17 for the wall copacifies, the \$ factor shall be set \$=1.0. Forces are at BSE-ZE seismic level. Well Check (#Ge12" & #7212" altorrate [G"effedite]) Monnet DC2 = 13.62 : 0.33 Muy 13.62 k.A. 1A AM .- 41,50 6.f4/ff Shor DC2 = 5:29 = 0.45 Vu;= 5.29 4/f4 QV1 = 11.83 k/ff (0/0) Will Check (HGe12") Mux = 10.3816. A/A + M_= 18.85 12. Frift Vox = 3.42.1/A +Vn= 11.83 k/ff Moment DCR = $\frac{10.38}{18.85} = 0.55$ (ob) Shear DCR = $\frac{3.42}{11.83} = 0.29$ (ob) Checking free board height in basin. For Risk Category III, S=0.7x down. Stramburge = 0.7 (2.10Ar) = 1.47 A Stongitudical = 0.7 (2.66 Ar) = 1.87 A freeboard height = 0.74 ft 0.74 ftc1.47 ft (N6) Not enough freeboard. 0.74 ft K1.87 ft (NG) Not enough freebourd.

 $\left<\right>$

BY BS DATE 7/8/21 SUBJECT City of Wilsonville SHEET NO. OF
CHKD. BY DATE Studge Storage & Biofiltures JOB NO. 11962A.00
Checking wall strength for out-of-plane flaxure and shour domands. Forces are at CSZ seismic level. Vertical Wall Strength Muy = 12.49 12.44 4 Mn = 41.50 12.4744
$V_{VY} = 4.84 \text{ k/ft}$ $\phi V_{*} = 11.83 \text{ k/ft}$ Moment $DcR = \frac{12.49 \text{ k/ft}}{41.50 \text{ v.ft/ft}} = 0.30 \text{ (ok)}$ Show $DcR = \frac{4.84 \text{ k/ft}}{11.83 \text{ k/ft}} = 0.41 \text{ (ok)}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$

BY: CHKD:	BS	DATE: DESCRIPT	Aug-21	CLIENT: Sludge Sto	City of Wilsonv prage Basins & Bio	SHEET: JOB NO:	11962A.00	
DESIGN T	ASK:	Interior Div	viding Wall	between Sludge	Storage & Biofilte	r Basins	(Transverse	Direction) (BSE-2E)
Weights:		ft width wall r .g. relative to		· · · ·	* (11.18) * 0.15 = 11.18 / 2 =	1.68 5.590	kip ft	
	unit	width liquid r	mass, W _L =	= (20) * (1) *	(10.44) * 32.17 =	13.03	kip	

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w/12)^*\rho_c = 0.05213 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i/W_L)^*(L/2)^*H_L^*\rho_L = 0.11345 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 4.442$ ft wall fixity condition is no roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(tw/h)^3 / 48 = 1282.34 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (1282.34 / (0.0521 + 0.1135))^{n}/_2 = 88.0026 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = 2\pi / 88.0026 = 0.0714 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = 0.744 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\lambda = \sqrt{3.16 \text{ g } \tanh\left(3.16\left(\frac{\text{H}_{\text{L}}}{\text{L}}\right)\right)} = (3.16*32.2*\tanh(3.16*(0.522)))^{1/2} = 9.7169$$

$$\omega_{\rm c} = \frac{\kappa}{\sqrt{L}} = 9.7169 / (20)^{1/2} = 2.1728$$
 rad/sec,

period of the convective mass, $T_c = 2\pi / \omega_c = 2\pi / 2.1728 = 2.8918$ sec Long transition period (from map figure 22-15 ASCE 7), $T_L = 16$ sec

design spectral response acceleration for convective mass (0.5% damping),
$$S_{ac} = 1.5 * Sd1 / Tc = 0.210 g$$

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.7109$

BY: CHKD:	BS	DATE: DESCRIPT	ION:	-	City of Wil Storage Basins	& Biofilter	SHEET: JOB NO:		62A.00
DESIGN	TASK:	Interior D	viding Wall	between Slud	ge Storage & Bi	ofilter Basins	(Transverse	Direction)	(BSE-2E)
. 1			-	P _c			L = B = H _L = W _L =	20 1 10.44 13.03	ft ft ft kip
h _c	h _i			P _i (impulsive)			_	1.91571 0.52200	
3). <u>latera</u>	al fluid impu			<u>amic Model</u>	Wi = equiva	lent mass of	the impulsive	compone	ent of liquid.
	VV _i =	= W _L	$\frac{1.866 \frac{L}{H_{L}}}{66 \frac{L}{H_{L}}} \right)$	= 13.03*	(tanh(0.866*(1.9	157)) / 0.866	S*(1.9157)) =	7.3	kip
					hi (EBP) = HL	* 0.375 = 10.	44 * 0.375 =	3.915	ft
			hi (l	BP) = HL * {{(0).866*L/HL)/(2*ta	nh(0.866*L/l	HL))} -1/8 } =	8.006	ft
		imp	oulsive forc	$e, P_i = \left(\frac{S_{ai}}{R_v}\right)$	$\frac{I}{v_i} W_i =$	(0.744 *	1 / 3)*7.3 =	1.8	kip

4). lateral fluid convective force:

$$W_{c} = W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) tanh\left(3.16\left(\frac{H_{L}}{L}\right)\right)\right) =$$

$$h_{c (EBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right)\sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 6.151 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 8.702 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.2101 * 1 / 1)*6.12 = 1.3 kip$$

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:		
CHKD:		DESCRIPT	TION:	Sludge	e Storage Basins & Biofilter	JOB NO:	119	62A.00
DESIGN T	ASK:	Interior D	Interior Dividing Wall between Sludge Storage & Biofilter				Direction) (BSE-2E)
5). <u>latera</u>	l inertia foi	rce of the acco	elerating wa	<u>III:</u>	unit width wall	mass, W _w =	1.68	kip

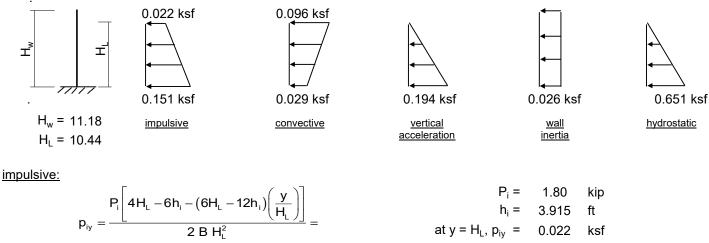
wall c.g. relative to base,
$$h_w = 5.590$$
 ft

wall inertia force,
$$P_w = \left(\frac{S_{ai} \ I \ \epsilon}{R_{wi}}\right) W_w =$$
 (0.744*1*0.7109/3)*1.68 = 0.30 kip

6). maximum wave slosh height displacement:

$$d_{(max)} = \left(\frac{L}{2}\right) \left(\frac{S_{ac}}{1.4} I\right) = (20/2) * (0.2101/1.0 * 1) = 2.10 \text{ ft}$$

Wave height is greater than the freeboard of 0.74-ft. Check effects of wave spillage.


7). vertical acceleration:

- design horizontal accereration, $S_{DS} = 0.744$ *g
- vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4*S_{DS} = 0.2976$ g

per ASCE 7-10 para. 15.7.7.2(b), use I = $R_i = b = 1.0$

Design vertical acceleration,
$$\ddot{u} = \frac{S_{av} I b}{R_i} = 0.2976*1*1/1 = 0.2976 g$$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

convective:

$$p_{cy} = \frac{P_{c} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]}{2 B H_{L}^{2}} =$$

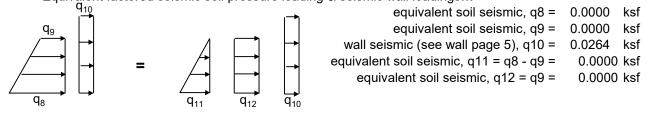
at y = H_L, p_{iy} = 0.022 ksf
at base y = 0, p_{iy} = 0.151 ksf
$$P_c = 1.30$$
 kip
 $h_c = 6.151$ ft
at y = H_L, p_{cy} = 0.096 ksf
at base y = 0, p_{cy} = 0.029 ksf

BY:	BS	DATE:		CLIENT:		of Wilsonvi		SHEET:		
CHKD:		DESCRIP				asins & Bio		JOB NO:	11962A.00	
DESIGN	TASK:	Interior D	ividing Wall	between Slud	ge Storage	e & Biofilter	Basins (Transverse	Direction) (BSE	-2E)
vertical ac	celeration:									
							ü =	0.2976		
	$p_{_{Vy}}=~\ddot{u}~\gamma_{L}~\left(H_{L}-y\right)=$					at y =	$H_L, p_{vy} =$	0.000	ksf	
						at base y =	= 0, p _{vy} =	0.194	ksf	
wall inertia	<u>a:</u>									
	n – S	_{ai} Ιεγ _c (t _w R _{wi}	,/12) _				p _{wy} =	0.1763	* γ _c * (t _w /12)	
	P _{wy} –	R_{wi}	-			at y = H	$H_w, p_{wy} =$	0.026	ksf	
						at base y =	0, p _{wy} =	0.026	ksf	
<u>hydrostati</u>	<u>c:</u>									
	$q_{bv} = \gamma_{l}$	(H - v) -				at y =	$H_L, q_{hy} =$	0.000	ksf	
	$\mathbf{q}_{hy} = \mathbf{y}_{L}$	(' ' _ ') —				at base y =	$= 0, q_{hy} =$	0.651	ksf	
combine t	he effects of	f the dynami	c pressures	on the wall:						
	$\mathbf{p}_{\rm v} = \sqrt{\mathbf{p}_{\rm v}}$	$(p_v + p_{wv})^2 + p_{wv}$	$p_{av}^{2} + p_{av}^{2} =$			at y =	$H_w, p_y =$	0.107	ksf	
	· y - y (· ·	y iwy) i	cy i vy			at base y	= 0, p _y =	0.264	ksf	
				• •	<u>).1</u> 07 ksf	(unfactored	d = 0.107 /	/ 1.4 = 0.076	ksf)	
		±		•).264 ksf	\ (unfactored	d = 0.264 /	/ 1.4 = 0.189	ksf)	
		•	<u>resultar</u>	nt dynamic pres		,			,	
0								<i>c</i> ,		
<u>9). wall d</u>	esign pressu	ures for hydr	ostatic + dy	namic:		ght, H _w = ght, H _L =				
						J -,L				
		\sim		٨		unfactor	ed load =	<u>0.07</u> 6 ksf		
		(A)						\backslash		

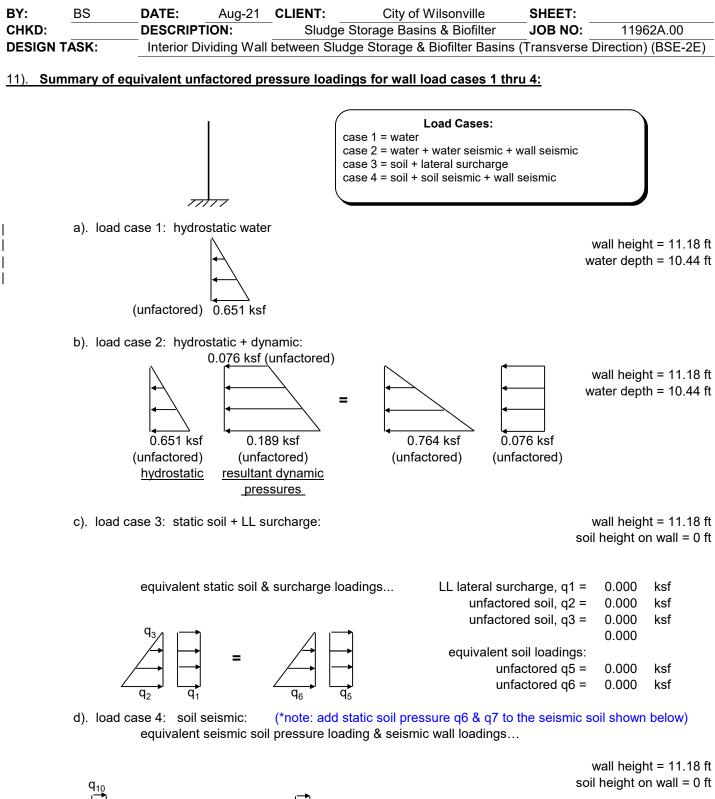
0.651 ksf <u>hydrostatic</u>

B

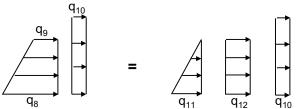
777


unfacto

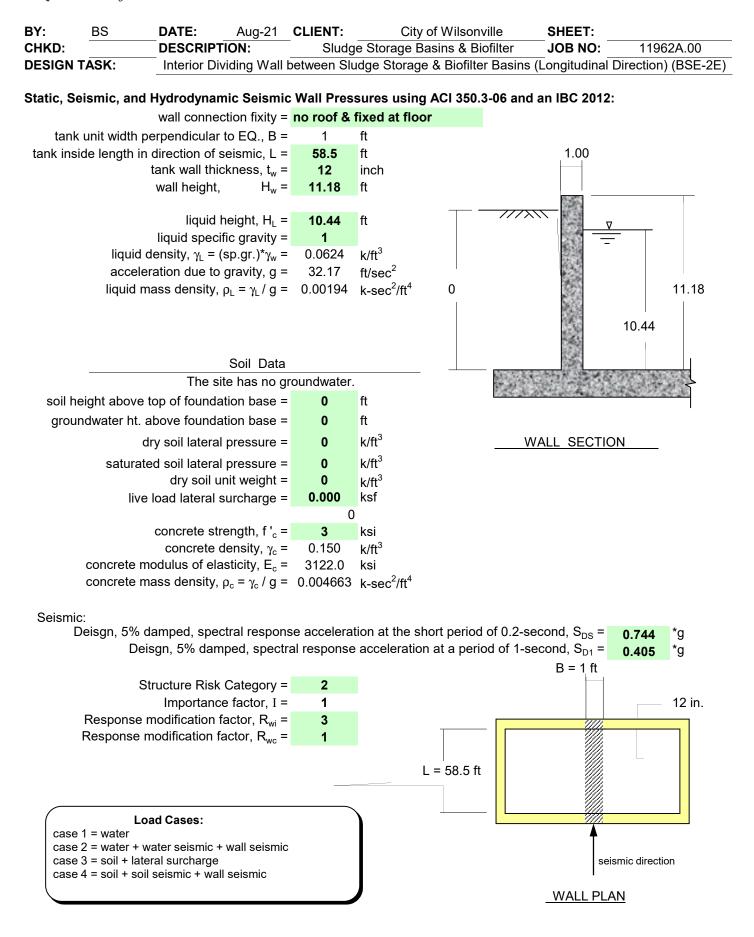
unfactored load = 0.189 ksf resultant dynamic pressures


BY: CHKD: DESIGN 1	BS	DATE: DESCRIPTIO		-	City of Wilsor e Storage Basins & B udge Storage & Biofilt	Biofilter	SHEET: JOB NO: Fransverse	Direc	11962A.00 ction) (BSE-2E)
<u>10). wall</u> static		sures for exter	nal soil loa	ading:		e has no gro			
		1	A			/all height =	11.18	ft	
	Q ₂		-		soil height above to		0	ft	
	43				groundwater ht. ab	ove base =	0	ft	
	/-				dry soil lateral	pressure =	0.000	k/ft ³	
			В		sat. soil lateral	pressure =	0.000	k/ft ³	
		$\downarrow \qquad	77		live load lateral s	surcharge =	0.000	ksf	
<u>soil se</u>		static soil load		d_5	unfactore equivalent so unfa	ed soil, q2 = ed soil, q3 = bil loadings: ctored q5 = ctored q6 =	0.0000 0.0000 0.000 0.000 0.0000 0.0000	ksf ksf ksf ksf ksf	
	centro	id location of	the resulta	ant soil seisi	mic from the bottom o	f wall, h _{eq} =	0	ft	
	The result	ant soil seismi			d into an equivalent pr ic load)P _{eq} 	essure load	ing		

Equivalent factored seismic soil pressure loading & seismic wall loadings...



- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0264 / 1.4 = 0.0189 ksf
- unfactored equivalent soil seismic, q11 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q12 =0 / 1.4 = 0.0000 ksf



unfactored equivalent soil seismic, q8 =	0.000	ksf
unfactored equivalent soil seismic, q9 =	0.000	ksf
unfactored equivalent soil seismic, q10 =	0.019	ksf
unfactored equivalent soil seismic, q11 =	0.000	ksf
unfactored equivalent soil seismic, q12 =	0.000	ksf

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonv		SHEET: JOB NO:	
CHKD:		DESCRIPT	ION:	Sludge S	Sludge Storage Basins & Biofilter			11962A.00
DESIGN T	ASK:	Interior Div	viding Wall	between Sludge Storage & Biofilter Basir			Longitudinal	Direction) (BSE-2E)
Weights:		ft width wall r .g. relative to			2) * (11.18) * 0.15 = 11.18 / 2 =	1.68 5.590	kip ft	
	unit	width liquid	mass, W _L =	(58.5) * (1)	* (10.44) * 32.17 =	38.11	kip	

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w / 12)^*\rho_c = 0.05213 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i / W_L)^*(L/2)^*H_L^*\rho_L = 0.12201 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 4.416 \text{ ft}$ wall fixity condition is no roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(tw/h)^3 / 48 = 1305.12 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (1305.12 / (0.0521 + 0.122))^*1_2 = 86.5722 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = 2\pi / 86.5722 = 0.0726 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = 0.744 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\lambda = \sqrt{3.16 \text{ g } \tanh\left(3.16\left(\frac{\text{H}_{\text{L}}}{\text{L}}\right)\right)} = (3.16^*32.2^* \tanh(3.16^*(0.1785)))^{1/2} = 7.2067$$
$$\omega_c = \frac{\lambda}{\sqrt{\text{L}}} = 7.2067 / (58.5)^{1/2} = 0.9422 \text{ rad/sec},$$

period of the convective mass,
$$T_c = 2\pi / \omega_c = 2\pi / 0.9422 = 6.6684$$
 sec
Long transition period (from map figure 22-15 ASCE 7), $T_c = 16$ sec

design spectral response acceleration for convective mass (
$$0.5\%$$
 damping), S_{ac} = $1.5 * Sd1 / Tc = 0.091$ g

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.4260$

BY: CHKD:	BS	DATE: DESCRIP	-	CLIENT: Sludge	City of W Storage Basin	/ilsonville s & Biofilter	SHEET: JOB NO:	1196	2A.00
DESIGN	TASK:	Interior D	viding Wall	between Slud	ge Storage & E	Biofilter Basins	(Longitudinal	Direction)	(BSE-2E)
				<u></u>			L =	58.5	ft
			_	<u> </u>			B =	1	ft
				P			H _L =	10.44	ft
h _c				convective)			$W_L =$	38.11	kip
Чc	h			P _i			$L / H_L =$	5.60345	
							$H_L / L =$	0.17846	
				L					
3). <u>latera</u>	al fluid impu	Ilsive force:	<u>Dyn</u>	amic Model					
		toph	L))		Wi = equiv	alent mass of	the impulsive	compone	nt of liquid.
	W _i =	$= W_{L} \left(\frac{\operatorname{tann} (C)}{0.8} \right)$	$\frac{0.866 \frac{L}{H_{L}}}{66 \frac{L}{H_{L}}} \right)$	= 38.11'	*(tanh(0.866*(5	5.6034)) / 0.866	6*(5.6034)) =	7.85	kip
					· · ·	L * 0.375 = 10		3.915	ft
					D.866*L/HL)/(2*			24.029	ft
		im	oulsive forc	$e, P_i = \left(\frac{S_{ai}}{R}\right)$	$\frac{I}{W_i}$ W _i =	(0.744 *	1 / 3)*7.85 =	1.9	kip

4). lateral fluid convective force:

$$W_{c} = W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) tanh\left(3.16\left(\frac{H_{L}}{L}\right)\right)\right) =$$

$$h_{c (EBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right)\sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 5.354 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 36.815 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.0911 * 1 / 1)*28.8 = 2.6$$
 kip

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:		
CHKD:		DESCRIP	TION:	Sludge	Storage Basins & Biofilter	JOB NO:	11962A.00	
DESIGN TASK:		Interior D	Interior Dividing Wall between Sludge Storage & Biofilter Basins (Longitudinal Direction) (
5). <u>latera</u>	al inertia fo	orce of the acc	elerating wa	<u>all:</u>				

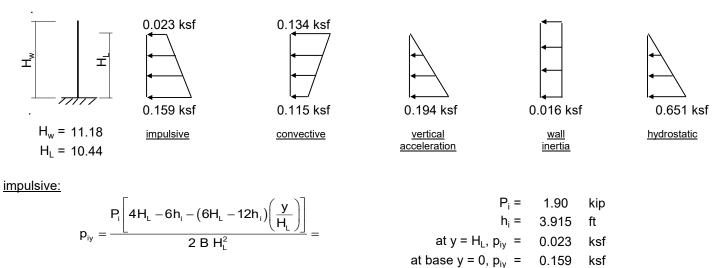
unit width wall mass,
$$W_w = 1.68$$
 kip
wall c.g. relative to base, $h_w = 5.590$ ft

wall inertia force,
$$P_w = \left(\frac{S_{ai} I \epsilon}{R_{wi}}\right) W_w = (0.744*1*0.426/3)*1.68 = 0.18$$
 kip

6). maximum wave slosh height displacement:

$$d_{(max)} = \left(\frac{L}{2}\right)\left(\frac{S_{ac}}{1.4}I\right) = (58.5/2)*(0.0911/1.0*1) = 2.66 \text{ ft}$$

Wave height is greater than the freeboard of 0.74-ft. Check effects of wave spillage.


7). vertical acceleration:

- design horizontal accereration, $S_{DS} = 0.744$ *g
- vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4*S_{DS} = 0.2976$ g

per ASCE 7-10 para. 15.7.7.2(b), use I = $R_i = b = 1.0$

Design vertical acceleration,
$$\ddot{u} = \frac{S_{av} I b}{R_i} = 0.2976*1*1/1 = 0.2976 g$$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

convective:

$$p_{cy} = \frac{P_{c} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]}{2 B H_{L}^{2}} =$$

at y = H _L , p _{cy}	=
at base y = 0, p _{cy}	=

P_c = 2.60

 $h_c = 5.354$

0.134

0.115

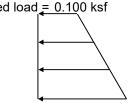
kip

ksf

ksf

ft

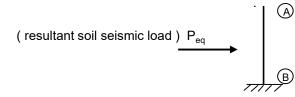
BY:	BS	DATE:		CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIP			Storage Basins & Biofilter	JOB NO:	11962A.00
DESIGN T	ASK:	Interior D	ividing Wall	between Sludg	e Storage & Biofilter Basins (Longitudina	I Direction) (BSE-2E)
<u>vertical ac</u>	celeration:						
	$p_{vv} = \ddot{u} \gamma_{L}$	$(H_{-}v) =$				0.2976	
	$P_{vy} = u \gamma_L$	$(\mathbf{I} \mathbf{I}_{L} - \mathbf{y}) =$			at y = H _L , p _{vy} =		ksf
					at base y = 0, p_{vy} =	0.194	ksf
wall inertia	a:						
		S _{ai} Ιεγ _c (t _u	,/12)		p _{wv} =	0.1056	* γ _c * (t _w /12)
	$p_{wy} =$	B _{ai} Ιεγ _c (t _ν R _{wi}	<u> </u>		at y = H _w , p _{wy} =		ksf
					at base $y = 0, p_{wy} =$		ksf
hydrostatio	o:				, , , , , , , , , , , , , , , , , , ,		
		(at y = H _L , q _{hy} =	0.000	ksf
	$q_{hy} = \gamma_L$	$(H_L - y) =$			at base y = 0, q _{hy} =		ksf
<u>combine t</u>	<u>ne effects c</u>	of the dynami	c pressures	on the wall:	, , , , , , , , , , , , , , , , , , ,		
	$\mathbf{p}_{\mu} = \sqrt{\mathbf{p}_{\mu}}$	$(p_{1v} + p_{wv})^2 + p_{vv}$	$p_{nu}^2 + p_{nu}^2 =$		at y = H _w , p _y =	= 0.140	ksf
	ry V(r	iy i wy ji i	cy F vy		at base y = 0, p _y =	= 0.285	ksf
			 1	<u>↓</u>	1.140 ksf (unfactored = 0.14 /	1.4 = 0.1 ksf)
		Ľ			.285 ksf (unfactored = 0.285	/ 1.4 = 0.204	ksf)
			resultar	<u>nt dynamic pres</u>	ssures		
<u>9). wal</u> l de	<u>esign pre</u> ss	ures for hydr	<u>ostatic +</u> dy	namic:	wall height, H _w = 11.18	ft	
					liquid height, $H_L = 10.44$		
					unfactored load	<u>= 0.10</u> 0 ksf	

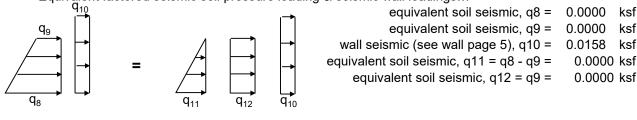

(

 \bigcirc

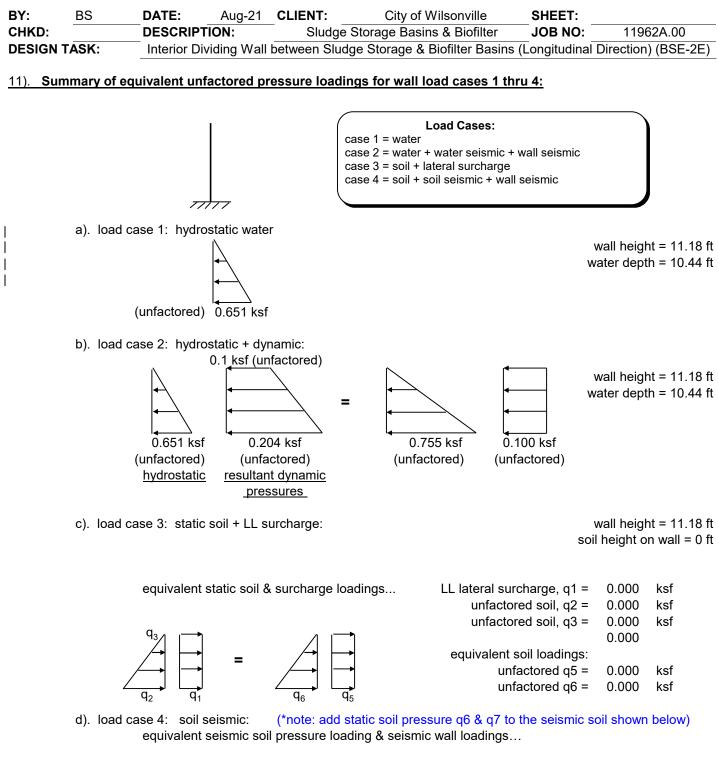
B

777

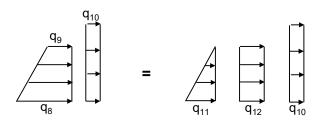

0.651 ksf <u>hydrostatic</u>

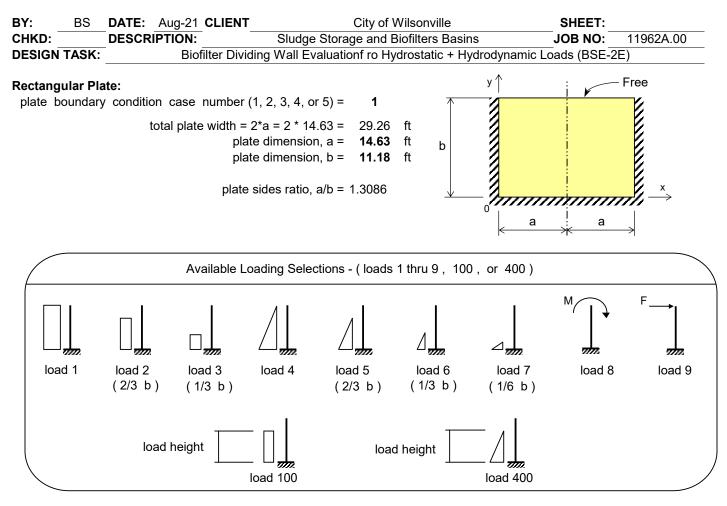

unfactored load = 0.204 ksf resultant dynamic pressures

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	00				e Storage Basins & Biofilter	JOB NO:	11962A.00
DESIGN	TASK	_		-	Idge Storage & Biofilter Basins (L	_	
DEGIGIN			ang wan	bottioon old		ongitaame	
10). wall	design press	sures for exte	rnal soil lo	ading:			
static					The site has no gro	oundwater	
					wall height =	11.18	ft
	a				soil height above top of base =	0	ft
	43 /				groundwater ht. above base =	0	ft
		▶ →			dry soil lateral pressure =	0.000	k/ft ³
		▶ ─▶	B		sat. soil lateral pressure =	0.000	k/ft ³
	$\overline{q_2}$		77		live load lateral surcharge =		ksf
					-		
	equivalent	static soil loa	idings:		LL lateral surcharge, q1 =	0.0000	ksf
					unfactored soil, q2 =		ksf
					unfactored soil, q3 =		ksf
	q₃∕1 _	→	Λ			0.000	
		→ =			equivalent soil loadings:		
		→			unfactored q5 =		ksf
		q ₁	q_6		unfactored q6 =	0.0000	ksf
	-		10	15			
<u>soil s</u>	eismic:						
		resultant	factored so	oil seismic lo	ad per foot of wall width, $P_{u(eq)}$ =	0	k/ft
	centro	id location of	the result	ant soil seisr	mic from the bottom of wall, h_{eq} =	0	ft
	The resulta	ant soil seism	ic load wil	l be resolved	l into an equivalent pressure load	ling	



Equivalent factored seismic soil pressure loading & seismic wall loadings...


- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0158 / 1.4 = 0.0113 ksf
- unfactored equivalent soil seismic, q11 = 0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q12 =0 / 1.4 = 0.0000 ksf



wall height = 11.18 ft
soil height on wall = 0 ft

unfactored equivalent soil seismic, q8 =	0.000	ksf
unfactored equivalent soil seismic, q9 =	0.000	ksf
unfactored equivalent soil seismic, q10 =	0.011	ksf
unfactored equivalent soil seismic, q11 =	0.000	ksf
unfactored equivalent soil seismic, q12 =	0.000	ksf

	Choice of Available Loadings													
load	load type	load height, (ft)	unfactored loads:	concrete load factors										
conditions	Loading	only for custom	q, M, or F	for	for									
(4 max)	Selection Number	loads 100 or 400	(ksf, ft-k/ft, k/ft)	moment	shear									
A	100	10.440	0.107	1	1									
В	400	10.440	0.157	1	1									
С	400	10.440	0.651	1	1									
D														

Notes: 1). Load 100 = uniform load of any load height \ge b/3; Load 400 = triangular load of any load height \ge b/6.

2). load height must be less than or equal to "b", and uniform load height ≥ "b / 3", and triangular load height ≥ "b / 6".
3). loads may be positive or negative.

plate thickness, h = 12 in concrete strength, f 'c = 3 ksi reinforcing steel strength, fy = 60 ksi reinforcing clear cover to face of concrete = 2 in number of curtains of reinforcing, (1 or 2) =2 Are bars in "x" or "y" direction closest to face of concrete ? у minimum ratio of horizontal shrinkage-temperature steel = 0.00500 minimum ratio of vertical shrinkage-temperature steel = 0.00500

bar locations	d (in)	d' (in)
Mx bending	9"	3"
My bending	9.5"	2.5"

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCR	IPTION:		Sludge Storage and Biofilters Basins	JOB NO:	11962A.00
DESIGN	TASK:		Bio	filter Dividir	ng Wall Evaluationf ro Hydrostatic + Hydrodynami	c Loads (BSE-2	2E)

					M	_k - Mom	ent Sum	mary					
	14.62		-	, M , or	F						SUMM	1ARY	
a = b =	14.63 11.18	0.107 Mome	0.157 nt Coeffi	0.651 cient Mul	tipliers		Boundary	/ Case 1				Reinfo	orcing:
a / b =	1.3086	13.374	19.624	81.370							loments	(d = 9")	
			-	oefficien	-		M _x Momer			M _x	M _{ux}	A _{s(req'd)}	A _{s(min)}
x/a	y/b	A	B	C	D	A	B	C	D	ft-k/ft	ft-k/ft	in ² /ft	in ² /ft
0	1	0.2643	0.0678	0.0678		3.53	1.33	5.51		10.38	10.38	0.26	0.36
0	0.8	0.2149	0.0599	0.0599		2.87	1.17	4.87		8.92	8.92	0.23	0.36
0	0.6	0.1536	0.0483	0.0483		2.05	0.95	3.93		6.94	6.94	0.17	0.36
0	0.4	0.0895	0.0331	0.0331		1.20	0.65	2.69		4.54	4.54	0.11	0.36
0	0.2	0.0288	0.0130	0.0130		0.39	0.25	1.05		1.69	1.69	0.04	0.36
0	0	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36
0.2	0	0.0118	0.0061	0.0061		0.16	0.12	0.50		0.78	0.78	0.02	0.36
0.4	0	0.0288	0.0123	0.0123		0.38	0.24	1.00		1.62	1.62	0.04	0.36
0.6	0	0.0423	0.0166	0.0166		0.57	0.33	1.35		2.25	2.25	0.06	0.36
0.8	0	0.0506	0.0191	0.0191		0.68	0.38	1.56		2.61	2.61	0.06	0.36
1	0	0.0533	0.0199	0.0199		0.71	0.39	1.62		2.72	2.72	0.07	0.36
1	0.2	0.0163	0.0038	0.0038		0.22	0.08	0.31		0.60	0.60	0.01	0.36
1	0.4	-0.0189	-0.0077	-0.0077		-0.25	-0.15	-0.63		-1.03	-1.03	-0.03	-0.36
1	0.6	-0.0478	-0.0152	-0.0152		-0.64	-0.30	-1.23		-2.17	-2.17	-0.05	-0.36
1	0.8	-0.0691	-0.0199	-0.0199		-0.92	-0.39	-1.62		-2.93	-2.93	-0.07	-0.36
1	1	-0.0847	-0.0233	-0.0233		-1.13	-0.46	-1.90		-3.49	-3.49	-0.09	-0.36
0.8	1	-0.0802	-0.0220	-0.0220		-1.07	-0.43	-1.79		-3.30	-3.30	-0.08	-0.36
0.8	0.8	-0.0656	-0.0189	-0.0189		-0.88	-0.37	-1.54		-2.79	-2.79	-0.07	-0.36
0.8	0.6	-0.0460	-0.0147	-0.0147		-0.61	-0.29	-1.20		-2.10	-2.10	-0.05	-0.36
0.8	0.4	-0.0187	-0.0078	-0.0078		-0.25	-0.15	-0.63		-1.04	-1.04	-0.03	-0.36
0.8	0.2	0.0148	0.0033	0.0033		0.20	0.07	0.27		0.53	0.53	0.01	0.36
0.0	0.2	0.0140	0.0035	0.0033		0.20	0.07	0.27		0.55	0.55	0.01	0.30
		moment		0.40	6 1-161				N Pociti			40.00	6 1-16
	negative egative s				ft-k/ft in ² /ft				-	e moment steel req			ft-k/ft in ² /ft
	-			-0.36						nimum ste			in ² /ft
	Use												
	036								036				

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCR	IPTION :		Sludge Storage and Biofilters Basins	JOB NO:	11962A.00
DESIGN	TASK:		Bio	filter Dividi	ng Wall Evaluationf ro Hydrostatic + Hydrodynamic	Loads (BSE-2	?E)

					M	, - Mom	ent Sumi	mary					
	14.62		oads: q	1	F						SUMM	IARY	
a = b =	14.63 11.18	0.107 Mome	0.157 nt Coeffi	0.651 cient Mul	tipliers		Boundary	/ Case 1				Reinfo	orcing:
a / b =	1.3086	13.374	19.624	81.370							loments	(d = 9.5")	
, ,	(1		Ioment C	-	-		M _y Momen		-	M _y	M _{uy}	A _{s(req'd)}	A _{s(min)}
x/a	y/b	A	В	C	D	A	B	C	D	ft-k/ft	ft-k/ft	in ² /ft	in ² /ft
0	1	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36
0	0.8	0.0430	0.0119	0.0119		0.57	0.23	0.97		1.78	1.78	0.04	0.36
0	0.6	0.0307	0.0097	0.0097		0.41	0.19	0.79		1.39	1.39	0.03	0.36
0	0.4	0.0179	0.0066	0.0066		0.24	0.13	0.54		0.91	0.91	0.02	0.36
0	0.2	0.0058	0.0026	0.0026		0.08	0.05	0.21		0.34	0.34	0.01	0.36
0	0	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36
0.2	0	0.0590	0.0306	0.0306		0.79	0.60	2.49		3.88	3.88	0.09	0.36
0.4	0	0.1438	0.0615	0.0615		1.92	1.21	5.00		8.13	8.13	0.19	0.36
0.6	0	0.2117	0.0831	0.0831		2.83	1.63	6.76		11.23	11.23	0.27	0.36
0.8	0	0.2528	0.0955	0.0955		3.38	1.87	7.77		13.03	13.03	0.31	0.38
1	0	0.2664	0.0996	0.0996		3.56	1.95	8.10		13.62	13.62	0.33	0.38
1	0.2	0.1166	0.0290	0.0290		1.56	0.57	2.36		4.49	4.49	0.11	0.36
1	0.4	0.0254	-0.0040	-0.0040		0.34	-0.08	-0.33		-0.07	-0.07	0.00	-0.36
1	0.6	-0.0171	-0.0125	-0.0125		-0.23	-0.24	-1.02		-1.49	-1.49	-0.03	-0.36
1	0.8	-0.0210	-0.0084	-0.0084		-0.28	-0.16	-0.68		-1.13	-1.13	-0.03	-0.36
1	1	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36
1	0.4	0.0254	-0.0040	-0.0040		0.34	-0.08	-0.33		-0.07	-0.07	0.00	-0.36
0.8	0.4	0.0228	-0.0046	-0.0046		0.30	-0.09	-0.38		-0.16	-0.16	0.00	-0.36
0.6	0.4	0.0161	-0.0059	-0.0059		0.22	-0.12	-0.48		-0.38	-0.38	-0.01	-0.36
0.4	0.4	0.0089	-0.0063	-0.0063		0.12	-0.12	-0.52		-0.52	-0.52	-0.01	-0.36
0.4	0.4	0.0070	-0.0032	-0.0032		0.09	-0.06	-0.26		-0.23	-0.23	-0.01	-0.36
0.2	0.4	0.0070	-0.0032	-0.0032		0.09	-0.06	-0.20		-0.23	-0.23	-0.01	-0.30
	4!	·			<u> </u>							40.00	<u> </u>
			$M_{uy}(-) =$ d, A _s (-) =		ft-k/ft in ² /ft					e moment steel req	,		ft-k/ft in ² /ft
maxin								ma		nimum ste			in /it in²/ft
	minimum steel req'd = -0.36 in ² /ft minimum steel req'd = 0.38 in ² /ft Use Use												
	036					J			036				

BY:	BS	DATE: Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Sludge Storage and Biofilters Basins	JOB NO:	11962A.00
DESIGN	TASK:	Biofi	lter Dividi	ng Wall Evaluationf ro Hydrostatic + Hydrodynamic	Loads (BSE-2	E)

					Sh	ear Sun	nmary					
	44.00			, M , or	F					S	UMMARY	-
a = b =	14.63 11.18	0.107 Shea	0.157 r Coeffic	0.651 ient Multi	nliers		Boundary	/ Case 1				
	1.3086	1.196	1.755	7.278	pliero					Fi	nal Shear	5
			Shear Co	oefficients	6		Shears	s, k/ft		V	Vu	φV _c
x/a	y/b	A	В	С	D	A	В	С	D	k/ft	k/ft	k/ft
0	1	1.1848	0.2216	0.2216		1.42	0.39	1.61		3.42	3.42	9.37
0	0.8	0.8863	0.2371	0.2371		1.06	0.42	1.73		3.20	3.20	9.37
0	0.6	0.5861	0.2104	0.2104		0.70	0.37	1.53		2.60	2.60	9.37
0	0.4	0.3774	0.2142	0.2142		0.45	0.38	1.56		2.39	2.39	9.37
0	0.2	0.0094	0.1033	0.1033		0.01	0.18	0.75		0.94	0.94	9.37
0	0.00	-0.1013	-0.0175	-0.0175		-0.12	-0.03	-0.13		-0.28	-0.28	9.37
0.2	0	0.2143	0.2201	0.2201		0.26	0.39	1.60		2.24	2.24	9.37
0.4	0	0.5674	0.3580	0.3580		0.68	0.63	2.61		3.91	3.91	9.37
0.6	0	0.7792	0.4251	0.4251		0.93	0.75	3.09		4.77	4.77	9.37
0.8	0	0.8844	0.4555	0.4555		1.06	0.80	3.32		5.17	5.17	9.37
1	0	0.9158	0.4643	0.4643		1.10	0.81	3.38		5.29	5.29	9.37

Concrete strength reduction factor for shear, $\phi = 1.00$

 $\label{eq:powerserv} \begin{array}{rll} d = & 9.0 & \mbox{in} \\ maximum shear, V_u = & 5.29 & \mbox{k/ft} & \mbox{OK} \\ \phi V_c = \phi^* 2^* (f\, 'c)^{1/2} * b^* d = & (1.00^* 2^* (3000)^{-1} / 2 * 12^* 9.0) / 1000 = & 11.83 & \mbox{k/ft} \end{array}$

Reference:

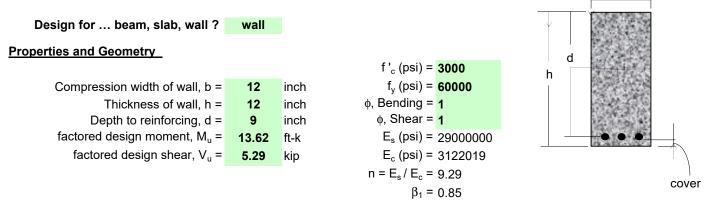
"Moments and Reactions for Rectangular Plates"

Engineering Monograph No. 27

By: W. T. Moody, United States Bureau of Reclamation

Notes:

Quadratic interpolation is used for intermediate values within the Moody tables and between Moody figures.


The positive sign convention for moments M_x and M_y is tension on the loaded face of the plate.

The M_x moment is in the direction of the x-axis and the M_y moment is in the direction of the y-axis by plate sign convention.

BY: BS	6	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:			
CHKD:		DESCRIPTION:			Sludge Storage and Biofilter Basins	JOB NO:	11962A.00		
DESIGN	TASK:	Biofilter Div	iding Wall	Strength (Check for Hydrostatic + Hydrodynamic Loads (Vertical Reinforcing) (BS				

Concrete Shear and Moment Strength Capacity

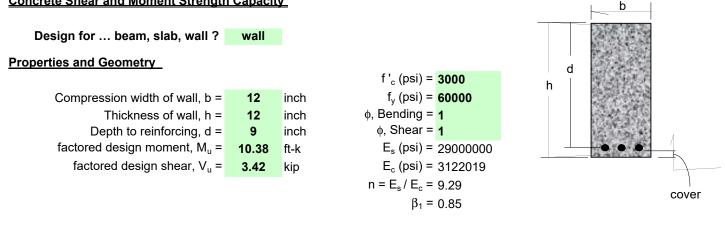
Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 11.83$$
 kip $\ge Vu$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)

comment : existing 12" wall w/ #6@12" & #7@12" alternating (effective 6" spacing) $\rho = A_s / bd = 0.00963$ Area steel provided, A_s = **1.04** in² $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} = 0.19$ $\rho_{(min)} = 0.00180$ in² 1.73 $\rho_{(max)} = 0.01604$ $A_{s (max)} =$ in² bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f_a}\right)$ $\phi^* M_n =$ 1*0.00963*60*12*9² *(1-0.588*0.00963*60/3)*(ft/12) = 41.498 ft-k ≥ Mu


Moment strength ≥ design moment, Okay

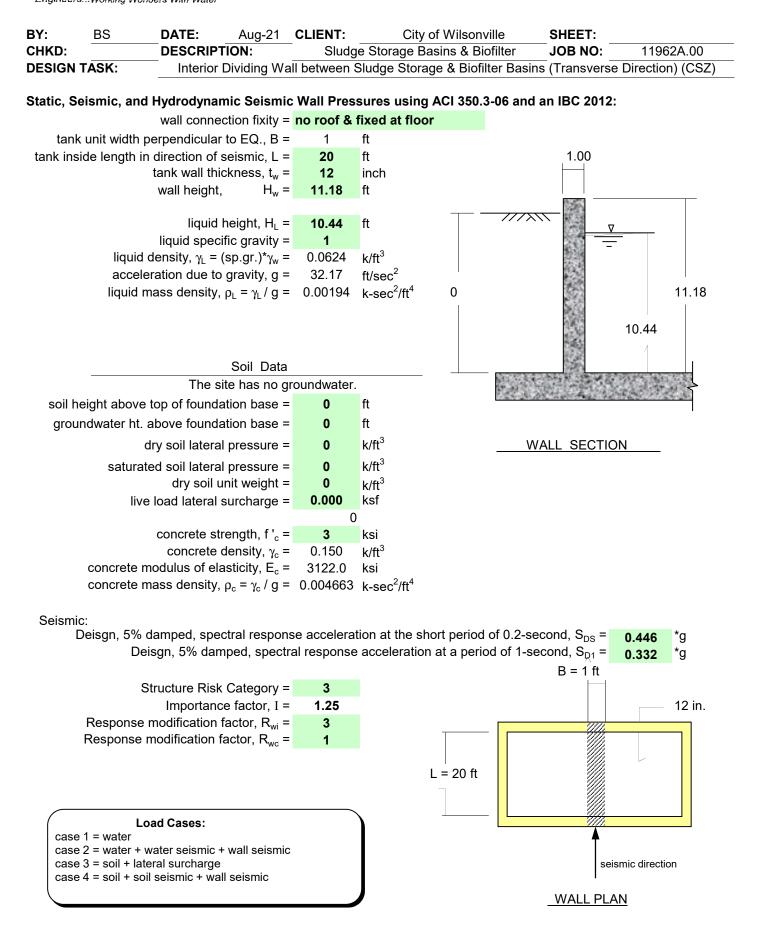
b

BY: BS	DATE: Aug-21 CLIENT:		City of Wilsonville	SHEET:		
CHKD:	DESCRIPTION:		Sludge Storage and Biofilter Basins	JOB NO:	11962A.00	
DESIGN TASK:	ofilter Dividing Wall	orizontal Rein	forcing) (BSE-2l			

Concrete Shear and Moment Strength Capacity

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 11.83$$
 kip $\geq Vu$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**


Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)

comment : existing 12" wall w/ #6@12" Area steel provided, A_s = **0.44** in² $\rho = A_s / bd = 0.00407$ $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} = 0.19$ $\rho_{(min)} = 0.00180$ in² $A_{s (max)} =$ 1.73 $\rho_{(max)} = 0.01604$ in² bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f_a'}\right)$ $\phi^* M_n =$ 1*0.00407*60*12*9² *(1-0.588*0.00407*60/3)*(ft/12) = 18.851 ft-k ≥ Mu

Moment strength ≥ design moment, Okay

BY: CHKD:	BS	DATE: DESCRIPT	Aug-21	CLIENT:	City of W Storage Basins)r	SHEET:	11962A.00
DESIGN T	ASK:	-	-	0	0				e Direction) (CSZ)
Weights:									
		ft width wall r .g. relative to		· ·	12) * (11.18) * 0. 11.18		.68 590	kip ft	
	wall c	.g. relative to	, base, n _w –		11.10	/ 2 - 5.	590	n	
	unit	width liquid I	mass, W _L =	(20) * (1) * (10.44) * 32.	17 = 13	3.03	kip	

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w/12)^*\rho_c = 0.05213 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i/W_L)^*(L/2)^*H_L^*\rho_L = 0.11345 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 4.442 \text{ ft}$ wall fixity condition is no roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(tw/h)^3 / 48 = 1282.34 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (1282.34 / (0.0521 + 0.1135))^*/_2 = 88.0026 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = 2\pi / 88.0026 = 0.0714 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load)

design factored spectral response acceleration for impulsive mass (5% damping),
$$S_{ai} = S_{DS} = 0.446$$
 g

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\lambda = \sqrt{3.16 \text{ g } \tanh\left(3.16\left(\frac{\text{H}_{\text{L}}}{\text{L}}\right)\right)} = (3.16*32.2*\tanh(3.16*(0.522)))^{1/2} = 9.7169$$

$$\omega_{\rm c} = \frac{\pi}{\sqrt{L}} = 9.7169 / (20)^{1/2} = 2.1728 \text{ rad/sec},$$

period of the convective mass, $T_c = 2\pi / \omega_c = 2\pi / 2.1728 = 2.8918$ sec Long transition period (from map figure 22-15 ASCE 7), $T_L = 16$ sec

design spectral response acceleration for convective mass (0.5% damping),
$$S_{ac}$$
 = 1.5 * Sd1 / Tc = 0.172 g

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.7109$

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:		
CHKD:		DESCRIPT	ION:	Sludge	Storage Basins & Biofilte	er JOB NO:	1196	62A.00
DESIGN	TASK:	Interior I	Dividing Wa	all between Slu	dge Storage & Biofilter	Basins (Transvers	e Directio	n) (CSZ)
						L =	20	ft
			-			B =	1	ft
			^	P _c		H _L =	10.44	ft
				convective)		$W_L =$	13.03	kip
h _c	h			P _i (impulsive)		_	1.91571	
				L		H _L / L =	0.52200	
3). <u>latera</u>	al fluid impu	llsive force:	Dyn	amic Model	I			
		tanh 0	$866 \frac{L}{H_L}$		Wi = equivalent mas	ss of the impulsive	compone	ent of liquid.
	W _i =	$= W_L \left(\begin{array}{c} 0.86 \end{array} \right)$	1	= 13.03*	(tanh(0.866*(1.9157)) / ().866*(1.9157)) =	7.3	kip
					hi (EBP) = HL * 0.375	= 10.44 * 0.375 =	3.915	ft
			hi (l	BP) = HL * {{(().866 [*] L/HĹ)/(2*tanh(0.86		8.006	ft

impulsive force,
$$P_i = \left(\frac{S_{ai} I}{R_{wi}}\right)W_i = (0.446 * 1.25 / 3)*7.3 = 1.4 kip$$

4). lateral fluid convective force:

$$W_{c} = W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) tanh\left(3.16\left(\frac{H_{L}}{L}\right)\right)\right) =$$

$$h_{c (EBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right)\sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 6.151 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 8.702 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.1722 * 1.25 / 1)*6.12 = 1.3$$
 kip

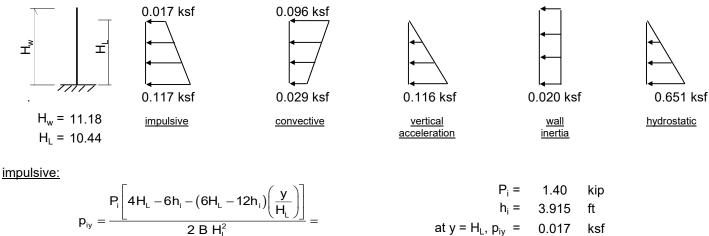
BY:	BS	DATE:	DATE: Aug-21 CLIENT: City of Wilsonville SHEET:					
CHKD:		DESCRIPT	FION:	Sludge	Storage Basins & Biofilter	JOB NO:	119	62A.00
DESIGN	FASK:	Interior	Dividing Wa	all between Sl	udge Storage & Biofilter Basi	ns (Transverse	e Directic	on) (CSZ)
5). <u>latera</u>	<u>l inertia fo</u>	rce of the acce	elerating wa	all:			4.00	
					unit width wall	mass, vv _w =	1.68	kip
					wall c.g. relative	to base, h _w =	5.590	ft

wall inertia force,
$$P_w = \left(\frac{S_{ai} I \epsilon}{R_{wi}}\right) W_w = (0.446*1.25*0.7109/3)*1.68 = 0.22$$
 kip

6). maximum wave slosh height displacement:

$$d_{(max)} = \left(\frac{L}{2}\right)\left(\frac{S_{ac}}{1.4}I\right) = (20/2) * (0.1722/1.0 * 1.25) = 2.15 ft$$

Wave height is greater than the freeboard of 0.74-ft. Check effects of wave spillage.


7). vertical acceleration:

- design horizontal accereration, $S_{DS} = 0.446$ *g
- vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4^*S_{DS} = 0.1784$ g

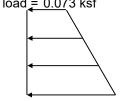
per ASCE 7-10 para. 15.7.7.2(b), use $I = R_i = b = 1.0$

Design vertical acceleration,
$$\ddot{u} = \frac{S_{av} I b}{R_i} = 0.1784^{*}1^{*}1/1 = 0.1784 g$$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

convective:

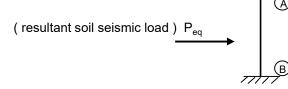
$$p_{cy} = \frac{P_{c} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]}{2 B H_{L}^{2}} =$$


at y = H_L, p_{iy} = 0.017 ksf
at base y = 0, p_{iy} = 0.117 ksf
$$P_c = 1.30$$
 kip
 $h_c = 6.151$ ft
at y = H_L, p_{cy} = 0.096 ksf
at base y = 0, p_{cy} = 0.029 ksf

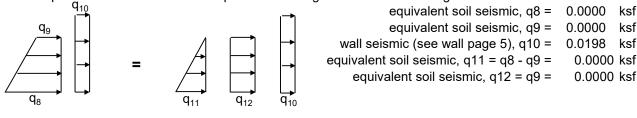
BY:	BS	DATE:		CLIENT:	City of Wilsonville	SHEET	
CHKD:		DESCRIP			Storage Basins & Biofilter	JOB NO	
DESIGN 1	ASK:	Interior	Dividing Wa	all between Slu	dge Storage & Biofilter Ba	sins (Transv	verse Direction) (CSZ)
vertical ac	celeration	<u>:</u>					
	n = üγ	$(H_{1} - y) =$				ü = 0.178	
	P _{vy} – u IL	_ ('' _ y) =			at $y = H_L, p_V$	-	
					at base $y = 0, p_v$	y = 0.116	ð ksf
all inertia							
	p =	$\frac{S_{ai} \ \mathrm{I} \ \varepsilon \ \gamma_{c}}{R_{wi}}$	<u>/12)</u> _		pw	_y = 0.13	21 * γ _c * (t _w /12)
	r wy	R _{wi}			at y = H _w , p _w	-	
					at base y = 0, p _w	_y = 0.020) ksf
nydrostati	<u>c:</u>					- 0.000	
	$q_{hv} = \gamma_{l}$	$(H_{1} - y) =$			at $y = H_L, q_R$		
ombino t		of the dynam		on the well:	at base y = 0, q _r	y = 0.651	l ksf
	ne enecis	of the dynam	ic pressures	on the wall.			
	n = .[[$\left(p_{y} + p_{wy} \right)^2 + p_{wy}$	$p^{2} + p^{2} =$		at y = H _w , p	v = 0.102	2 ksf
	Ρ _y - η(My ' My / ' h	cy 'Pwy ─		at base y = 0, p	y = 0.182	2 ksf
		· 	_		1.102 ksf (unfactored = 0.1	02 / 1.4 = 0.0)73 ksf)
		Ŧ	Ŧ	←			
				ل م ــــــــــــــــــــــــــــــــــــ	182 ksf (unfactored = 0.1	82 / 1.4 = 0.1	13 ksf)
		•	<u>resultar</u>	nt dynamic pres	sures		
), wall de	esian pres	sures for hydi	rostatic + dv	namic:	wall height, H _w = 11.1	8 ft	
<u>, nan a</u>	<u></u>		<u>eetudo uy</u>		liquid height, $H_1 = 10.4$		
					, <u>.</u> 10.1		
					unfactored loa	id = 0.073 k	sf

0.651 ksf <u>hydrostatic</u>

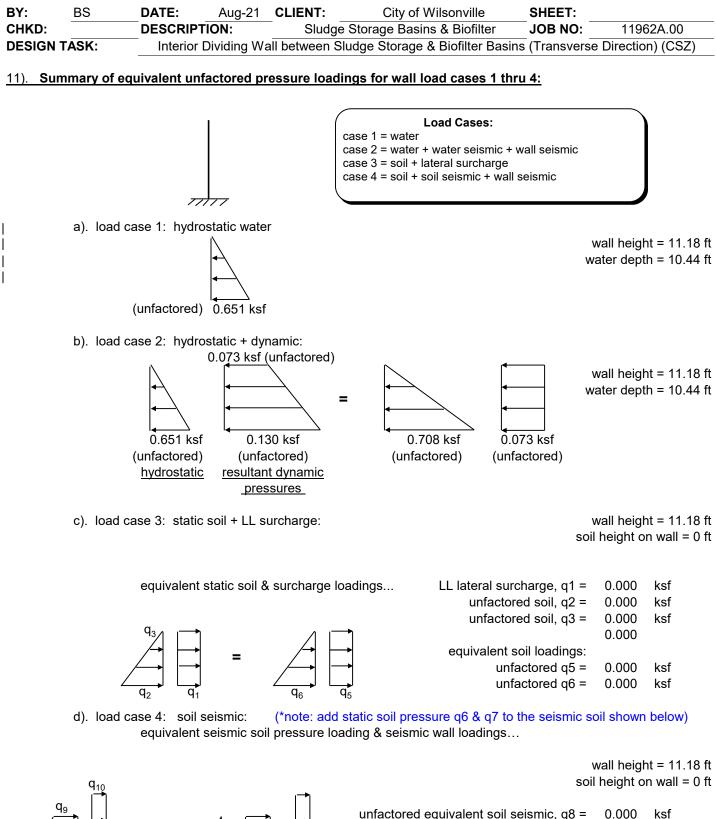
unfactored load = 0.130 ksf resultant dynamic pressures


 \bigcirc

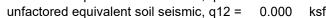
B

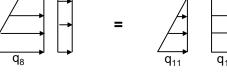

77

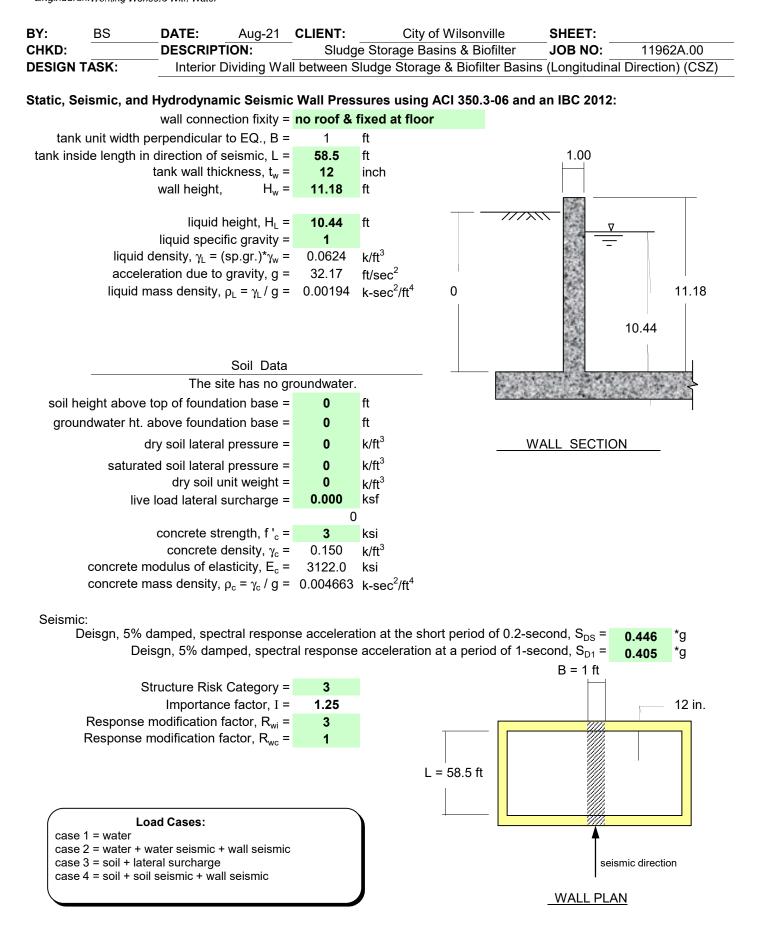
Aug-21 CLIENT: BY: City of Wilsonville BS DATE: SHEET: CHKD: **DESCRIPTION:** Sludge Storage Basins & Biofilter JOB NO: 11962A.00 **DESIGN TASK:** Interior Dividing Wall between Sludge Storage & Biofilter Basins (Transverse Direction) (CSZ) 10). wall design pressures for external soil loading: static soil: The site has no groundwater. wall height = 11.18 ft soil height above top of base = 0 ft groundwater ht. above base = 0 ft k/ft³ dry soil lateral pressure = 0.000 k/ft³ sat. soil lateral pressure = 0.000 live load lateral surcharge = 0.000 ksf equivalent static soil loadings: LL lateral surcharge, q1 = 0.0000 ksf unfactored soil, q2 = 0.0000 ksf unfactored soil, q3 = 0.0000 ksf 0.000 equivalent soil loadings: unfactored q5 = 0.0000 ksf unfactored q6 =0.0000 ksf soil seismic: resultant factored soil seismic load per foot of wall width, Pu (eq) = k/ft 0 centroid location of the resultant soil seismic from the bottom of wall, h_{eq} = 0 ft The resultant soil seismic load will be resolved into an equivalent pressure loading...



Equivalent factored seismic soil pressure loading & seismic wall loadings...




- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0198 / 1.4 = 0.0142 ksf
- unfactored equivalent soil seismic, q11 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q12 =0 / 1.4 = 0.0000 ksf



unfactored equivalent soil seismic, q8 =	0.000	kst
unfactored equivalent soil seismic, q9 =	0.000	ksf
unfactored equivalent soil seismic, q10 =	0.014	ksf
unfactored equivalent soil seismic, q11 =	0.000	ksf

366

BY:	BS	DATE:	Aug-21	CLIENT:	City of W		SHEET:	
CHKD:		DESCRIPT	ION:	Sludge	e Storage Basins	& Biofilter	JOB NO:	11962A.00
DESIGN T	ASK:	Interior D	Dividing Wal	I between SI	udge Storage &	Biofilter Basins	(Longitudina	al Direction) (CSZ)
Weights:		ft width wall r .g. relative to		```	12) * (11.18) * 0. 11.18	15 = 1.68 / 2 = 5.590	kip ft	
	unit	t width liquid	mass, W _L =	(58.5) * (1) * (10.44) * 32.	17 = 38.11	kip	

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w/12)^*\rho_c = 0.05213 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i/W_L)^*(L/2)^*H_L^*\rho_L = 0.12201 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 4.416 \text{ ft}$ wall fixity condition is no roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(t_w/h)^3 / 48 = 1305.12 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (1305.12 / (0.0521 + 0.122))^*/_2 = 86.5722 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = 2\pi / 86.5722 = 0.0726 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = 0.446 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\lambda = \sqrt{3.16 \text{ g } \tanh\left(3.16\left(\frac{\text{H}_{\text{L}}}{\text{L}}\right)\right)} = (3.16^{*}32.2^{*} \tanh(3.16^{*}(0.1785)))^{1/2} = 7.2067$$
$$\omega_{\text{c}} = \frac{\lambda}{\sqrt{\text{L}}} = 7.2067 / (58.5)^{1/2} = 0.9422 \text{ rad/sec},$$

period of the convective mass,
$$T_c = 2\pi / \omega_c = 2\pi / 0.9422 = 6.6684$$
 sec
Long transition period (from map figure 22-15 ASCE 7), $T_L = 16$ sec

design spectral response acceleration for convective mass (0.5% damping),
$$S_{ac}$$
 = 1.5 * Sd1 / Tc = 0.091 g

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.4260$

4). lateral fluid convective force:

BY: CHKD: DESIGN ⁻	BS	DATE: DESCRIPT	ION:	-	Storage Basir	Vilsonville is & Biofilter & Biofilter Basins	SHEET: JOB NO:		2A.00
DESIGN	IASK.		Juliling wa		uge Storage c				II) (CSZ)
				∇		1	L =	58.5	ft
							B =	1	ft
				P _c			$H_L =$	10.44	ft
				convective)			$W_L =$	38.11	kip
h _c	h _i	_		P _i (impulsive)		-	L / H _L =	5.60345	
						1	$H_{l}/L =$	0.17846	
				L			-		
3). <u>latera</u>	ıl fluid impul	sive force:	Dyn	amic Model		I			
		(tank)	••• L))		Wi = equi	valent mass of t	he impulsive	compone	nt of liquid.
	$W_i =$	W_{L}	$\frac{.866 \frac{L}{H_{L}}}{66 \frac{L}{H_{L}}}$	= 38.11*	(tanh(0.866*(5.6034)) / 0.866	*(5.6034)) =	7.85	kip
					hi (EBP) = H	IL * 0.375 = 10.4	44 * 0.375 =	3.915	ft
			hi (l	BP) = HL * {{(0	.866*L/HL)/(2	*tanh(0.866*L/F	IL))} -1/8 } =	24.029	ft
		imp	ulsive forc	$e, P_i = \left(\frac{S_{ai}}{R_w}\right)$	$\left(\frac{I}{I}\right)W_{i} =$	(0.446 * 1.25	/ 3)*7.85 =	1.5	kip

Wc = equivalent mass of the convective component of liquid.

$$W_{c} = W_{L} \left(0.264 \left(\frac{L}{H_{L}} \right) tanh \left(3.16 \left(\frac{H_{L}}{L} \right) \right) \right) = 38.11^{*} (0.264^{*} (5.6034)^{*} tanh (3.16^{*} (0.1785))) = 28.8 \text{ kip}$$

$$h_{c (EBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 5.354$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right)\sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 36.815 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.0911 * 1.25 / 1)*28.8 = 3.3$$
 kip

ft

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:		
CHKD:		DESCRIPT	ION:	Sludge	Storage Basins & Biofilter	JOB NO:	1196	62A.00
DESIGN 1	ASK:	Interior I	Dividing Wa	II between SI	udge Storage & Biofilter Basin	s (Longitudina	I Directio	on) (CSZ)
5). <u>latera</u>	l inertia for	ce of the acce	elerating wa	<u>III:</u>	unit width wall	mass, W _w =	1.68	kip

wall c.g. relative to base,
$$h_w = 5.590$$
 ft

wall inertia force,
$$P_w = \left(\frac{S_{ai} I \epsilon}{R_{wi}}\right) W_w = (0.446*1.25*0.426/3)*1.68 = 0.13$$
 kip

6). maximum wave slosh height displacement:

$$d_{(max)} = \left(\frac{L}{2}\right) \left(\frac{S_{ac}}{1.4} I\right) = (58.5/2) * (0.0911/1.0 * 1.25) = 3.33 \text{ ft}$$

Wave height is greater than the freeboard of 0.74-ft. Check effects of wave spillage.

at base y = 0, p_{iy} =

0.126

P_c = 3.30

 $h_c = 5.354$

at y = H_L , $p_{cy} = 0.170$

at base $y = 0, p_{cy} = 0.146$

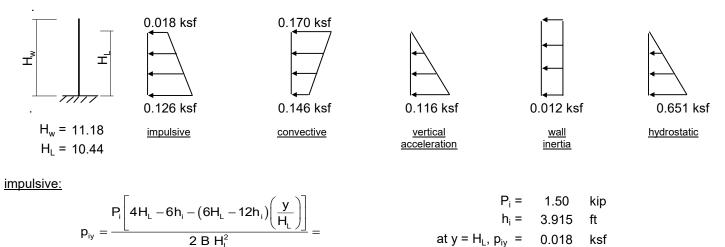
ksf

kip

ft

ksf

ksf


7). vertical acceleration:

- design horizontal accereration, $S_{DS} = 0.446$ *g
- vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4*S_{DS} = 0.1784$ g

per ASCE 7-10 para. 15.7.7.2(b), use $I = R_i = b = 1.0$

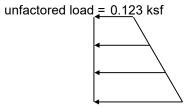
Design vertical acceleration,
$$\ddot{u} = \frac{S_{av} I b}{R_i} = 0.1784^{*}1^{*}1/1 = 0.1784 g$$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

convective:

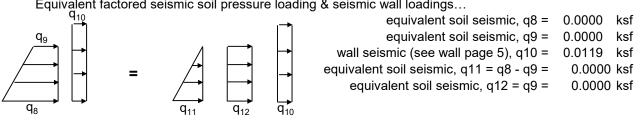
$$p_{cy} = \frac{P_{c} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]}{2 B H_{L}^{2}} =$$

page 4 of 8

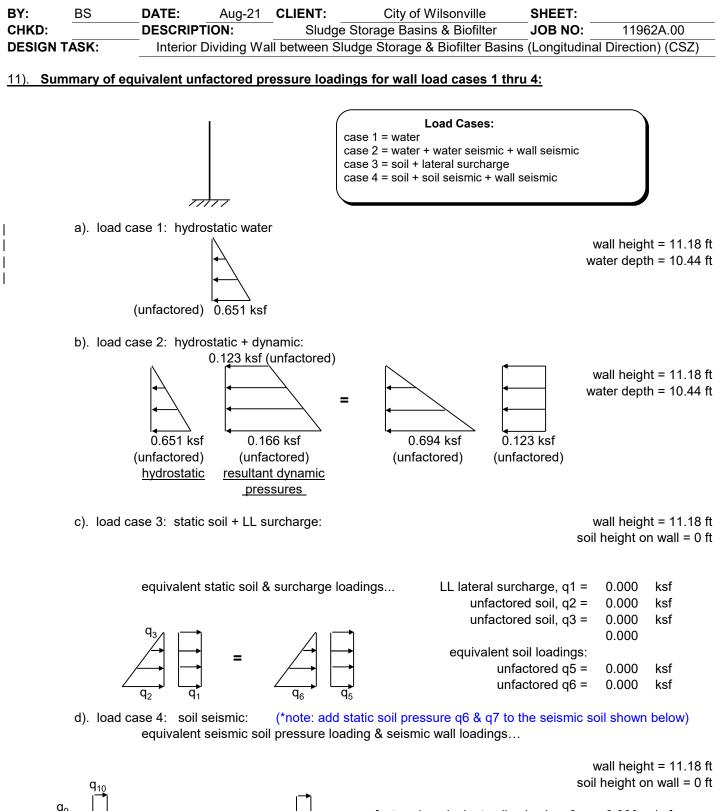


BY:	BS	DATE:		CLIENT:	City of Wilsonvi		SHEET:	
CHKD:		DESCRIP			torage Basins & Bio		JOB NO:	11962A.00
DESIGN	TASK:	Interior	Dividing Wa	all between Slud	ge Storage & Biofilte	er Basins	(Longitudii	nal Direction) (CSZ)
vertical ac	cceleration:	<u>.</u>						
	n ü <i>v</i>						0.1784	
	$p_{_{Vy}}=~\ddot{u}~\gamma_{L}$	$(\Pi_{L} - \mathbf{y}) =$				$H_L, p_{vy} =$		ksf
					at base y =	= 0, p _{vy} =	0.116	ksf
well inerti	. .							
wall inertia		S., Ιεγ. (t.	/12)			p _{w0} =	0.0792	* γ _c * (t _w /12)
	$p_{wy} = -$	<mark>S_{ai} Ιεγ_c (t_w R_{wi}</mark>	=		at y = l	$H_{w}, p_{wy} =$	0.012	ksf
		w.			at base y =			ksf
<u>hydrostati</u>	c:				,	- , T wy	0.0.1	
		(at y =	$H_L, q_{hv} =$	0.000	ksf
	$q_{hy} = \gamma_L$	$(H_L - y) =$			at base y =	$= 0, q_{hv} =$	0.651	ksf
combine t	he effects	of the dynami	c pressures	on the wall:	-			
	L.	<u>ر</u>	2 2		at v =	$H_w, p_v =$	0 173	ksf
	$p_y = ($	$(p_{iy} + p_{wy})^2 + p_{iy}$	$p_{cy}^2 + p_{vy}^2 =$		at base y			ksf
						0, py	0.202	KSI
		· · ·		0.	173 ksf (unfactore	d = 0.173 /	1.4 = 0.123	3 ksf)
		r	Ŧ	•	\square			
			/		232 ksf (unfactore	d = 0.232 /	1.4 = 0.166	δ ksf)
			resultat	<u>nt dynamic pres</u>	Sures			
<u>9). wall d</u>	esign press	sures for hydr	ostatic + dy	<u>namic:</u>	wall height, H _w =		ft	
					liquid height, $H_L =$	10.44	ft	
					unfatar		0.400 kaf	

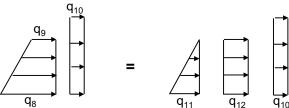
\backslash


0.651 ksf <u>hydrostatic</u>

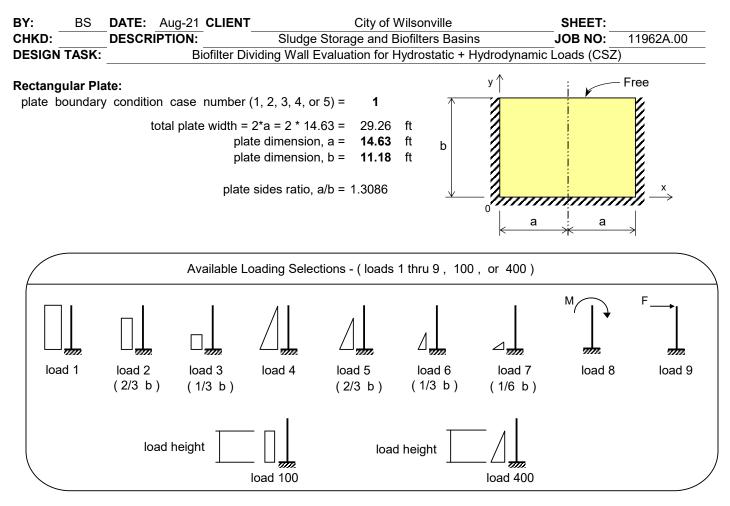
unfactored load = 0.166 ksf resultant dynamic pressures



BY: CHKD: DESIGN	BS TASK:	DATE: DESCRIPTI Interior D		-	City of Wilsonville e Storage Basins & Biofilter Sludge Storage & Biofilter Basins	SHEET: JOB NO: (Longitudi						
	<u>10). wall design pressures for external soil loading:</u> static soil: The site has no groundwater.											
static	<u>soil:</u>											
			A		wall height =		ft					
	a,				soil height above top of base =		ft					
		×			groundwater ht. above base =	0	ft					
					dry soil lateral pressure =	0.000	k/ft ³					
		▶ ─▶	В		sat. soil lateral pressure =	0.000	k/ft ³					
			77		live load lateral surcharge =		ksf					
	12											
	equivalent	static soil loa	dinas:		LL lateral surcharge, q1 =	0.0000	ksf					
			0		unfactored soil, g2 =		ksf					
					unfactored soil, q3 =		ksf					
	q _{3∕1 I} —	→ 1	1	ı ── ▶	, -	0.000						
		→	\square		equivalent soil loadings:							
		→ =			unfactored q5		ksf					
					unfactored q6 =		ksf					
	q ₂	q ₁	q ₆	q ₅		0.0000	Nor					
مانام	lomio											
<u>SOILS</u>	eismic:											
		resultant	actored s	oil seismic ic	pad per foot of wall width, P _{u (eq)} =	0	k/ft					
	centro	oid location of	the result	ant soil seisi	mic from the bottom of wall, h _{eq} =	0	ft					
	The result	ant soil seism	ic load wil	l be resolved	d into an equivalent pressure load	ding						
					· • •							
					(A)							
			(resulta	nt soil seism	ic load)P _{eq}							
			,		, <u> </u>							
					B							
	Equivalen	t factored seis	mic soil p	ressure load	ling & seismic wall loadings							



- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0119 / 1.4 = 0.0085 ksf
- unfactored equivalent soil seismic, q11 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q12 =0 / 1.4 = 0.0000 ksf



unfactored equivalent soil seismic, q8 =	0.000	ksf
unfactored equivalent soil seismic, q9 =	0.000	ksf
unfactored equivalent soil seismic, q10 =	0.008	ksf
unfactored equivalent soil seismic, q11 =	0.000	ksf
unfactored equivalent soil seismic, q12 =	0.000	ksf

Choice of Available Loadings											
load	load type	load height, (ft)	unfactored loads:	concrete lo	oad factors						
conditions	Loading	only for custom	q, M, or F	for	for						
(4 max)	Selection Number	loads 100 or 400	(ksf, ft-k/ft, k/ft)	moment	shear						
A	100	10.440	0.102	1	1						
В	400	10.440	0.080	1	1						
С	400	10.440	0.651	1	1						
D											

Notes: 1). Load 100 = uniform load of any load height \ge b/3; Load 400 = triangular load of any load height \ge b/6.

2). load height must be less than or equal to "b", and uniform load height ≥ "b / 3", and triangular load height ≥ "b / 6".
3). loads may be positive or negative.

plate thickness, h = 12 in concrete strength, f 'c = 3 ksi reinforcing steel strength, fy = 60 ksi reinforcing clear cover to face of concrete = 2 in number of curtains of reinforcing, (1 or 2) =2 Are bars in "x" or "y" direction closest to face of concrete ? у minimum ratio of horizontal shrinkage-temperature steel = 0.00500 minimum ratio of vertical shrinkage-temperature steel = 0.00500

bar locations	d (in)	d' (in)
Mx bending	9"	3"
My bending	9.5"	2.5"

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCR	IPTION:		Sludge Storage and Biofilters Basins	JOB NO:	11962A.00
DESIGN	TASK:		В	iofilter Divi	ding Wall Evaluation for Hydrostatic + Hydrodynamic	Loads (CSZ)

M _x - Moment Summary													
	14.62	0.102	-	, M , or	F						SUMM	IARY	
a = b =	14.63 11.18		0.080 nt Coeffi	0.651 cient Mul	tipliers		Boundary	/ Case 1				Reinfo	orcing:
a / b =	1.3086	12.749	9.999	81.370							loments	(d =	: 9")
,	(1		-	oefficien	-	M _x Moments, ft-k/ft				M _x	M _{ux}	A _{s(req'd)}	A _{s(min)}
x/a	y/b	A	В	С	D	A	В	С	D	ft-k/ft	ft-k/ft	in ² /ft	in ² /ft
0	1	0.2643	0.0678	0.0678		3.37	0.68	5.51		9.56	9.56	0.24	0.36
0	0.8	0.2149	0.0599	0.0599		2.74	0.60	4.87		8.21	8.21	0.21	0.36
0	0.6	0.1536	0.0483	0.0483		1.96	0.48	3.93		6.37	6.37	0.16	0.36
0	0.4	0.0895	0.0331	0.0331		1.14	0.33	2.69		4.16	4.16	0.10	0.36
0	0.2	0.0288	0.0130	0.0130		0.37	0.13	1.05		1.55	1.55	0.04	0.36
0	0	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36
0.2	0	0.0118	0.0061	0.0061		0.15	0.06	0.50		0.71	0.71	0.02	0.36
0.4	0	0.0288	0.0123	0.0123		0.37	0.12	1.00		1.49	1.49	0.04	0.36
0.6	0	0.0423	0.0166	0.0166		0.54	0.17	1.35		2.06	2.06	0.05	0.36
0.8	0	0.0506	0.0191	0.0191		0.64	0.19	1.56		2.39	2.39	0.06	0.36
1	0	0.0533	0.0199	0.0199		0.68	0.20	1.62		2.50	2.50	0.06	0.36
1	0.2	0.0163	0.0038	0.0038		0.21	0.04	0.31		0.56	0.56	0.01	0.36
1	0.4	-0.0189	-0.0077	-0.0077		-0.24	-0.08	-0.63		-0.94	-0.94	-0.02	-0.36
1	0.6	-0.0478	-0.0152	-0.0152		-0.61	-0.15	-1.23		-1.99	-1.99	-0.05	-0.36
1	0.8	-0.0691	-0.0199	-0.0199		-0.88	-0.20	-1.62		-2.70	-2.70	-0.07	-0.36
1	1	-0.0847	-0.0233	-0.0233		-1.08	-0.23	-1.90		-3.21	-3.21	-0.08	-0.36
0.8	1	-0.0802	-0.0220	-0.0220		-1.02	-0.22	-1.79		-3.03	-3.03	-0.08	-0.36
0.8	0.8	-0.0656	-0.0189	-0.0189		-0.84	-0.19	-1.54		-2.56	-2.56	-0.06	-0.36
0.8	0.6	-0.0460	-0.0147	-0.0147		-0.59	-0.15	-1.20		-1.93	-1.93	-0.05	-0.36
0.8	0.4 0.2	-0.0187 0.0148	-0.0078	-0.0078		-0.24	-0.08	-0.63		-0.95	-0.95	-0.02	-0.36
0.8	0.2	0.0148	0.0033	0.0033		0.19	0.03	0.27		0.49	0.49	0.01	0.36
	max negative moment, $M_{ux}(-) = -3.21$ ft-k/ft max positive moment, $M_{ux}(+) = 9.56$ ft-k/ft												
	-	moment, teel req'o			ft-k/ft in ² /ft					e moment steel req			ft-k/ft in ² /ft
maxin				-0.36				110		nimum ste			in /it in²/ft
	Use		1]			Use				
	036]			036				

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCR	IPTION :		Sludge Storage and Biofilters Basins	JOB NO:	11962A.00
DESIGN	TASK:		В	iofilter Divi	ding Wall Evaluation for Hydrostatic + Hydrodynamic	Loads (CSZ)

	M _y - Moment Summary												
0 -	14.63	0.102	oads: q 0.080	, M , or 0.651	F						SUMM	IARY	
a = b =	11.18	Mome		cient Mul	tipliers	Boundary Case 1				Final Moments Reinford			
a / b =	1.3086		9.999	81.370	4.				£4		-	``	9.5")
x/a	y/b	A	Ioment C	Coefficien	ts D	A	M _y Momen B	C	π D	M _y ft-k/ft	M _{uy} ft-k/ft	A _{s(req'd)} in ² /ft	A _{s(min)} in²/ft
0	1	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36
0	0.8	0.0430	0.0119	0.0119		0.55	0.12	0.97		1.64	1.64	0.04	0.36
0	0.6	0.0307	0.0097	0.0097		0.39	0.10	0.79		1.28	1.28	0.03	0.36
0	0.4	0.0179	0.0066	0.0066		0.23	0.07	0.54		0.83	0.83	0.02	0.36
0	0.2	0.0058	0.0026	0.0026		0.07	0.03	0.21		0.31	0.31	0.01	0.36
0	0	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36
0.2	0	0.0590	0.0306	0.0306		0.75	0.31	2.49		3.55	3.55	0.08	0.36
0.4	0	0.1438	0.0615	0.0615		1.83	0.61	5.00		7.45	7.45	0.18	0.36
0.6	0	0.2117	0.0831	0.0831		2.70	0.83	6.76		10.29	10.29	0.25	0.36
0.8	0	0.2528	0.0955	0.0955		3.22	0.96	7.77		11.95	11.95	0.29	0.38
1	0	0.2664	0.0996	0.0996		3.40	1.00	8.10		12.49	12.49	0.30	0.38
1	0.2	0.1166	0.0290	0.0290		1.49	0.29	2.36		4.14	4.14	0.10	0.36
1	0.4	0.0254	-0.0040	-0.0040		0.32	-0.04	-0.33		-0.05	-0.05	0.00	-0.36
1	0.6	-0.0171	-0.0125	-0.0125		-0.22	-0.12	-1.02		-1.36	-1.36	-0.03	-0.36
1	0.8	-0.0210	-0.0084	-0.0084		-0.27	-0.08	-0.68		-1.03	-1.03	-0.02	-0.36
1	1	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36
1	0.4	0.0254	-0.0040	-0.0040		0.32	-0.04	-0.33		-0.05	-0.05	0.00	-0.36
0.8	0.4	0.0228	-0.0046	-0.0046		0.29	-0.05	-0.38		-0.13	-0.13	0.00	-0.36
0.6	0.4	0.0161	-0.0059	-0.0059		0.21	-0.06	-0.48		-0.33	-0.33	-0.01	-0.36
0.4	0.4	0.0089	-0.0063	-0.0063		0.11	-0.06	-0.52		-0.47	-0.47	-0.01	-0.36
0.2	0.4	0.0070	-0.0032	-0.0032		0.09	-0.03	-0.26		-0.20	-0.20	0.00	-0.36
	negative		•		ft-k/ft					e moment			ft-k/ft
max n	egative s minin			-0.03 -0.36				ma		e steel req' nimum ste			in²/ft in²/ft
	Use		1 =-						Use		···- ¶ =		
	036]			036				

BY:	BS	DATE: Aug-21 CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:	Sludge Storage and Biofilters Basins	JOB NO:	11962A.00
DESIGN	TASK:	Biofilter Di	viding Wall Evaluation for Hydrostatic + Hydrodynami	c Loads (CSZ)

	Shear Summary												
	11.05		oads: q		F					S	UMMARY	,	
a = b =	14.63 11.18	0.102	0.080 r Coeffic	0.651	pliora		Boundary	/ Case 1		-			
	1.3086	1.140	0.894	7.278	pliers					Fi	nal Shear	S	
			Shear Co	oefficients	3		Shears	s, k/ft		V	Vu	φV _c	
x/a	y/b	А	В	С	D	A	В	С	D	k/ft	k/ft	k/ft	
0	1	1.1848	0.2216	0.2216		1.35	0.20	1.61		3.16	3.16	9.37	
0	0.8	0.8863	0.2371	0.2371		1.01	0.21	1.73		2.95	2.95	9.37	
0	0.6	0.5861	0.2104	0.2104		0.67	0.19	1.53		2.39	2.39	9.37	
0	0.4	0.3774	0.2142	0.2142		0.43	0.19	1.56		2.18	2.18	9.37	
0	0.2	0.0094	0.1033	0.1033		0.01	0.09	0.75		0.85	0.85	9.37	
0	0.00	-0.1013	-0.0175	-0.0175		-0.12	-0.02	-0.13		-0.26	-0.26	9.37	
0.2	0	0.2143	0.2201	0.2201		0.24	0.20	1.60		2.04	2.04	9.37	
0.4	0	0.5674	0.3580	0.3580		0.65	0.32	2.61		3.57	3.57	9.37	
0.6	0	0.7792	0.4251	0.4251		0.89	0.38	3.09		4.36	4.36	9.37	
0.8	0	0.8844	0.4555	0.4555		1.01	0.41	3.32		4.73	4.73	9.37	
1	0	0.9158	0.4643	0.4643		1.04	0.42	3.38		4.84	4.84	9.37	

Concrete strength reduction factor for shear, $\phi = 1.00$

	=	9.0	in	
	maximum shear, V _u =	4.84	k/ft	OK
$\phi V_{c} = \phi^{*} 2^{*} (f'c)^{1/2} b^{*} d =$	(1.00*2*(3000)^1/2 *12*9.0)/1000 =	11.83	k/ft	

Reference:

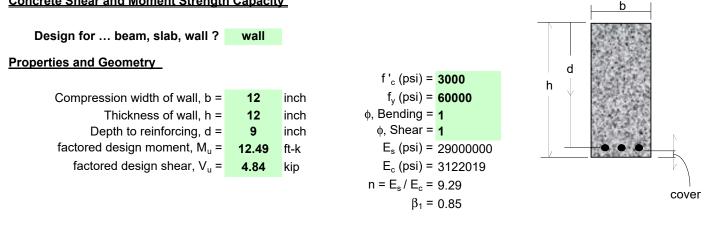
"Moments and Reactions for Rectangular Plates"

Engineering Monograph No. 27

By: W. T. Moody, United States Bureau of Reclamation

Notes:

Quadratic interpolation is used for intermediate values within the Moody tables and between Moody figures.


The positive sign convention for moments $M_{\!x}$ and $M_{\!y}$ is tension on the loaded face of the plate.

The M_x moment is in the direction of the x-axis and the M_y moment is in the direction of the y-axis by plate sign convention.

BY:	BS	DATE:	DATE: Aug-21 CLIENT		City of Wilsonville	SHEET:	
CHKD):	DESCRIPTION:			Sludge Storage and Biofilter Basins	JOB NO:	11962A.00
DESIGN TASK: Biofilter Dividing Wa				all Strength	h Check for Hydrostatic + Hydrodynamic Loads	(Vertical Rein	forcing) (CSZ)

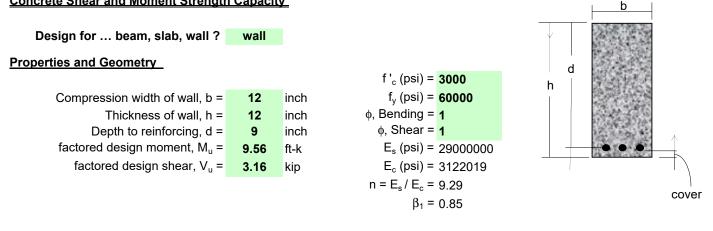
Concrete Shear and Moment Strength Capacity

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 11.83$$
 kip $\geq Vu$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)


comment : existing 12" wall w/ #6@12" & #7@12" alternating (effective 6" spacing) Area steel provided, A_s = **1.04** in² $\rho = A_s / bd = 0.00963$ $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} = 0.19$ $\rho_{(min)} = 0.00180$ in² 1.73 $\rho_{(max)} = 0.01604$ $A_{s (max)} =$ in² bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f_a}\right)$ $\phi^* M_n =$ 1*0.00963*60*12*9² *(1-0.588*0.00963*60/3)*(ft/12) = 41.498 ft-k ≥ Mu

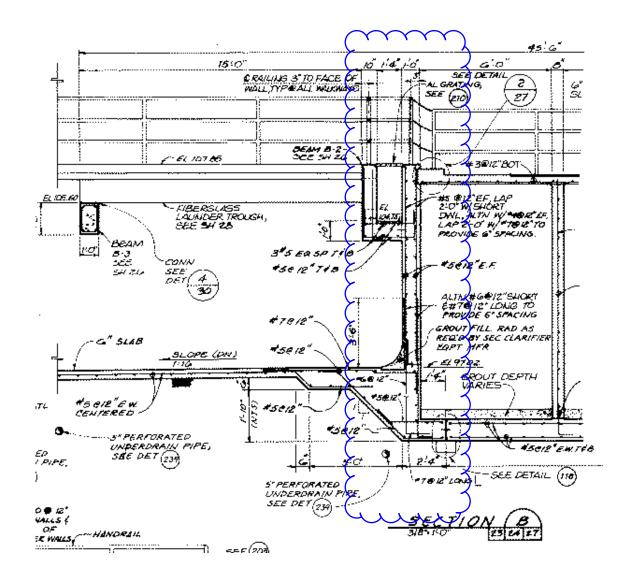
Moment strength ≥ design moment, Okay

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:			Sludge Storage and Biofilter Basins		11962A.00
DESIGN TASK:		Biofilter Dividing Wall Strength (Check for Hydrostatic + Hydrodynamic Loads (I	Horizontal Re	inforcing) (CSZ)

Concrete Shear and Moment Strength Capacity

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

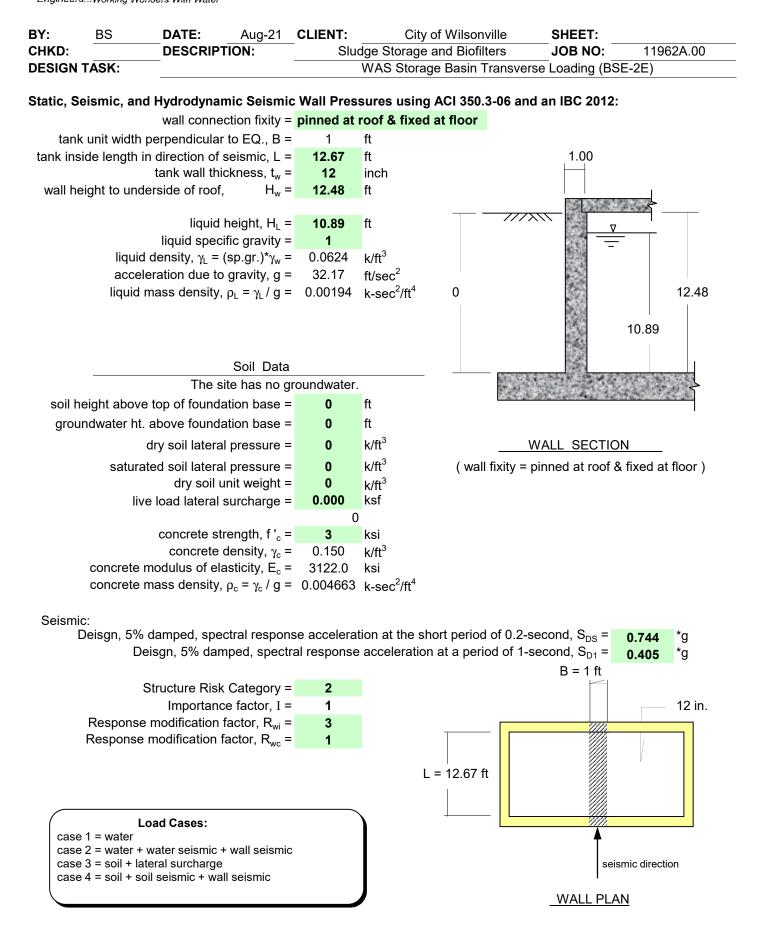
concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 11.83$$
 kip $\geq V u$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**


Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)

comment : existing 12" wall w/ #6@12" Area steel provided, A_s = **0.44** in² $\rho = A_s / bd = 0.00407$ $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} = 0.19$ $\rho_{(min)} = 0.00180$ in² $A_{s (max)} =$ 1.73 $\rho_{(max)} = 0.01604$ in² bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f_a'}\right)$ $\phi^* M_n =$ 1*0.00407*60*12*9² *(1-0.588*0.00407*60/3)*(ft/12) = 18.851 ft-k ≥ Mu

Moment strength ≥ design moment, Okay



Dividing Wall between Biofilter and WAS Basins

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonv		SHEET:	
CHKD:		DESCRIP	FION:	Slud	ge Storage and Biofilte	ers	JOB NO:	11962A.00
DESIGN 1	ASK:				WAS Storage Basin Tr	ansverse	e Loading (BSI	E-2E)
Weights:								
	unit 1-	ft width wall	mass, W _w =	(12/	12) * (12.48) * 0.15 =	1.87	kip	
	wall c	.g. relative to	o base, h _w =		12.48 / 2 =	6.240	ft	
	unit	width liquid	mass, W _L =	(12.67) * (1) * (10.89) * 32.17 =	8.61	kip	

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w / 12)^*\rho_c = 0.05819 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i / W_L)^*(L/2)^*H_L^*\rho_L = 0.10164 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 4.979 \text{ ft}$ wall fixity condition is pinned at roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(\text{tw}^*\text{Hw}/h)^3 / (12^*(4^*\text{Hw-h})^*(\text{Hw-h})^2) = 2799.85 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (2799.85 / (0.0582 + 0.1016))^2/_2 = 132.3522 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = -2\pi / 132.3522 = 0.0475 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = -0.744 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\lambda = \sqrt{3.16 \text{ g } \tanh\left(3.16\left(\frac{\text{H}_{\text{L}}}{\text{L}}\right)\right)} = (3.16*32.2*\tanh(3.16*(0.8595)))^{1/2} = 10.0385$$

$$\omega_{\rm c} = \frac{\kappa}{\sqrt{L}} = 10.0385 / (12.67)^{1/2} = 2.8202$$
 rad/sec,

period of the convective mass, $T_c = 2\pi / \omega_c = 2\pi / 2.8202 = 2.2279$ sec

Long transition period (from map figure 22-15 ASCE 7),
$$I_L = 16$$
 sec

design spectral response acceleration for convective mass (
$$0.5\%$$
 damping), $S_{ac} = 1.5 * Sd1 / Tc = 0.273 g$

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.8195$

BY: CHKD:	BS	DATE: DESCRIF	Aug-21		ge Storage and		SHEET: JOB NO:		2A.00
DESIGN 1	ASK:			١	NAS Storage B	asin Transverse	e Loading (BS	SE-2E)	
				 ₽,	^ ^ ^ _		L = B = H _L =	12.67 1 10.89	ft ft ft
h _c	h _i			pi Pi (impulsive)	~ ~ ~ ~		W _L = L / H _L = H _L / L =		kip
3). <u>latera</u>	l fluid impuls	1		L amic Model	Wi = equiv	valent mass of t	he impulsive	compone	nt of liquid.
	$W_i =$	$W_{L} \left(\frac{1}{0} \right)$	$\frac{0.866 \frac{L}{H_{L}}}{866 \frac{L}{H_{L}}} =$	= 8.61	*(tanh(0.866*(1	l.1635)) / 0.866'	f(1.1635)) =	6.54	kip
		hi	(EBP) = HL *	(0.5-0.09375	5*(L/HL)) = 10.8	9*(0.5-0.09375*	(1.1635)) =	4.257	ft
			· /	•	· · · ·	*tanh(0.866*L/H	· //	5.813	ft
		in	pulsive force	e, $P_i = \left(\frac{S_a}{R}\right)$	$\left(\frac{I}{R_{wi}}\right)W_{i} =$	(0.744 * 1	/ 3)*6.54 =	1.6	kip

4). lateral fluid convective force:

Wc = equivalent mass of the convective component of liquid.

$$W_{c} = W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) tanh\left(3.16\left(\frac{H_{L}}{L}\right)\right)\right) =$$

$$h_{c (EBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right)\sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 7.378 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right)\sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 7.916 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.2727 * 1 / 1)*2.62 = 0.7$$
 kip

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:		
CHKD:		DESCRIP	DESCRIPTION:		Sludge Storage and Biofilters		11962A.00	
DESIGN 1	ASK:			W	AS Storage Basin Transve	rse Loading (BS	SE-2E)	
.		•						
5). <u>latera</u>	l inertia fo	orce of the acc	elerating wa	all:				
5). <u>latera</u>	<u>l inertia fo</u>	orce of the acc	elerating wa	<u>all:</u>	unit width wa	ıll mass, W _w =	1.87	kip
5). <u>latera</u>	l inertia fo	orce of the acc	elerating wa	<u>all:</u>	unit width wa wall c.g. relative			

wall inertia force,
$$P_w = \left(\frac{S_{ai} I \epsilon}{R_{wi}}\right) W_w = (0.744*1*0.8195/3)*1.87 = 0.38$$
 kip

6). maximum wave slosh height displacement:

$$d_{(max)} = \left(\frac{L}{2}\right) \left(\frac{S_{ac}}{1.4} I\right) = (12.67/2) * (0.2727/1.0 * 1) = 1.72 \text{ ft}$$

7). vertical acceleration:

file: wall pressures IBC2013

design horizontal accereration, S_{DS} = 0.744 *g

kip

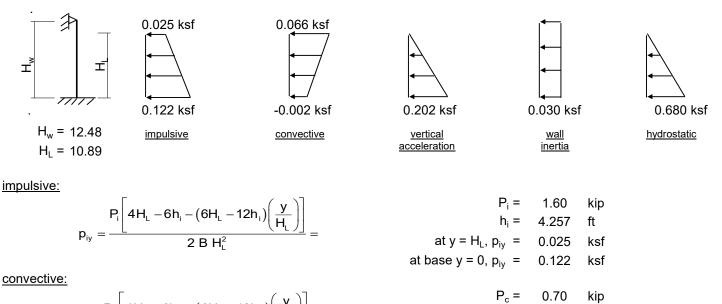
ksf

ksf

ft

 $h_c = 7.378$

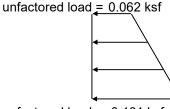
at y = H_L , $p_{cy} = 0.066$


at base $y = 0, p_{cy} = -0.002$

vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4*S_{DS} = 0.2976$ g

per ASCE 7-10 para. 15.7.7.2(b), use I = R_i = b = 1.0

Design vertical acceleration, $\ddot{u} = \frac{S_{av} I b}{R_i} = 0.2976*1*1/1 = 0.2976 g$

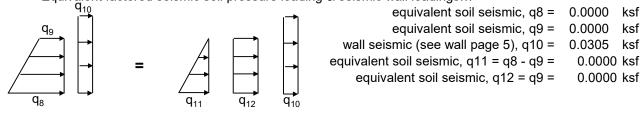

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

 $p_{cy} = \frac{P_{c} \left[\frac{4H_{L} - 6h_{c} - (6H_{L} - 12h_{c})\left(\frac{y}{H_{L}}\right) \right]}{2 B H_{l}^{2}} =$

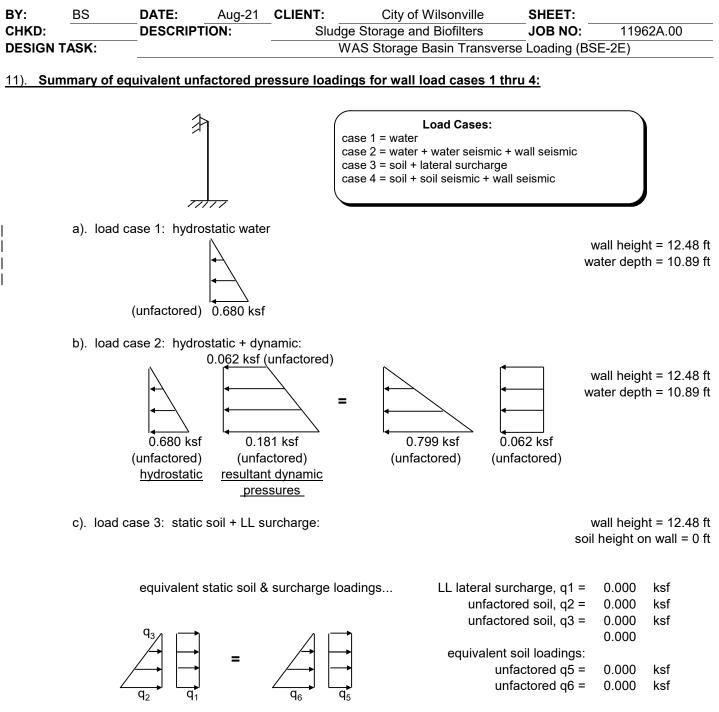
BY: BS DATE: Aug-21 **CLIENT:** City of Wilsonville SHEET: CHKD: **DESCRIPTION:** Sludge Storage and Biofilters JOB NO: 11962A.00 WAS Storage Basin Transverse Loading (BSE-2E) **DESIGN TASK:** vertical acceleration: ü = 0.2976 $p_{vy} = \ddot{u} \gamma_L (H_L - y) =$ at $y = H_L, p_{vv} = 0.000$ ksf at base $y = 0, p_{vy} = 0.202$ ksf wall inertia: $p_{wy} = \frac{S_{ai} \ I \ \epsilon \ \gamma_c \ (t_w/12)}{R_{wi}} =$ $p_{wv} = 0.2032 * \gamma_c * (t_w/12)$ at y = H_w , $p_{wy} = 0.030$ ksf at base $y = 0, p_{wy} = 0.030$ ksf hydrostatic: at $y = H_L$, $q_{hy} = 0.000$ ksf $q_{hv} = \gamma_L (H_L - y) =$ at base y = 0, $q_{hy} = 0.680$ ksf combine the effects of the dynamic pressures on the wall: $p_{y} = \sqrt{(p_{iy} + p_{wy})^{2} + p_{cv}^{2} + p_{w}^{2}} =$ at $y = H_w, p_v = 0.087$ ksf at base $y = 0, p_y = 0.253$ ksf 0.087 ksf (unfactored = 0.087 / 1.4 = 0.062 ksf) Ī 0.253 ksf (unfactored = 0.253 / 1.4 = 0.181 ksf) resultant dynamic pressures 9). wall design pressures for hydrostatic + dynamic: wall height, $H_w = 12.48$ ft liquid height, $H_1 = 10.89$ ft

unfactored load = 0.181 ksf resultant dynamic pressures

386

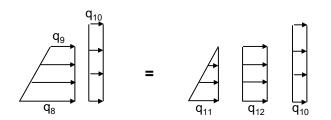

0.680 ksf

hydrostatic

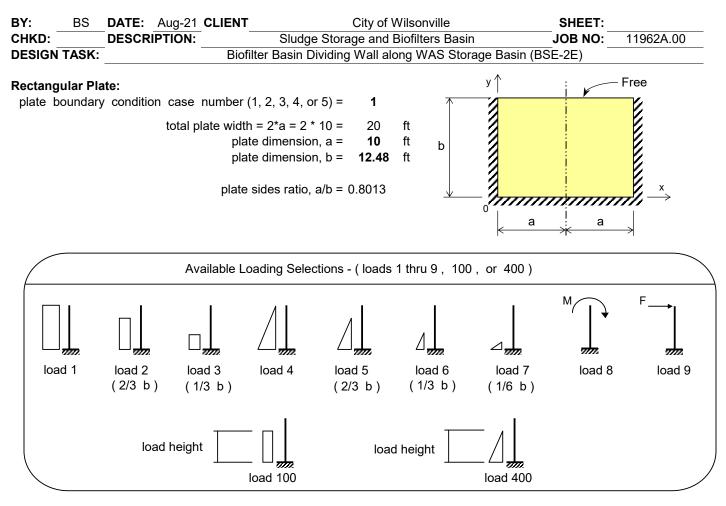

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIP	FION:	Sluc	ge Storage and Biofilters	JOB NO:	
DESIGN "	TASK:				WAS Storage Basin Transverse	Loading (I	BSE-2E)
	design press	sures for ext	ernal soil lo	ading:	The site has no en		
<u>static</u>	<u>soli.</u>				The site has no gr		
			R€(A)		= wall height = soil height above top of base		ft ft
	q ₃				groundwater ht. above base =		ft
	_	▶ →			•		k/ft ³
		▶ →			dry soil lateral pressure =		k/ft ³
		▖∟▖ੁ	<u></u> ₿		sat. soil lateral pressure =		
	q_2	q_1	~ ~ ~ ~		live load lateral surcharge =	0.000	ksf
	equivalent	static soil lo	adings:		LL lateral surcharge, q1 =	0.0000	ksf
	·		Ũ		unfactored soil, q2 =		ksf
					unfactored soil, q3 =		ksf
	q _{3∕1 I} —	→]	1			0.000	
		→ =	/→		equivalent soil loadings:		
		→ -		▶	unfactored q5 =		ksf
	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\overline{q_1}$	q_6		unfactored q6 =	0.0000	ksf
			10	10			
<u>5011 56</u>	eismic:	resultant	t factored s	oil seismic lo	ad per foot of wall width, P _{u (eq)} =	0	k/ft
		resultan				U	N/IL
	centro	id location o	of the result	ant soil seisr	nic from the bottom of wall, h _{eq} =	0	ft
	The resulta	ant soil seisi	mic load wil	l be resolved	l into an equivalent pressure load	ding	
					∄ ⊛		
			(resulta	nt soil seismi	ic load)P		
			(i ocaita				

Equivalent factored seismic soil pressure loading & seismic wall loadings...

- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0305 / 1.4 = 0.0218 ksf
- unfactored equivalent soil seismic, q11 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q12 =0 / 1.4 = 0.0000 ksf



 d). load case 4: soil seismic: (*note: add static soil pressure q6 & q7 to the seismic soil shown below) equivalent seismic soil pressure loading & seismic wall loadings...


wall height = 12.48 ft
soil height on wall = 0 ft

unfactored equivalent soil seismic, q8 =	0.000	ksf
unfactored equivalent soil seismic, q9 =	0.000	ksf
unfactored equivalent soil seismic, q10 =	0.022	ksf
unfactored equivalent soil seismic, q11 =	0.000	ksf
unfactored equivalent soil seismic, q12 =	0.000	ksf

Engineers...Working Wonders With Water "

Choice of Available Loadings											
load	load type	load height, (ft)	unfactored loads:	concrete load factors							
conditions	Loading	only for custom	q, M, or F	for	for						
(4 max)	Selection Number	loads 100 or 400	(ksf, ft-k/ft, k/ft)	moment	shear						
A	100	10.890	0.087	1	1						
В	400	10.890	0.166	1	1						
С	400	10.890	0.680	1	1						
D											

Notes: 1). Load 100 = uniform load of any load height \ge b/3; Load 400 = triangular load of any load height \ge b/6.

2). load height must be less than or equal to "b", and uniform load height ≥ "b / 3", and triangular load height ≥ "b / 6".
3). loads may be positive or negative.

plate thickness, h = 12 in concrete strength, f 'c = 3 ksi reinforcing steel strength, fy = 60 ksi reinforcing clear cover to face of concrete = 2 in number of curtains of reinforcing, (1 or 2) =2 Are bars in "x" or "y" direction closest to face of concrete ? у minimum ratio of horizontal shrinkage-temperature steel = 0.00500 minimum ratio of vertical shrinkage-temperature steel = 0.00500

bar locations	d (in)	d' (in)
Mx bending	9"	3"
My bending	9.5"	2.5"

Engineers...Working Wonders With Water **

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:			Sludge Storage and Biofilters Basin	JOB NO:	11962A.00	
DESIGN	TASK:			Biofilt	er Basin Dividing Wall along WAS Storage Basin	BSE-2E)	

	M _x - Moment Summary													
	10			, M , or	F						SUMM	IARY		
a = b =	10 12.48	0.087 Mome	0.166 nt Coeffi	0.680 cient Mul	tinliers		Boundary	/ Case 1					orcing:	
	0.8013		25.855	105.910	liplicito					Final Moments			(d = 9")	
		N	loment C	oefficien	ts	[M _x Momer	nts, ft-k/1	ft	M _x	M _{ux}	A _{s(req'd)}	A _{s(min)}	
x/a	y/b	А	В	С	D	Α	В	С	D	ft-k/ft	ft-k/ft	in²/ft	in ² /ft	
0	1	0.1290	0.0303	0.0303		1.75	0.78	3.21		5.75	5.75	0.14	0.36	
0	0.8	0.1198	0.0330	0.0330		1.62	0.85	3.49		5.97	5.97	0.15	0.36	
0	0.6	0.1031	0.0336	0.0336		1.40	0.87	3.56		5.83	5.83	0.15	0.36	
0	0.4	0.0727	0.0293	0.0293		0.98	0.76	3.10		4.84	4.84	0.12	0.36	
0	0.2	0.0278	0.0143	0.0143		0.38	0.37	1.52		2.27	2.27	0.06	0.36	
0	0	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36	
0.2	0	0.0047	0.0029	0.0029		0.06	0.07	0.30		0.44	0.44	0.01	0.36	
0.4	0	0.0121	0.0062	0.0062		0.16	0.16	0.66		0.99	0.99	0.02	0.36	
0.6	0	0.0186	0.0088	0.0088		0.25	0.23	0.93		1.41	1.41	0.03	0.36	
0.8	0	0.0227	0.0103	0.0103		0.31	0.27	1.09		1.66	1.66	0.04	0.36	
1	0	0.0241	0.0108	0.0108		0.33	0.28	1.14		1.75	1.75	0.04	0.36	
1	0.2	-0.0038	-0.0025	-0.0025		-0.05	-0.06	-0.26		-0.38	-0.38	-0.01	-0.36	
1	0.4	-0.0288	-0.0110	-0.0110		-0.39	-0.28	-1.16		-1.84	-1.84	-0.05	-0.36	
1	0.6	-0.0453	-0.0145	-0.0145		-0.61	-0.38	-1.54		-2.53	-2.53	-0.06	-0.36	
1	0.8	-0.0538	-0.0155	-0.0155		-0.73	-0.40	-1.64		-2.77	-2.77	-0.07	-0.36	
1	1	-0.0602	-0.0161	-0.0161		-0.82	-0.42	-1.70		-2.94	-2.94	-0.07	-0.36	
0.8	1	-0.0541	-0.0143	-0.0143		-0.73	-0.37	-1.51		-2.61	-2.61	-0.07	-0.36	
0.8	0.8	-0.0486	-0.0139	-0.0139		-0.66	-0.36	-1.47		-2.49	-2.49	-0.06	-0.36	
0.8	0.6	-0.0415	-0.0134	-0.0134		-0.56	-0.35	-1.42		-2.33	-2.33	-0.06	-0.36	
0.8	0.4	-0.0270	-0.0105	-0.0105		-0.37	-0.27	-1.11		-1.75	-1.75	-0.04	-0.36	
0.8	0.2	-0.0038	-0.0026	-0.0026		-0.05	-0.07	-0.28		-0.39	-0.39	-0.01	-0.36	
	negative				ft-k/ft		-				t, M _{ux} (+) =		ft-k/ft	
max n	egative s							ma			'd, A _s (+) =		in ² /ft	
	minin	num stee	el req'd =	-0.36	in²/ft]			mi	nimum ste	eel req'd =	0.36	in²/ft	
	Use								Use					
						J				L				

Engineers...Working Wonders With Water **

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:			Sludge Storage and Biofilters Basin	JOB NO:	11962A.00	
DESIGN	TASK:			Biofilt	er Basin Dividing Wall along WAS Storage Basin	BSE-2E)	

M _y - Moment Summary														
	10		oads: q		F						SUMM	IARY		
a = b =	10 12.48	0.087 Mome	0.166 nt Coeffi	0.680 cient Mul	tipliers		Boundary	/ Case 1				Reinfo	orcing:	
	0.8013		25.855	105.910						Final Moments			(d = 9.5")	
			Ioment C				M _y Momen		-	My	M _{uy}	A _{s(req'd)}	A _{s(min)}	
x/a	y/b	A	В	С	D	A	В	С	D	ft-k/ft	ft-k/ft	in²/ft	in²/ft	
0	1	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36	
0	0.8	0.0239	0.0066	0.0066		0.32	0.17	0.70		1.20	1.20	0.03	0.36	
0	0.6	0.0206	0.0068	0.0068		0.28	0.17	0.71		1.17	1.17	0.03	0.36	
0	0.4	0.0146	0.0059	0.0059		0.20	0.15	0.62		0.97	0.97	0.02	0.36	
0	0.2	0.0056	0.0029	0.0029		0.08	0.07	0.31		0.46	0.46	0.01	0.36	
0	0	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36	
0.2	0	0.0237	0.0143	0.0143		0.32	0.37	1.52		2.21	2.21	0.05	0.36	
0.4	0	0.0607	0.0311	0.0311		0.82	0.81	3.30		4.93	4.93	0.12	0.36	
0.6	0	0.0928	0.0439	0.0439		1.26	1.13	4.65		7.04	7.04	0.17	0.36	
0.8	0	0.1135	0.0514	0.0514		1.54	1.33	5.45		8.31	8.31	0.20	0.36	
1	0	0.1205	0.0539	0.0539		1.63	1.39	5.71		8.74	8.74	0.21	0.36	
1	0.2	0.0232	0.0022	0.0022		0.31	0.06	0.23		0.61	0.61	0.01	0.36	
1	0.4	-0.0204	-0.0137	-0.0137		-0.28	-0.35	-1.45		-2.08	-2.08	-0.05	-0.36	
1	0.6	-0.0289	-0.0116	-0.0116		-0.39	-0.30	-1.23		-1.92	-1.92	-0.05	-0.36	
1	0.8	-0.0158	-0.0049	-0.0049		-0.21	-0.13	-0.52		-0.87	-0.87	-0.02	-0.36	
1	1	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36	
1	0.4	-0.0204	-0.0137	-0.0137		-0.28	-0.35	-1.45		-2.08	-2.08	-0.05	-0.36	
0.8	0.4	-0.0196	-0.0132	-0.0132		-0.26	-0.34	-1.39		-2.00	-2.00	-0.05	-0.36	
0.6	0.4	-0.0165	-0.0113	-0.0113		-0.22	-0.29	-1.20		-1.71	-1.71	-0.04	-0.36	
0.4	0.4	-0.0104	-0.0078	-0.0078		-0.14	-0.20	-0.82		-1.16	-1.16	-0.03	-0.36	
0.2	0.4	0.0000	-0.0019	-0.0019		0.00	-0.05	-0.20		-0.25	-0.25	-0.01	-0.36	
max r	negative	moment,	M _{uy} (-) =	-2.08	ft-k/ft	1		ma	ax positiv	e moment	t, M _{uy} (+) =	8.74	ft-k/ft	
	egative s	teel req'o	d, A _s (-) =	-0.05	in²/ft					e steel req'		0.21	in²/ft	
	minin	num stee	el req'd =	-0.36	in²/ft	1			mi	nimum ste	el req'd =	0.36	in²/ft	
	Use								Use					
]								

Engineers...Working Wonders With Water "

BY:	BS	DATE: Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Sludge Storage and Biofilters Basin	JOB NO:	11962A.00
DESIGN	TASK:		Biofil	er Basin Dividing Wall along WAS Storage Basin (BSE-2E)	

	Shear Summary													
a =	10	Lc 0.087	oads: q 0.166	, M , or 0.680	F					s	UMMARY	,		
b =	12.48			ient Multi	pliers		Boundary	/ Case 1		Einel Oleanna				
a / b =	0.8013	1.086	2.072	8.486						FI	nal Shear	S		
				oefficients			Shears			V	Vu	φV _c		
x/a	y/b	A	В	С	D	A	В	С	D	k/ft	k/ft	k/ft		
0	1	0.5081	0.0647	0.0647		0.55	0.13	0.55		1.23	1.23	9.37		
0	0.8	0.5607	0.1453	0.1453		0.61	0.30	1.23		2.14	2.14	9.37		
0	0.6	0.5511	0.1819	0.1819		0.60	0.38	1.54		2.52	2.52	9.37		
0	0.4	0.4592	0.2241	0.2241		0.50	0.46	1.90		2.86	2.86	9.37		
0	0.2	0.1324	0.1333	0.1333		0.14	0.28	1.13		1.55	1.55	9.37		
0	0.00	-0.0675	-0.0137	-0.0137		-0.07	-0.03	-0.12		-0.22	-0.22	9.37		
0.2	0	0.1171	0.1421	0.1421		0.13	0.29	1.21		1.63	1.63	9.37		
0.4	0	0.3714	0.2679	0.2679		0.40	0.56	2.27		3.23	3.23	9.37		
0.6	0	0.5420	0.3360	0.3360		0.59	0.70	2.85		4.14	4.14	9.37		
0.8	0	0.6359	0.3692	0.3692		0.69	0.76	3.13		4.59	4.59	9.37		
1	0	0.6655	0.3792	0.3792		0.72	0.79	3.22		4.73	4.73	9.37		

Concrete strength reduction factor for shear, $\phi = 1.00$

 $\label{eq:powerset} \begin{array}{rll} d = & 9.0 & \mbox{in} \\ maximum shear, V_u = & 4.73 & \mbox{k/ft} \\ \phi V_c = \phi^* 2^* (f\, 'c)^{1/2} * b^* d = & (1.00^* 2^* (3000)^{-1} / 2 * 12^* 9.0) / 1000 = & 11.83 & \mbox{k/ft} \end{array}$

Reference:

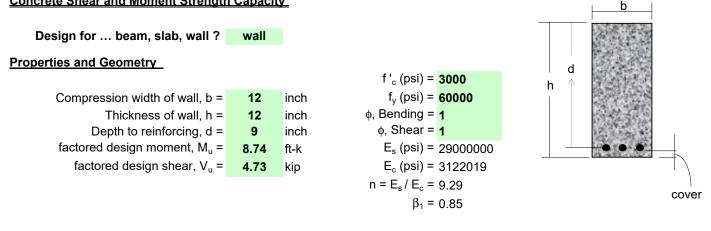
"Moments and Reactions for Rectangular Plates"

Engineering Monograph No. 27

By: W. T. Moody, United States Bureau of Reclamation

Notes:

Quadratic interpolation is used for intermediate values within the Moody tables and between Moody figures.


The positive sign convention for moments M_x and M_y is tension on the loaded face of the plate.

The M_x moment is in the direction of the x-axis and the M_y moment is in the direction of the y-axis by plate sign convention.

City of Wilsonville BY: BS DATE: Aug-21 CLIENT: SHEET: CHKD: **DESCRIPTION:** Sludge Storage and Biofilter Basin JOB NO: 11962A.00 **DESIGN TASK:** Biofilter Dividing Wall along WAS Storage Basin (Vertical Reinforcing) (BSE-2E)

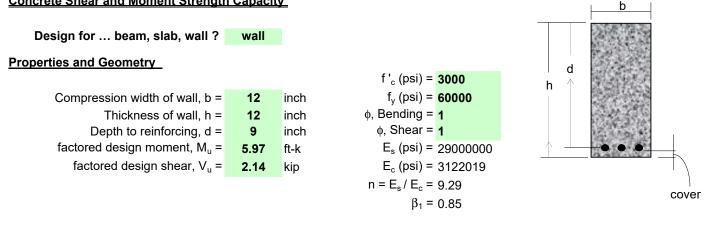
Concrete Shear and Moment Strength Capacity

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 11.83$$
 kip $\geq V u$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)


comment : existing 12" wall w/ #6@12" & #7@12" alternating for 6" effective spacing Area steel provided, A_s = **1.04** in² $\rho = A_s / bd = 0.00963$ $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} =$ 0.19 $\rho_{(min)} = 0.00180$ in² 1.73 $A_{s (max)} =$ in² $\rho_{(max)} = 0.01604$ bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f'}\right)$ $\phi^* M_n =$ 1*0.00963*60*12*9² *(1-0.588*0.00963*60/3)*(ft/12) = 41.498 ft-k ≥ Mu

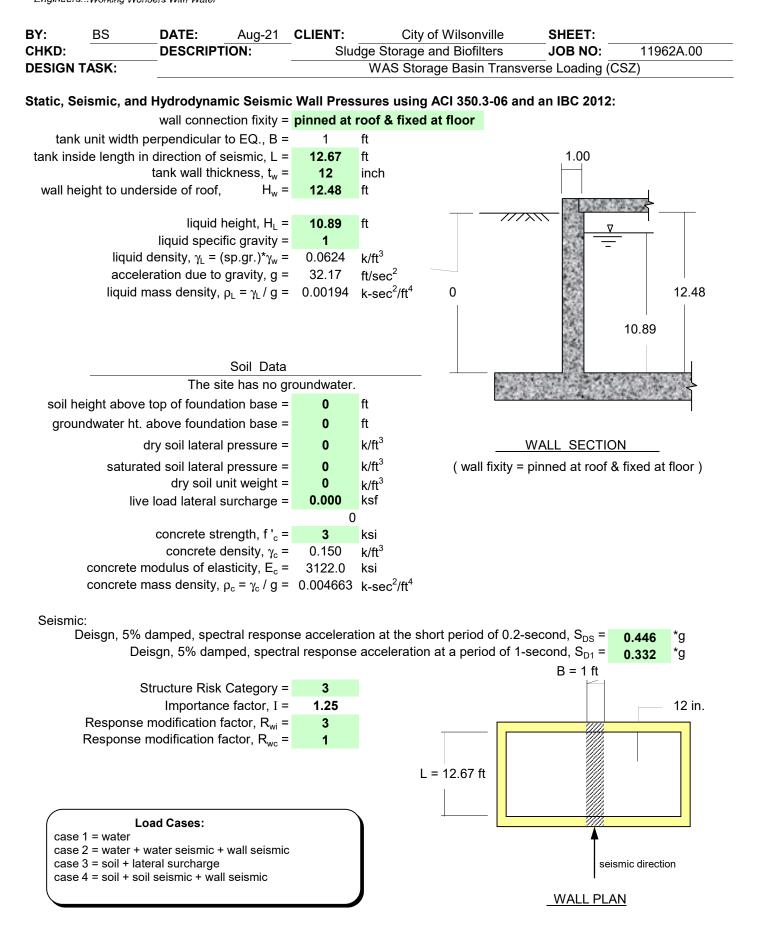
Moment strength ≥ design moment, Okay

City of Wilsonville BY: BS DATE: Aug-21 CLIENT: SHEET: CHKD: **DESCRIPTION:** Sludge Storage and Biofilter Basin JOB NO: 11962A.00 **DESIGN TASK:** Biofilter Dividing Wall along WAS Storage Basin (Horizontal Reinforcing) (BSE-2E)

Concrete Shear and Moment Strength Capacity

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 11.83$$
 kip $\geq V u$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**


Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)

comment : existing 12" wall w/ #5@12" $\rho = A_s / bd = 0.00287$ Area steel provided, A_s = **0.31** in² $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} =$ 0.19 $\rho_{(min)} = 0.00180$ in² 1.73 $A_{s (max)} =$ in² $\rho_{(max)} = 0.01604$ bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f'}\right)$ $\phi^* M_n =$ 1*0.00287*60*12*92 *(1-0.588*0.00287*60/3)*(ft/12) = 13.479 ft-k ≥ Mu

Moment strength ≥ design moment, Okay

BY: CHKD:	BS	DATE: DESCRIP	Aug-21	CLIENT:	City of Wilsonv e Storage and Biofilte		_SHEET:	11962A.00		
DESIGN T	ASK:			WAS Storage Basin Transverse Loading (CSZ)						
Weights:										
Ū	unit 1	-ft width wall	mass, W _w =	(12/12	2) * (12.48) * 0.15 =	1.87	kip			
	wall	c.g. relative to	o base, h _w =		12.48 / 2 =	6.240	ft			
	un	it width liquid	mass, W _L =	(12.67) * (1)	* (10.89) * 32.17 =	8.61	kip			

Seismic:

1). structure stiffness and dynamic property:

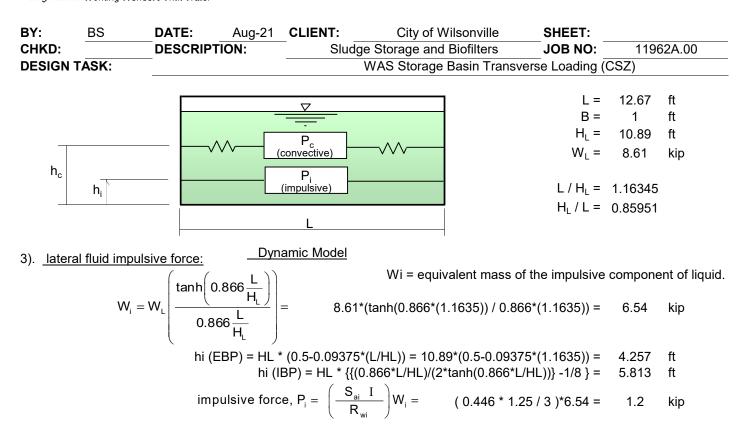
Note: per ASCE 7-10 and IBC 2012, the terms S_{ai} and S_{ac} have been appropriatelly substituted into the seismic equation of ACI 350.

Note: Wi and hi are impulsive component variables calculated on page 3. wall mass, $m_w = H_w^*(t_w / 12)^*\rho_c = 0.05819 \text{ k-sec}^2/\text{ft}^2$ liquid mass, $m_i = (W_i / W_L)^*(L/2)^*\text{H}_L^*\rho_L = 0.10164 \text{ k-sec}^2/\text{ft}^2$ centroidal distance of masses, $h = (h_w^*m_w + h_i^*m_i) / (m_w + m_i) = 4.979 \text{ ft}$ wall fixity condition is pinned at roof & fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k = \text{Ec}^*(\text{tw}^*\text{Hw}/h)^3 / (12^*(4^*\text{Hw-h})^*(\text{Hw-h})^2) = 2799.85 \text{ k/ft/ft}$ $\omega_i = \sqrt{\frac{k}{m_w + m_i}} = (2799.85 / (0.0582 + 0.1016))^{*}_2 = 132.3522 \text{ rad/sec}$ period of tank plus impulsive mass, $T_i = 2\pi / \omega_i = -2\pi / 132.3522 = 0.0475 \text{ sec}$ (note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{ai} = S_{DS} = -0.446 \text{ g}$

2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$$\lambda = \sqrt{3.16 \text{ g } \tanh\left(3.16\left(\frac{\text{H}_{\text{L}}}{\text{L}}\right)\right)} = (3.16*32.2*\tanh(3.16*(0.8595)))^{1/2} = 10.0385$$

$$\omega_{\rm c} = \frac{\kappa}{\sqrt{L}} = 10.0385 / (12.67)^{1/2} = 2.8202$$
 rad/sec,


period of the convective mass, $T_c = 2\pi / \omega_c = 2\pi / 2.8202 = 2.2279$ sec

Long transition period (from map figure 22-15 ASCE 7),
$$I_L = 16$$
 sec

design spectral response acceleration for convective mass (
$$0.5\%$$
 damping), $S_{ac} = 1.5 * Sd1 / Tc = 0.224 g$

effective mass coeff.,
$$\epsilon = 0.0151 \left(\frac{L}{H_L}\right)^2 - 0.1908 \left(\frac{L}{H_L}\right) + 1.021$$
, but $\leq 1.0 = 0.8195$

4). lateral fluid convective force:

Wc = equivalent mass of the convective component of liquid.

$$W_{c} = W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) tanh\left(3.16\left(\frac{H_{L}}{L}\right)\right)\right) =$$

$$h_{c (EBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 1}{3.16\left(\frac{H_{L}}{L}\right)\sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 7.378 \text{ ft}$$

$$h_{c (IBP)} = H_{L} \left(1 - \frac{\cosh\left(3.16\left(\frac{H_{L}}{L}\right)\right) - 2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh\left(3.16\left(\frac{H_{L}}{L}\right)\right)} \right) = 7.916 \text{ ft}$$

convective force,
$$P_c = \left(\frac{S_{ac}I}{R_{wc}}\right)W_c = (0.2235 * 1.25 / 1)*2.62 = 0.7$$
 kip

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:		
CHKD:		DESCRIP	TION:	Sludge	Storage and Biofilters	JOB NO:	1196	52A.00
DESIGN TASK: WAS Storage Basin Transverse Loading (
5). <u>latera</u>	al inertia foi	rce of the acc	elerating wa	all:	unit width wa	ıll mass, W _w =	1.87	kip
					wall c.g. relative	e to base, h _w =	6.240	ft
	w	all inertia fo	rce, $P_w = \left(\right)$	$\frac{S_{ai} I \epsilon}{R_{wi}} W_{w} =$	= (0.446*1.25*0.8	195/3)*1.87 =	0.28	kip

6). maximum wave slosh height displacement:

$$d_{(max)} = \left(\frac{L}{2}\right) \left(\frac{S_{ac}}{1.4} I\right) = (12.67/2) * (0.2235/1.0 * 1.25) = 1.77 \text{ ft}$$

7). vertical acceleration:

design horizontal accereration, $S_{DS} = 0.446$ *g

P_c = 0.70

 $h_c = 7.378$

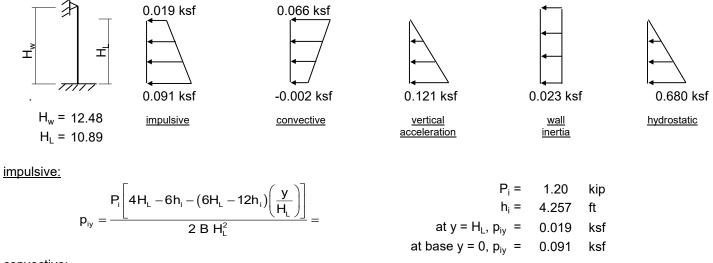
at y = H_L , $p_{cy} = 0.066$

at base y = 0, p_{cy} = -0.002

kip

ksf

ksf

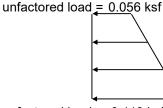

ft

vertical spectral response acceleration (per ACI 350 para 9.4.3), $S_{av} = C_t = 0.4*S_{DS} = 0.1784$ g

per ASCE 7-10 para. 15.7.7.2(b), use I = R_i = b = 1.0

Design vertical acceleration,
$$\ddot{u} = \frac{S_{av} I b}{R_i} = 0.1784^{*}1^{*}1/1 = 0.1784 g$$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3:

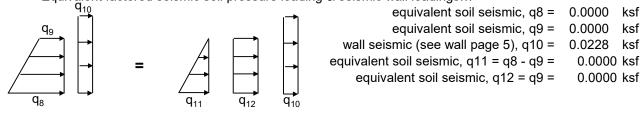

convective:

file: wall_pressures_IBC2013

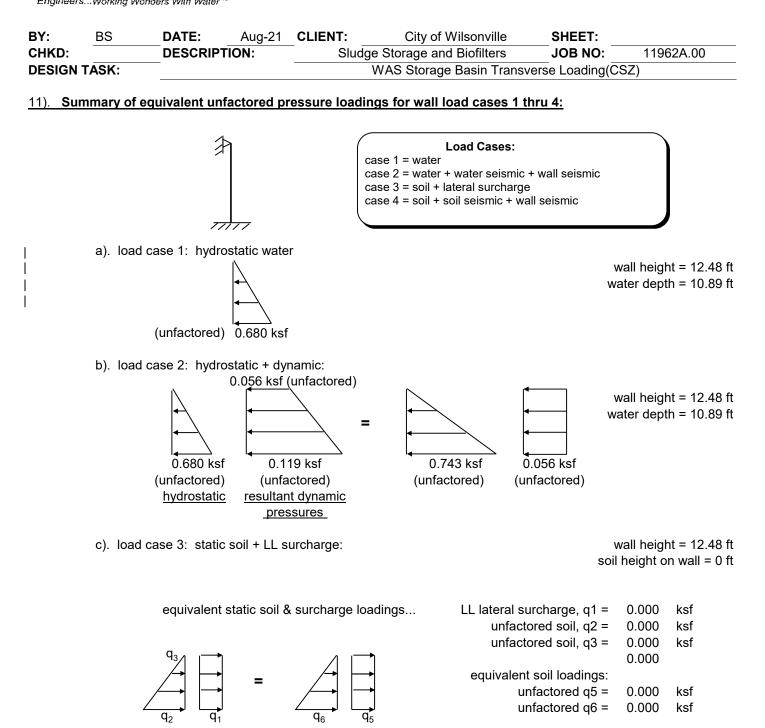
n	_ P	$\int_{C} \left[4H_{L} - 6h_{c} - (6H_{L} - 12h_{c}) \left(\frac{y}{H_{L}} \right) \right]_{L}$
P _{cy}		2 B H ²

BY: BS DATE: Aug-21 **CLIENT:** City of Wilsonville SHEET: Sludge Storage and Biofilters CHKD: **DESCRIPTION:** JOB NO: 11962A.00 WAS Storage Basin Transverse Loading (CSZ) **DESIGN TASK:** vertical acceleration: ü = 0.1784 $p_{vy} = \ddot{u} \gamma_L (H_L - y) =$ at $y = H_L, p_{vv} = 0.000$ ksf at base $y = 0, p_{vy} = 0.121$ ksf wall inertia: $p_{wy} = \frac{S_{ai} \ I \ \epsilon \ \gamma_c \ (t_w/12)}{R_{wi}} =$ $p_{wv} = 0.1523 * \gamma_c * (t_w/12)$ at y = H_w , $p_{wy} = 0.023$ ksf at base y = 0, $p_{wy} = 0.023$ ksf hydrostatic: at $y = H_L$, $q_{hy} = 0.000$ ksf $q_{hv} = \gamma_L (H_L - y) =$ at base y = 0, $q_{hy} = 0.680$ ksf combine the effects of the dynamic pressures on the wall: $p_{y} = \sqrt{(p_{iy} + p_{wy})^{2} + p_{cv}^{2} + p_{w}^{2}} =$ at $y = H_w, p_v = 0.078$ ksf at base $y = 0, p_y = 0.166$ ksf 0.078 ksf (unfactored = 0.078 / 1.4 = 0.056 ksf) ī 0.166 ksf (unfactored = 0.166 / 1.4 = 0.119 ksf) resultant dynamic pressures 9). wall design pressures for hydrostatic + dynamic: wall height, $H_w = 12.48$ ft liquid height, $H_1 = 10.89$ ft

unfactored load = 0.119 ksf resultant dynamic pressures

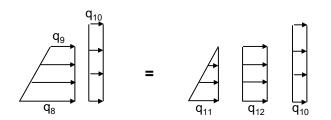

0.680 ksf

hydrostatic

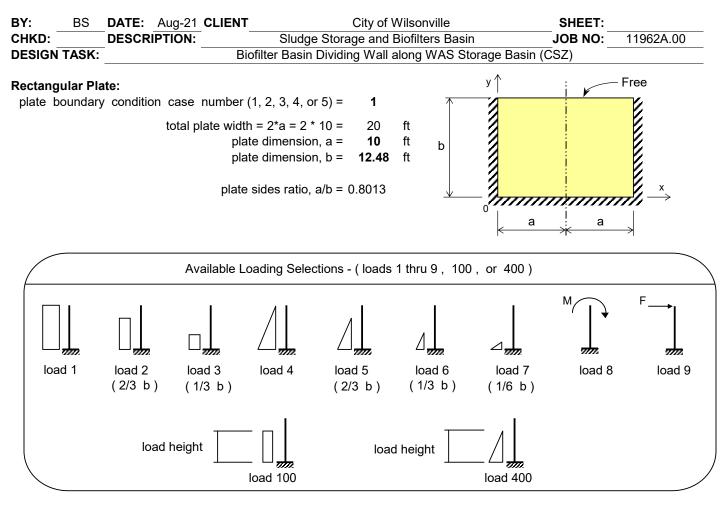

10). wall design pressures for external soil loading: static soil: $q_3 \qquad	BY: CHKD: DESIGN 1	BS	DATE: AU DESCRIPTION:	ug-21 CLIENT	City of Wi Sludge Storage and E WAS Storage E	Biofilters	SHEET: JOB NO: e Loading	11962A.00 (CSZ)	
equivalent static soil loadings: unfactored soil, q2 = 0.0000 ksf $unfactored soil, q3 = 0.0000 ksf$ $unfactored soil, q3 = 0.0000 ksf$ 0.000 $unfactored q5 = 0.0000 ksf$ $unfactored q5 = 0.0000 ksf$ $unfactored q6 = 0.0000 ksf$				à	soil height abov groundwater ht dry soil late	wall height = e top of base = . above base = eral pressure =	12.48 0 0 0.000	ft ft ft k/ft ³	
resultant factored soil seismic load per foot of wall width, $P_{u (eq)} = 0$ k/ft centroid location of the resultant soil seismic from the bottom of wall, $h_{eq} = 0$ ft		equivalent	static soil loading	gs:	LL lateral s unfac unfac equivaler ເ	surcharge, q1 = tored soil, q2 = tored soil, q3 = nt soil loadings: infactored q5 =	0.0000 0.0000 0.0000 0.000 0.000	ksf ksf ksf	
	<u>soil se</u>								
The resultant soil seismic load will be resolved into an equivalent pressure loading (resultant soil seismic load) P_{eq} (B)			nt soil seismic lo	ad will be resol	ved into an equivaler	nt pressure load		ft	

Equivalent factored seismic soil pressure loading & seismic wall loadings...

- unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q9 =0 / 1.4 = 0.0000 ksf
 - unfactored wall seismic , q10 = 0.0228 / 1.4 = 0.0163 ksf
- unfactored equivalent soil seismic, q11 =0 / 1.4 = 0.0000 ksf
- unfactored equivalent soil seismic, q12 =0 / 1.4 = 0.0000 ksf



d). load case 4: soil seismic: (*note: add static soil pressure q6 & q7 to the seismic soil shown below) equivalent seismic soil pressure loading & seismic wall loadings...


wall height = 12.48 ft
soil height on wall = 0 ft

unfactored equivalent soil seismic, q8 =	0.000	ksf
unfactored equivalent soil seismic, q9 =	0.000	ksf
unfactored equivalent soil seismic, q10 =	0.016	ksf
unfactored equivalent soil seismic, q11 =	0.000	ksf
unfactored equivalent soil seismic, q12 =	0.000	ksf

Engineers...Working Wonders With Water "

Choice of Available Loadings											
load	load type	load height, (ft)	unfactored loads:	concrete load factors							
conditions	Loading	only for custom	q, M, or F	for	for						
(4 max)	Selection Number	loads 100 or 400	(ksf, ft-k/ft, k/ft)	moment	shear						
A	100	10.890	0.078	1	1						
В	400	10.890	0.088	1	1						
С	400	10.890	0.680	1	1						
D											

Notes: 1). Load 100 = uniform load of any load height \ge b/3; Load 400 = triangular load of any load height \ge b/6.

2). load height must be less than or equal to "b", and uniform load height ≥ "b / 3", and triangular load height ≥ "b / 6".
3). loads may be positive or negative.

plate thickness, h = 12 in concrete strength, f 'c = 3 ksi reinforcing steel strength, fy = 60 ksi reinforcing clear cover to face of concrete = 2 in number of curtains of reinforcing, (1 or 2) =2 Are bars in "x" or "y" direction closest to face of concrete ? у minimum ratio of horizontal shrinkage-temperature steel = 0.00500 minimum ratio of vertical shrinkage-temperature steel = 0.00500

bar locations	d (in)	d' (in)		
Mx bending	9"	3"		
My bending	9.5"	2.5"		

Engineers...Working Wonders With Water **

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:			Sludge Storage and Biofilters Basin JOB NO:		11962A.00	
DESIGN	TASK:			Bio	filter Basin Dividing Wall along WAS Storage Basi	n (CSZ)	

	M _x - Moment Summary												
	10		oads: q	1	F						SUMM	IARY	
a = b =	10 12.48	0.078 Mome	0.088 nt Coeffi	0.680 cient Mul	tipliers		Boundary	/ Case 1				Reinforcing:	
	0.8013		13.706	105.910						Final Moments		(d = 9")	
			Ioment C			M _x Moments, ft-k/ft				M _x	M _{ux}	A _{s(req'd)}	A _{s(min)}
x/a	y/b	A	В	С	D	A	В	С	D	ft-k/ft	ft-k/ft	in²/ft	in²/ft
0	1	0.1290	0.0303	0.0303		1.57	0.42	3.21		5.20	5.20	0.13	0.36
0	0.8	0.1198	0.0330	0.0330		1.46	0.45	3.49		5.40	5.40	0.14	0.36
0	0.6	0.1031	0.0336	0.0336		1.25	0.46	3.56		5.28	5.28	0.13	0.36
0	0.4	0.0727	0.0293	0.0293		0.88	0.40	3.10		4.38	4.38	0.11	0.36
0	0.2	0.0278	0.0143	0.0143		0.34	0.20	1.52		2.05	2.05	0.05	0.36
0	0	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36
0.2	0	0.0047	0.0029	0.0029		0.06	0.04	0.30		0.40	0.40	0.01	0.36
0.4	0	0.0121	0.0062	0.0062		0.15	0.09	0.66		0.89	0.89	0.02	0.36
0.6	0	0.0186	0.0088	0.0088		0.23	0.12	0.93		1.28	1.28	0.03	0.36
0.8	0	0.0227	0.0103	0.0103		0.28	0.14	1.09		1.51	1.51	0.04	0.36
1	0	0.0241	0.0108	0.0108		0.29	0.15	1.14		1.59	1.59	0.04	0.36
1	0.2	-0.0038	-0.0025	-0.0025		-0.05	-0.03	-0.26		-0.34	-0.34	-0.01	-0.36
1	0.4	-0.0288	-0.0110	-0.0110		-0.35	-0.15	-1.16		-1.67	-1.67	-0.04	-0.36
1	0.6	-0.0453	-0.0145	-0.0145		-0.55	-0.20	-1.54		-2.29	-2.29	-0.06	-0.36
1	0.8	-0.0538	-0.0155	-0.0155		-0.65	-0.21	-1.64		-2.50	-2.50	-0.06	-0.36
1	1	-0.0602	-0.0161	-0.0161		-0.73	-0.22	-1.70		-2.66	-2.66	-0.07	-0.36
0.8	1	-0.0541	-0.0143	-0.0143		-0.66	-0.20	-1.51		-2.37	-2.37	-0.06	-0.36
0.8	0.8	-0.0486	-0.0139	-0.0139		-0.59	-0.19	-1.47		-2.25	-2.25	-0.06	-0.36
0.8	0.6	-0.0415	-0.0134	-0.0134		-0.50	-0.18	-1.42		-2.11	-2.11	-0.05	-0.36
0.8	0.4	-0.0270	-0.0105	-0.0105		-0.33	-0.14	-1.11		-1.58	-1.58	-0.04	-0.36
0.8	0.2	-0.0038	-0.0026	-0.0026		-0.05	-0.04	-0.28		-0.36	-0.36	-0.01	-0.36
max ı	negative	l moment,	M _{ux} (-) =	-2.66	ft-k/ft	l		l ma	ax positiv	e moment	L t, M _{ux} (+) =	5.40	ft-k/ft
	egative s									e steel req'			in²/ft
	minin	num stee	el req'd =	-0.36	in²/ft	1			mi	nimum ste	el req'd =	0.36	in²/ft
	Use Use												

Engineers...Working Wonders With Water **

BY:	BS	DATE:	Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:			Sludge Storage and Biofilters Basin JOB NO:		11962A.00	
DESIGN	TASK:			Bio	filter Basin Dividing Wall along WAS Storage Basi	n (CSZ)	

	M _y - Moment Summary												
	10			, M , or	F						SUMM	ARY	
a = b =	10 12.48	0.078 Mome	0.088 nt Coeffi	0.680 cient Mul	tipliers		Boundary	/ Case 1				Reinfo	orcing:
a / b =	0.8013	12.149	13.706	105.910						Final Moments		(d = 9.5")	
				oefficien	-	M _y Moments, ft-k/ft				My	M _{uy}	A _{s(req'd)}	A _{s(min)}
x/a	y/b	A	В	С	D	A	В	С	D	ft-k/ft	ft-k/ft	in²/ft	in²/ft
0	1	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36
0	0.8	0.0239	0.0066	0.0066		0.29	0.09	0.70		1.08	1.08	0.03	0.36
0	0.6	0.0206	0.0068	0.0068		0.25	0.09	0.71		1.06	1.06	0.02	0.36
0	0.4	0.0146	0.0059	0.0059		0.18	0.08	0.62		0.88	0.88	0.02	0.36
0	0.2	0.0056	0.0029	0.0029		0.07	0.04	0.31		0.41	0.41	0.01	0.36
0	0	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36
0.2	0	0.0237	0.0143	0.0143		0.29	0.20	1.52		2.00	2.00	0.05	0.36
0.4	0	0.0607	0.0311	0.0311		0.74	0.43	3.30		4.46	4.46	0.11	0.36
0.6	0	0.0928	0.0439	0.0439		1.13	0.60	4.65		6.38	6.38	0.15	0.36
0.8	0	0.1135	0.0514	0.0514		1.38	0.70	5.45		7.53	7.53	0.18	0.36
1	0	0.1205	0.0539	0.0539		1.46	0.74	5.71		7.91	7.91	0.19	0.36
1	0.2	0.0232	0.0022	0.0022		0.28	0.03	0.23		0.55	0.55	0.01	0.36
1	0.4	-0.0204	-0.0137	-0.0137		-0.25	-0.19	-1.45		-1.89	-1.89	-0.04	-0.36
1	0.6	-0.0289	-0.0116	-0.0116		-0.35	-0.16	-1.23		-1.74	-1.74	-0.04	-0.36
1	0.8	-0.0158	-0.0049	-0.0049		-0.19	-0.07	-0.52		-0.78	-0.78	-0.02	-0.36
1	1	0.0000	0.0000	0.0000		0.00	0.00	0.00		0.00	0.00	0.00	0.36
1	0.4	-0.0204	-0.0137	-0.0137		-0.25	-0.19	-1.45		-1.89	-1.89	-0.04	-0.36
0.8	0.4	-0.0196	-0.0132	-0.0132		-0.24	-0.18	-1.39		-1.81	-1.81	-0.04	-0.36
0.6	0.4	-0.0165	-0.0113	-0.0113		-0.20	-0.16	-1.20		-1.55	-1.55	-0.04	-0.36
0.4	0.4	-0.0104	-0.0078	-0.0078		-0.13	-0.11	-0.82		-1.06	-1.06	-0.02	-0.36
0.2	0.4	0.0000	-0.0019	-0.0019		0.00	-0.03	-0.20		-0.23	-0.23	-0.01	-0.36
max r	negative	moment.	M _{IIV} (-) =	-1.89	ft-k/ft			l ma	ax positiv	e moment	t, M _{uy} (+) =	7.91	ft-k/ft
	egative s		-							e steel req	•	0.19	in²/ft
	minir	num stee	el req'd =	-0.36	in²/ft	٦			mi	nimum ste	el req'd =	0.36	in²/ft
	Use								Use				
]							

Engineers...Working Wonders With Water "

BY:	BS	DATE: Aug-2	1 CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION	:	Sludge Storage and Biofilters Basin	JOB NO:	11962A.00
DESIGN	TASK:	:	Bio	filter Basin Dividing Wall along WAS Storage Basin	(CSZ)	

					Sh	ear Sun	nmary					
	10		oads: q		F	Boundary Case 1				S	UMMARY	,
a = b =	10 12.48	0.078 Shea	0.088 r Coeffici	0.680 ient Multi	nliers							
	0.8013	0.973	1.098	8.486	pliero					Fi	nal Shear	S
		;	Shear Co	efficients	5		Shears	s, k/ft		V	Vu	φV _c
x/a	y/b	A	В	С	D	А	В	С	D	k/ft	k/ft	k/ft
0	1	0.5081	0.0647	0.0647		0.49	0.07	0.55		1.11	1.11	9.37
0	0.8	0.5607	0.1453	0.1453		0.55	0.16	1.23		1.94	1.94	9.37
0	0.6	0.5511	0.1819	0.1819		0.54	0.20	1.54		2.28	2.28	9.37
0	0.4	0.4592	0.2241	0.2241		0.45	0.25	1.90		2.60	2.60	9.37
0	0.2	0.1324	0.1333	0.1333		0.13	0.15	1.13		1.41	1.41	9.37
0	0.00	-0.0675	-0.0137	-0.0137		-0.07	-0.02	-0.12		-0.20	-0.20	9.37
0.2	0	0.1171	0.1421	0.1421		0.11	0.16	1.21		1.48	1.48	9.37
0.4	0	0.3714	0.2679	0.2679		0.36	0.29	2.27		2.93	2.93	9.37
0.6	0	0.5420	0.3360	0.3360		0.53	0.37	2.85		3.75	3.75	9.37
0.8	0	0.6359	0.3692	0.3692		0.62	0.41	3.13		4.16	4.16	9.37
1	0	0.6655	0.3792	0.3792		0.65	0.42	3.22		4.28	4.28	9.37

Concrete strength reduction factor for shear, $\phi = 1.00$

 $\label{eq:Vc} \begin{array}{rcl} d = & 9.0 & \mbox{in} \\ maximum shear, V_u = & 4.28 & \mbox{k/ft} \\ \phi V_c = \phi^* 2^* (f\, 'c)^{1/2} * b^* d = & (1.00^* 2^* (3000)^{-1} / 2 * 12^* 9.0) / 1000 = & 11.83 & \mbox{k/ft} \end{array}$

Reference:

"Moments and Reactions for Rectangular Plates"

Engineering Monograph No. 27

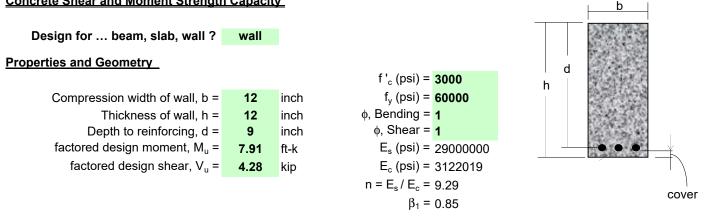
By: W. T. Moody, United States Bureau of Reclamation

Notes:

Quadratic interpolation is used for intermediate values within the Moody tables and between Moody figures.

The positive sign convention for moments M_x and M_y is tension on the loaded face of the plate.

The M_x moment is in the direction of the x-axis and the M_y moment is in the direction of the y-axis by plate sign convention.



 BS
 DATE:
 Aug-21
 CLIENT:
 City of Wilsonville
 SHEET:

 CHKD:
 DESCRIPTION:
 Sludge Storage and Biofilter Basin
 JOB NO:
 11962A.00

 DESIGN TASK:
 Biofilter Dividing Wall along WAS Storage Basin (Vertical Reinforcing) (CSZ)

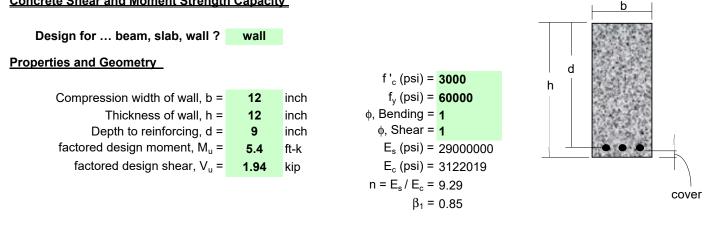
 Concrete Shear and Moment Strength Capacity
 bull

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 11.83$$
 kip $\geq V u$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)


comment : existing 12" wall w/ #6@12" & #7@12" alternating for 6" effective spacing Area steel provided, A_s = $\rho = A_s / bd = 0.00963$ **1.04** in² $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} =$ 0.19 $\rho_{(min)} = 0.00180$ in² 1.73 $A_{s (max)} =$ in² $\rho_{(max)} = 0.01604$ bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f'}\right)$ $\phi^* M_n =$ 1*0.00963*60*12*9² *(1-0.588*0.00963*60/3)*(ft/12) = 41.498 ft-k ≥ Mu

Moment strength ≥ design moment, Okay

City of Wilsonville Aug-21 CLIENT: BY: BS DATE: SHEET: CHKD: **DESCRIPTION:** Sludge Storage and Biofilter Basin JOB NO: 11962A.00 **DESIGN TASK:** Biofilter Dividing Wall along WAS Storage Basin (Horizontal Reinforcing) (CSZ)

Concrete Shear and Moment Strength Capacity

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

concrete shear strength,
$$\phi V_c = \phi^* 2^* b^* d^* (f_c)^{1/2} = 11.83$$
 kip $\geq Vu$
stirrup spacing, s = **0** in
stirrup U-bar size = **0**

Shear strength ≥ design shear, Okay

Bending Strength (ACI 318 - 10.2.1 thru 10.2.7)

comment : existing 12" wall w/ #5@12" Area steel provided, A_s = **0.31** in² $\rho = A_s / bd = 0.00287$ $\rho(\min) < As/bd < \rho(\max) - OK$ $A_{s (min)} =$ 0.19 $\rho_{(min)} = 0.00180$ in² 1.73 $A_{s (max)} =$ in² $\rho_{(max)} = 0.01604$ bending strength, $\phi M_n = \phi \rho f_y b d^2 \left(1 - \frac{0.588 \rho f_y}{f'}\right)$ $\phi^* M_n =$ 1*0.00287*60*12*92 *(1-0.588*0.00287*60/3)*(ft/12) = 13.479 ft-k ≥ Mu

Moment strength ≥ design moment, Okay

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Overall Plant Facilities
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	08/06/21
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	08/10/21

Table 17-38. Nonstructural Checklist

The Performance Level is designated LS for Life Safety or PR for Position Retention. The level of seismicity is designated as "not required" or by L, M, or H, for Low, Moderate, and High.

All Seismicity Levels

For BSE-1E Tier 1, use PR (Position Retention)

Life S	ife Safety Systems								
RA	TING			DESCRIPTION	COMMENTS				
C	NC	N/A	U	LS-LMH; PR-LMH. FIRE SUPPRESSION PIPING: Fire suppression piping is anchored and braced in accordance with NFPA-13. (Commentary: Sec. A.7.13.1. Tier 2: Sec. 13.7.4)					
c	NC	N/A	U	LS-LMH; PR-LMH. FLEXIBLE COUPLINGS: Fire suppression piping has flexible couplings in accordance with NFPA-13. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.4)					
C	NC	N/A	U	LS-LMH; PR-LMH. EMERGENCY POWER: Equipment used to power or control life safety systems is anchored or braced. (Commentary: Sec. A.7.12.1. Tier 2: Sec. 13.7.7)					
C	NC	N/A	U	LS-LMH; PR-LMH. STAIR AND SMOKE DUCTS: Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Commentary: Sec. A.7.14.1. Tier 2: Sec. 13.7.6)					

Project Name City of Wilsonville Project Number 11962A.00

C	NC	N/A	U	LS-MH; PR-MH. SPRINKLER CEILING CLEARANCE: Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.4)	
С	NC	N/A	U	LS-not required; PR-LMH. EMERGENCY LIGHTING: Emergency and egress	
				lighting equipment is anchored or braced. (Commentary: Sec. A.7.3.1. Tier 2: Sec. 13.7.9)	

Hazardous Materials

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-LMH; PR-LMH.	
		\times		HAZARDOUS MATERIAL EQUIPMENT: Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Commentary: Sec. A.7.12.2. Tier 2: 13.7.1)	
С	NC	N/A	U	LS-LMH; PR-LMH.	
		$\left \times \right $		HAZARDOUS MATERIAL STORAGE: Breakable containers that hold hazardous material,	
				including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods.	
				(Commentary: Sec. A.7.15.1. Tier 2: Sec. 13.8.4)	

C	NC	N/A	U	LS-MH; PR-MH. HAZARDOUS MATERIAL DISTRIBUTION: Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and 13.7.5)	
с	NC	N/A	υ	LS-MH; PR-MH.	
\times				SHUT-OFF VALVES: Piping containing hazardous material, including natural gas, has shut-off valves	
				or other devices to limit spills or leaks.	
				(Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.3 and	
				13.7.5)	
с	NC	N/A	υ	LS-LMH; PR-LMH.	Within the structures, there doesn't appear to
				ELEVIELE COLIDI INCC. Unarredous motorial	
			\times	FLEXIBLE COUPLINGS: Hazardous material ductwork and piping, including natural gas	be any flexible couplings. The natural gas
			\times	ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec.	be any flexible couplings. The natural gas piping does carry between the buildings underground, so it is possible for flexible
			\times	ductwork and piping, including natural gas	be any flexible couplings. The natural gas piping does carry between the buildings
			X	ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec.	be any flexible couplings. The natural gas piping does carry between the buildings underground, so it is possible for flexible
			\mathbf{X}	ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec.	be any flexible couplings. The natural gas piping does carry between the buildings underground, so it is possible for flexible
			\mathbf{X}	ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec.	be any flexible couplings. The natural gas piping does carry between the buildings underground, so it is possible for flexible
				ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec. A.7.15.4, Tier 2: Sec.13.7.3 and 13.7.5)	be any flexible couplings. The natural gas piping does carry between the buildings underground, so it is possible for flexible
c		N/A	U	ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec. A.7.15.4, Tier 2: Sec.13.7.3 and 13.7.5) LS-MH; PR-MH. PIPING OR DUCTS CROSSING SEISMIC JOINTS:	be any flexible couplings. The natural gas piping does carry between the buildings underground, so it is possible for flexible
C	NC	□ N/A ≍		ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec. A.7.15.4, Tier 2: Sec.13.7.3 and 13.7.5) LS-MH; PR-MH. PIPING OR DUCTS CROSSING SEISMIC JOINTS: Piping or ductwork carrying hazardous material	be any flexible couplings. The natural gas piping does carry between the buildings underground, so it is possible for flexible
C	NC			ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec. A.7.15.4, Tier 2: Sec.13.7.3 and 13.7.5) LS-MH; PR-MH. PIPING OR DUCTS CROSSING SEISMIC JOINTS: Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures	be any flexible couplings. The natural gas piping does carry between the buildings underground, so it is possible for flexible
C	NC			ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec. A.7.15.4, Tier 2: Sec.13.7.3 and 13.7.5) LS-MH; PR-MH. PIPING OR DUCTS CROSSING SEISMIC JOINTS: Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate	be any flexible couplings. The natural gas piping does carry between the buildings underground, so it is possible for flexible
C	NC			ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec. A.7.15.4, Tier 2: Sec.13.7.3 and 13.7.5) LS-MH; PR-MH. PIPING OR DUCTS CROSSING SEISMIC JOINTS: Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures	be any flexible couplings. The natural gas piping does carry between the buildings underground, so it is possible for flexible
C	NC			ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec. A.7.15.4, Tier 2: Sec.13.7.3 and 13.7.5) LS-MH; PR-MH. PIPING OR DUCTS CROSSING SEISMIC JOINTS: Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary:	be any flexible couplings. The natural gas piping does carry between the buildings underground, so it is possible for flexible

Project Name Project Number City of Wilsonville 11962A.00

Partitions

RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LS-LMH; PR-LMH. UNREINFORCED MASONRY: Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft in Low or Moderate Seismicity, or at most 6 ft in High Seismicity. (Commentary: Sec. A.7.1.1. Tier 2: Sec. 13.6.2)	
c	NC	N/A	U	LS-LMH; PR-LMH. HEAVY PARTITIONS SUPPORTED BY CEILINGS: The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)	
C		N/A		LS-MH; PR-MH. DRIFT: Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Commentary A.7.1.2 Tier 2: Sec. 13.6.2)	
c	NC	N/A	U	LS-not required; PR-MH. LIGHT PARTITIONS SUPPORTED BY CEILINGS: The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)	

C	NC	N/A	U	LS-not required; PR-MH. STRUCTURAL SEPARATIONS: Partitions that cross structural separations have seismic or control joints. (Commentary: Sec. A.7.1.3. Tier 2. Sec. 13.6.2)	
C	NC	N/A	U	LS-not required; PR-MH. TOPS: The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft. (Commentary: Sec. A.7.1.4. Tier 2. Sec. 13.6.2)	

Ceilings

001111	· J -				
RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-MH; PR-LMH. SUSPENDED LATH AND PLASTER: Suspended lath	
		\times		and plaster ceilings have attachments that resist seismic forces for every 12 ft ² of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)	
c		N/A	U	LS-MH; PR-LMH. SUSPENDED GYPSUM BOARD: Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft ² of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)	

Project Name Project Number City of Wilsonville 11962A.00

C	NC	N/A × N/A	U	LS-not required; PR-MH. INTEGRATED CEILINGS: Integrated suspended ceilings with continuous areas greater than 144 ft ² , and ceilings of smaller areas that are not surrounded by restraining partitions, are laterally restrained at a spacing no greater than 12 ft with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Commentary: Sec. A.7.2.2. Tier 2: Sec. 13.6.4) LS-not required; PR-MH. EDGE CLEARANCE: The free edges of integrated suspended ceilings with continuous areas greater than 144 ft ² have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in.; in High Seismicity, 3/4 in. (Commentary: Sec. A.7.2.4. Tier 2: Sec. 13.6.4)	
с	NC	N/A	U	LS-not required; PR-MH.	
		\times		CONTINUITY ACROSS STRUCTURE JOINTS: The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Commentary: Sec. A.7.2.5. Tier 2: Sec. 13.6.4)	
C		N/A	U	LS-not required; PR-H. EDGE SUPPORT: The free edges of integrated suspended ceilings with continuous areas greater than 144 ft ² are supported by closure angles or channels not less than 2 in. wide. (Commentary: Sec. A.7.2.6. Tier 2: Sec. 13.6.4)	

Project Name Project Number City of Wilsonville 11962A.00

c	NC	N/A	U	LS-not required; PR-H.
		11/7	0	SEISMIC JOINTS: Acoustical tile or lay-in panel
		$\left X \right $		ceilings have seismic separation joints such that
				each continuous portion of the ceiling is no more
				than 2500 ft ² and has a ratio of long-to-short
				dimension no more than 4-to-1. (Commentary:
				Sec. A.7.2.7. Tier 2: 13.6.4)

Light Fixtures

•	RATING DESCRIPTION COMMENTS									
RA	IING			DESCRIPTION	COMMENTS					
c		N/A		LS-MH; PR-MH. INDEPENDENT SUPPORT: Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Commentary: Sec. A.7.3.2. Tier 2: Sec. 13.6.4 and 13.7.9)						
C		N/A		LS-not required; PR-H PENDANT SUPPORTS: Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigid supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Commentary: Sec. A.7.3.3. Tier 2: Sec. 13.7.9)						
C		N/A	U	LS-not required; PR-H. LENS COVERS: Lens covers on light fixtures are attached with safety devices. (Commentary: Sec. A.7.3.4. Tier 2: Sec. 13.7.9)						

Project Name City of Wilsonville Project Number 11962A.00

Cladding and Glazing

416

RA	RATING DESCRIPTION COMMENTS						
С	NC	N/A	U	LS-MH; PR-MH.			
	INC		0	CLADDING ANCHORS: Cladding components			
		\times		weighing more than 10 lb/ft ² are mechanically			
				anchored to the structure at a spacing equal to or			
				less than the following: for Life Safety in Moderate			
				Seismicity, 6 ft; for Life Safety in High Seismicity			
				and for Position Retention in any seismicity, 4 ft. (Commentary: Sec. A.7.4.1. Tier 2: Sec. 13.6.1)			
с	NC	N/A	U	LS-MH; PR-MH			
				CLADDING ISOLATION: For steel or concrete			
		\times		moment-frame buildings, panel connections are detailed to accommodate a story drift ratio			
				by the use of rods attached to framing with			
				oversize holes or slotted holes of at least the			
				following: for Life Safety in Moderate			
				Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any			
				seismicity, 0.02, and the rods have a			
				length-to-diameter ratio of 4.0 or less.			
				(Commentary: Sec. A.7.4.3. Tier 2: Sec.			
				13.6.1)			
C	NC	N/A	U	LS-MH; PR-MH MULTI-STORY PANELS: For multi-story			
		X		panels attahed at more than one floor level			
				panel connections are detailed to			
				accommodate a story drift ratio by the use of			
				rods attached to framing with oversize holes or slotted holes of at least the following: for			
				Life Safety in Moderate Seismicity, 0.01; for			
				Life Safety in High Seismicity and for Position			
				Retention in any seismicity, 0.02, and the			
				rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.4. Tier 2: Sec.			
				13.6.1)			
С	NC	N/A	U	LS-MH; PR-MH			
			-	THREADED RODS: Threaded rods for panel			
		X		connections detailed to accommodate drift by			
				bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height			
				in inches for Life Safety in Moderate			
				Seismicity and 0.12 times the story height in			
				inches for Life Safety in High Seismicity and			
				for Position Retention in any seismicity. (Commentary: Sec. A.7.4.9. Tier 2: Sec.			
				(Commentary, Sec. A.7.4.9, Ther 2, Sec. 13.6.1)			

Project Name Project Number 11962A.00

C	NC	N/A x	U	LS-MH; PR-MH. PANEL CONNECTIONS: Cladding panels are anchored out-of-plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Commentary: Sec. A.7.4.5. Tier 2: Sec. 13.6.1.4)	

Project Name City of Wilsonville Project Number 11962A.00

C		N/A	U	LS-MH; PR-MH. BEARING CONNECTIONS: Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Commentary: Sec. A.7.4.6. Tier 2: Sec. 13.6.1.4)	
C		N/A	U	LS-MH; PR-MH. INSERTS: Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Commentary: Sec. A.7.4.7. Tier 2: Sec. 13.6.1.4)	
с	NC	N/A	U	LS-MH; PR-MH. OVERHEAD GLAZING: Glazing panes of any size in curtain walls and individual interior or exterior panes over 16 ft ² in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Commentary: Sec. A.7.4.8: Tier 2: Sec. 13.6.1.5)	Windows are less than 16 ft2 requirement.

Masonry Veneer

RA	TING			DESCRIPTION	COMMENTS	
C		N/A	U	LS-LMH; PR-LMH. TIES: Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft ² , and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in.; for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (Commentary:	COMMENTS	
				Sec. A.7.5.1. Tier 2: Sec. 13.6.1.2)		

Project Name City of Wilsonville Project Number 11962A 00

					11902A.00
C	NC	N/A	U	LS-LMH; PR-LMH. SHELF ANGLES: Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Commentary: Sec. A.7.5.2. Tier 2: Sec. 13.6.1.2)	
c	NC	N/A	U	LS-LMH; PR-LMH. WEAKENED PLANES: Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Commentary: Sec. A.7.5.3. Tier 2: Sec. 13.6.1.2)	
C		N/A	U	LS-LMH; PR-LMH. UNREINFORCED MASONRY BACKUP: There is no unreinforced masonry backup. (Commentary: Sec. A.7.7.2. Tier 2: Section 13.6.1.1 and 13.6.1.2)	
C	NC	N/A	U	LS-MH; PR-MH STUD TRACKS: For veneer with cold-formed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. on center. (Commentary: Sec.	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

A.7.6.1. Tier 2: Sec. 13.6.1.1 and 13.6.1.2)

Project Name Project Number 11962A.00

c		N/A	U	LS-MH; PR-MH. ANCHORAGE: For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Commentary: Sec. A.7.7.1. Tier 2: Section 13.6.1.1 and 13.6.1.2)	
C	NC	N/A	U	LS-not required; PR-MH. WEEP HOLES: In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Commentary: Sec. A.7.5.6. Tier 2: Section 13.6.1.2)	
C		N/A	U	LS-not required; PR-MH OPENINGS: For veneer with cold-formed -steel stud backup, steel studs frame window and door openings. (Commentary: Sec. A.7.6.2. Tier 2: Sec. 13.6.1.1 and 13.6.1.2)	

Parapets, Cornices, Ornamentation, and Appendages

RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LS-LMH; PR-LMH. URM PARAPETS OR CORNICES: Laterally unsupported unreinforced masonry parapets or cornices have height-to-thickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any	
				seismicity, 1.5. (Commentary: Sec. A.7.8.1. Tier 2: Sec. 13.6.5)	

Project Name City of Wilsonville Project Number 11962A.00

c		N/A	U	LS-LMH; PR-LMH. CANOPIES: Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft; for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft. (Commentary: Sec. A.7.8.2. Tier 2: Sec. 13.6.6)	
C	NC	N/A	U	LS-MH; PR-LMH. CONCRETE PARAPETS: Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Commentary: Sec. A.7.8.3. Tier 2: Sec. 13.6.5)	
C		N/A	U	LS-MH; PR-LMH. APPENDAGES: Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft. This checklist item does not apply to parapets or cornices covered by other checklist items. (Commentary: Sec. A.7.8.4. Tier 2: Sec. 13.6.6)	

Masonry Chimneys

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-LMH; PR-LMH.	
		\times		URM CHIMNEYS: Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Commentary: Sec. A.7.9.1. Tier 2: 13.6.7)	

Project Name Project Number City of Wilsonville 11962A.00

С	NC	N/A	U	LS-LMH; PR-LMH. ANCHORAGE: Masonry chimneys are anchored at	
		\times		each floor level, at the topmost ceiling level, and at the roof. (Commentary: Sec. A.7.9.2. Tier 2:	
				13.6.7)	

Stairs

•				
TING			DESCRIPTION	COMMENTS
NC	N/A	U	LS-LMH; PR-LMH.	
\square	\mathbf{X}		-	
			enclosures are restrained out-of-plane and have	
			u	
			Seismicity and for Position Retention in any	
			seismicity, 12-to-1. (Commentary: Sec. A.7.10.1.	
			Tier 2: Sec. 13.6.2 and 13.6.8)	
NC	NI/A		LS-LMH: PR-LMH	
		_	STAIR DETAILS: The connection between	
	\times			
			masonry, and the stair details are capable of	
			accommodating the drift calculated using the	
			other structures without including any lateral	
			13.6.8)	
	TING	NC N/A	NC N/A U 	DESCRIPTION NC N/A U LS-LMH; PR-LMH. STAIR ENCLOSURES: Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out-of-plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Commentary: Sec. A.7.10.1. Tier 2: Sec. 13.6.2 and 13.6.8) NC N/A U LS-LMH; PR-LMH STAIR DETAILS: The connection between the stairs and the structure does not rely on post-installed anchors in concrete or masonry, and the stair details are capable of accommodating the drift calculated using the Quick Check procedure of Section 4.4.3.1 for moment-frame structures or 0.5 in. for all other structures without including any lateral stiffness contribution from the stairs. (Commentary: Sec. A.7.10.2. Tier 2: Sec.

Contents and Furnishings

R	ATIN	G			DESCRIPTION	COMMENTS
С	N	: N	I/A	U	LS-MH; PR-MH.	
			\times		INDUSTRIAL STORAGE RACKS: Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/MH 16.1 as modified by ASCE 7 Chapter 15. (Commentary: Sec. A.7.11.1. Tier 2: Sec. 13.8.1)	

C	NC	N/A		LS-H; PR-MH. TALL NARROW CONTENTS: Contents more than 6 ft high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Commentary: Sec. A.7.11.2. Tier 2: Sec. 13.8.2)	Storage racks within the Headworks building appear to be unanchored to structure.
С	NC	N/A	υ	LS-H; PR-H.	
				FALL-PRONE CONTENTS: Equipment, stored	
\mathbf{X}				items, or other contents weighing more than 20 Ib whose center of mass is more than 4 ft above	
				the adjacent floor level are braced or otherwise	
				restrained. (Commentary: Sec. A.7.11.3. Tier 2: Sec.	
				13.8.2)	
				LC mot required DD MU	
C	NC	N/A	U	LS-not required; PR-MH. ACCESS FLOORS: Access floors more than 9 in.	
		\times		high are braced. (Commentary: Sec. A.7.11.4. Tier	
				2: Sec. 13.8.3)	
С	NC	N/A	U	LS-not required; PR-MH. EQUIPMENT ON ACCESS FLOORS: Equipment and	
		\times		other contents supported by access floor systems	
				are anchored or braced to the structure	
				independent of the access floor. (Commentary:	
				Sec. A.7.11.5. Tier 2: Sec. 13.7.7 and 13.8.3)	

Storage racks within the Headworks building appear to be unanchored to structure.

Project Name Project Number City of Wilsonville 11962A.00

C	NC	N/A	U	LS-not required; PR-H. SUSPENDED CONTENTS: Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Commentary. A.7.11.6. Tier 2: Sec. 13.8.2)	

Mechanical and Electrical Equipment

RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LS-H; PR-H. FALL-PRONE EQUIPMENT: Equipment weighing more than 20 lb whose center of mass is more than 4 ft above the adjacent floor level, and which is not in-line equipment, is braced. (Commentary: A.7.12.4. Tier 2: 13.7.1 and 13.7.7)	
c	NC	N/A	U	LS-H; PR-H. IN-LINE EQUIPMENT: Equipment installed in-line with a duct or piping system, with an operating weight more than 75 lb, is supported and laterally braced independent of the duct or piping system. (Commentary: Sec. A.7.12.5. Tier 2: Sec. 13.7.1)	Recirculation pump at the Disk Filters is anchored to plate, but there doesn't seem to be any plate resistance to overturning. See next page for photo showing condition.
C	NC	N/A	U	LS-H; PR-MH. TALL NARROW EQUIPMENT: Equipment more than 6 ft high with a height-to-depth or height-to- width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Commentary: Sec. A.7.12.6. Tier 2: Sec. 13.7.1 and 13.7.7)	

Recirculation pump is anchored to plate below, but there doesn't appear to be any support for equipment overturning.

Project Name Project Number 11962A.00

c		N/A	U	LS-not required; PR-MH. MECHANICAL DOORS: Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Commentary: Sec. A.7.12.7. Tier 2: Sec. 13.6.9)	
С	NC	N/A	U	LS-not required; PR-H.	
\mathbf{X}				SUSPENDED EQUIPMENT: Equipment suspended without lateral bracing is free to swing from or	
				move with the structure from which it is	
				suspended without damaging itself or adjoining components. (Commentary: Sec. A.7.12.8. Tier 2:	
				Sec. 13.7.1 and 13.7.7)	
C	NC	N/A	U	LS-not required; PR-H. VIBRATION ISOLATORS: Equipment mounted on	
		\times		vibration isolators is equipped with horizontal	
				restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9.	
				Tier 2: Sec. 13.7.1)	
С	NC	N/A	U	LS-not required; PR-H.	(2) ACCU units located to the west of aeration
				HEAVY EQUIPMENT: Floor-supported or platform-	basins lack to structural pad below.
	\times			supported equipment weighing more than 400 lb is anchored to the structure. (Commentary: Sec.	
				A.7.12.10. Tier 2: 13.7.1 and 13.7.7)	

ACCU units lack anchorage to structural pad near Aeration Basins.

Project Name Project Number 11962A.00

С	NC	N/A	U	LS-not required; PR-H. ELECTRICAL EQUIPMENT: Electrical equipment is	
				laterally braced to the structure. (Commentary: Sec. A.7.12.11. Tier 2: 13.7.7)	
C	NC	N/A	U	LS-not required; PR-H. CONDUIT COUPLINGS: Conduit greater than 2.5 in. trade size that is attached to panels, cabinets, or other equipment and is subject to relative seismic displacement has flexible couplings or connections. (Commentary: Sec. A.7.12.12. Tier 2: 13.7.8)	

Piping

RA	TING			DESCRIPTION	COMMENTS
С	NC	N/A	U	LS-not required; PR-H.	
\mathbf{X}				FLEXIBLE COUPLINGS: Fluid and gas piping has flexible couplings. (Commentary: Sec. A.7.13.2.	
				Tier 2: Sec. 13.7.3 and 13.7.5)	
c	NC	N/A	U	LS-not required; PR-H.	
				FLUID AND GAS PIPING: Fluid and gas piping is	
\times				anchored and braced to the structure to limit spills or leaks. (Commentary: Sec. A.7.13.4. Tier 2:	
				Sec. 13.7.3 and 13.7.5)	

Project Name Project Number 11962A.00

С	NC	N/A	U	LS-not required; PR-H.	
		\boxtimes		C-CLAMPS: One-sided C-clamps that support piping larger than 2.5 in. in diameter are restrained. (Commentary: Sec. A.7.13.5. Tier 2: Sec. 13.7.3 and 13.7.5)	
C		N/A	U	LS-not required; PR-H. PIPING CROSSING SEISMIC JOINTS: Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A7.13.6. Tier 2: Sec.13.7.3 and Sec. 13.7.5)	

Ducts

	-				
RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LS-not required; PR-H. DUCT BRACING: Rectangular ductwork larger than 6 ft ² in cross-sectional area and round ducts larger than 28 in. in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft. The maximum spacing of longitudinal bracing does not exceed 60 ft. (Commentary: Sec. A.7.14.2. Tier 2: Sec. 13.7.6)	
C	NC	N/A	U	LS-not required; PR-H. DUCT SUPPORT: Ducts are not supported by piping or electrical conduit. (Commentary: Sec. A.7.14.3. Tier 2: Sec. 13.7.6)	

Project Name Project Number City of Wilsonville 11962A.00

С	NC	N/A	U	LS-not required; PR-H. DUCTS CROSSING SEISMIC JOINTS: Ducts that	
		\times		cross seismic joints or isolation planes or are	
				connected to independent structures have couplings or other details to accommodate the	
				relative seismic displacements. (Commentary: Sec. A.7.14.5. Tier 2: Sec. 13.7.6)	
				A.7.14.3. Hel 2. 3ec. 13.7.0)	

Elevators

RA	TING			DESCRIPTION	COMMENTS
C		N/A	U	LS-H; PR-H. RETAINER GUARDS: Sheaves and drums have cable retainer guards. (Commentary: Sec. A.7.16.1. Tier 2: 13.8.6)	
c	NC	N/A	U	LS-H; PR-H. RETAINER PLATE: A retainer plate is present at the	
		X		top and bottom of both car and counterweight. (Commentary: Sec. A.7.16.2. Tier 2: 13.8.6)	
C		N/A		LS-not required; PR-H. ELEVATOR EQUIPMENT: Equipment, piping, and other components that are part of the elevator system are anchored. (Commentary: Sec. A.7.16.3. Tier 2: 13.8.6)	

Project Name

432

C	N/A	U	LS-not required; PR-H. SEISMIC SWITCH: Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Commentary: Sec. A.7.16.4. Tier 2: 13.8.6)	
C	N/A	U	LS-not required; PR-H. SHAFT WALLS: Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Commentary: Sec. A.7.16.5. Tier 2: 13.8.6)	
c	N/A	U	LS-not required; PR-H. COUNTERWEIGHT RAILS: All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Commentary: Sec. A.7.16.6. Tier 2: 13.8.6)	
c	N/A	U	LS-not required; PR-H. BRACKETS: The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Commentary: Sec. A.7.16.7. Tier 2: 13.8.6)	

Project Name Project Number 11962A.00

C		N/A	U	LS-not required; PR-H. SPREADER BRACKET: Spreader brackets are not used to resist seismic forces. (Commentary: Sec. A.7.16.8. Tier 2: 13.8.6)	
C	NC	N/A	U	LS-not required; PR-H. GO-SLOW ELEVATORS: The building has a go-slow elevator system. (Commentary: Sec. A.7.16.9. Tier 2: 13.8.6)	

City of Wilsonville

Tier 2 Structural Calculations

Operations Building	pg. 435
Seismic Base Shear (BSE-2E)	pg. 436
CMU In-Plane Shear (BSE-2E)	pg. 437
Seismic Base Shear (CSZ)	pg. 448
CMU In-Plane Shear (CSZ)	pg. 449
Diaphragm Check (CSZ)	pg. 459
Process Gallery	pg. 462
Seismic Base Shear (BSE-2E)	pg. 463
CMU In-Plane Shear (BSE-2E)	pg. 464
Vertical Irregularity Check (BSE-2E)	pg. 474
Seismic Base Shear (CSZ)	pg. 489
CMU In-Plane Shear (CSZ)	pg. 490
Vertical Irregularity Check (CSZ)	pg. 499
Diaphragm Check (CSZ)	pg. 503
Workshop	pg. 506
Seismic Base Shear (BSE-2E)	pg. 507
Narrow Shear Walls (BSE-2E)	pg. 508
Seismic Base Shear (CSZ)	pg. 520
Narrow Shear Walls (CSZ)	pg. 521
Wood Diaphragm Check (CSZ)	pg. 527

OPERATIONS BUILDING - TIER 2 CALCULATIONS

C. 7 S I

Engineers, Working Wondors With Water

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	_	Operations Building	JOB NO.	11962A.00
DESIGN TAS	κ				ASCE 41-17 - Tier 2 (BSE-2E)		

SEISMIC BASE SHEAR FOR OPERATIONS BUILDING

7.4.1.3.1 Pseudo Seismic Force for LSP. The pseudo lateral force in a given horizontal direction of a building shall be determined using Eq. (7-21). This force shall be used to evaluate or retrofit the vertical elements of the seismic-force-resisting system.

$$V = C_1 C_2 C_m S_a W \tag{7-21}$$

<i>m</i> _{max} < 2	$2 \le m_{max} < 6$	$m_{\max} \ge 6$	No. of Stories	Concrete Noment Frame	Concrete Shear Wall	Concrete Pier-Spandrel	Steel Moment Frame	Steel Concentrically Braced Frame	Steel Eccentrically Braced Frame	Other
1.1	1.4	1.8	5-2	10	10	5.0	1.0	10	10	1.0
1.0	1.1	1.2	3 or more	0.9	0.0	0.0	0.9	0.9	0.9	1.0
	1.1	1.1 1.4	1.1 1.4 1.8	$\frac{m_{\max} < 2 2 \le m_{\max} < 6 m_{\max} \ge 6}{1.1 1.4 1.8}$	$\frac{m_{\text{max}} < 2}{1.1} \frac{2 \le m_{\text{max}} < 6}{1.1} \frac{m_{\text{max}} \ge 6}{1.1} \frac{1.4}{1.8} = \frac{1.6}{1.2} \frac{1.0}{1.0}$	mmax<2 2 ≤ mmax<6 mmax ≥ 6 Stories Moment Frame Shear Wall 1.1 1.4 1.8 5-2 1.0 1.0	mmax<2 2 ≤ mmax<6 mmax ≥ 6 Stories Moment Frame Shear Wall Pier-Spandeel 1.1 1.4 1.8 1-2 1.0 1.0 1.0	$m_{max} < 2$ $2 \le m_{max} < 6$ $m_{max} \ge 6$ 1.1 1.4 1.8 1.2 1.0 1.0 1.0	mmax<2 2 ≤ mmax<6 mmax ≥ 6 No. of Stories Concrete Noment Frame Concrete Shear Wall Concrete Pier-Spandeel Moment Frame Concretic Braced Frame 1.1 1.4 1.8 5-2 1.0 1.0 1.0 1.0 1.0	mmax < 2 2 ≤ mmax < 6 mmax ≥ 6 No. of Stories Concrete Noment Concrete Stear Wat Concrete Pier-Spandel Moment Concentrically Braced Frame Eccentrically Braced Frame 1.1 1.4 1.8 5-2 1.0 1.0 1.0 1.0 1.0 1.0

Note: C_shall be taken as 1.0 if the fundamental period, T, in the direction of response under consideration is greater than 1.0 s.

(BSE-2E seismic hazard)	g	0.744	spectral response acceleration, S_{xs} =
(BSE-2E seismic hazard)	g	0.405	spectral response acceleration, S_{x1} =
	s	0.114	building period, T =
	g	0.744	response spectrum acceleration, $S_a =$
)	kip	190.9	effective seismic weight, W =
(Table 11-6 for masonry w		1.4	$C_1C_2 =$
		1.0	effective mass factor, C_m =
)	kip	198.8	seismic lateral force, V =

6 for masonry walls, m=2.5)

DRAWING NUMBER

93 10 014 Price and Constructions - Restation and Second

Wednet of the Number of American the COMPANY CONTRACT OF A STATE OF ORAWING NUMBER

	1		i
W	WTP	UPG	RADE
	MAN HOUR COMPO	RADON - RANNE CAL	PERSONAL PROPERTY AND INC.

ARCHIDER REINFAMELY COMPANY

the first control to market storage loads

	SE	2	23	
107-10 P.1	CORPORATION	•	370954	CONSTRUCTION OF
	whether the type started	60 es	1004	

ORAWING NUMBER

FILE LOCATION (CVO): CVO1\PRJU\PRJ\WLSDN\DAT\ #98:401.dv

GENERAL STRUCTURAL NOTES

CONCRETE:

MASONRY

1.

1. ALL CAST-IN-FLACE CONCRETE SHALL HAVE A MINBAGM 25 DAY COMPRESSIVE STRENGTH OF 4000 PS1.

CONSTRUCTION WORTS HERE/CATED ARE SUGGESTED LOCATIONS, SONTING TOR BUILTON AUXIMUM SUBJECT TO SONTING AND ADDRESS AND ADDITIONAL ONSTRUCTION TO TONG FOR REVEN BY THE SUMMERS. ADDITIONAL ONSTRUCTION, ON TO LOCATIONS, AS REQUIRED FOR CONSTRUCTION, BALL BE SUBMITTED FOR REVEN.

4. CONTINUOUS GALVANIZED STEEL WATERSTOP AS SPECIFIED SHALL BE RATALLED IN ALL CONSTRUCTION JOINTS IN WALLS OF WATER HALDING, BASISS AND CHANNELS CUEPT WHERE MOLICITED OTHERWISE, AT CONTINUETOR'S OFTION, PLASTIC WATERSTOPS MAY BE USED IN PLACE OF GALVANIZED STEEL WATERSTOPS.

THE CONTRACTOR SHALL ODORDINATE PLACEMENT OF ALL OPENINGS, CURDS, DOWELS, SLEEVES, CONDUITS, BOLTS AND INSERTS PRIOR TO PLACEMENT OF CONCRETE,

NO ALLMINUM CONDUIT OF PRODUCTS CONTAINING ALLMINUM OF ANY OTHER MATERIAL INARIOUS TO THE CONCRETE SHALL BE EMBEDDED IN THE CONCRETE,

MONTAR SHALL CONFORM TO ASTM C270, TYPE S, HYDRATED, MASONRY CEMENT SHALL NOT BE USED.

3. ALL CONGRETE MASONAY UNITS SHALL BE GRADE N. TYPE () SHALL CONFORMETO ASTRE CIO,

4. THE DESIGN TH OF THE FINISHED ASSEMBLY SHALL BE 1500 PSI.

5 LAD AL BARD AS BARD ALL DUNET BY I MUMAL STADOGT ALL ADVIDUT

7. PROVIDE PLL LEUENT VETTICAL BARB AT EDGES OF ALL OPENINGS AND REL WEIGHT WEITICAL BARB, AT EDGES OF ALL OPENINGS PROVIDE MATCHING DOWELS POR ALL VETTICAL BARS OF ODDING REINFORCED LINTELS ADOVE AND REINFORCED DONE DEAMS BELOW ALL OPENINGS. PROVIDE HORIZONTAL CORNET BARS WITH ININIAN 2-6 LEGG AT ALL OPENINGS. DETAILS 4001, 4003, AND 4004.

MASONRY UNIT AND GROUT TESTING SHALL BE IN CONFORMANCE WITH THE UBC 2003CCS, "UNIT STRENGTH METHOD". TESTING WILL BE OWNER FURNISHED.

9. THE MINIMUM REINFORCING FOR ALL CONCRETE BLOCK WALLS SHALL BE AS FOLLOWS!

PROVIDE LARGER SIZES AND MORE REINFORCING IN ALL WALLS WHERE REQUIRED BY THE DETAILS ON THE DRAWINGS OR SY THE SPECIFICATIONS.

HORIZONTAL REINFORCING

85648

LOCATION

CENTERED

REUSE OF DOCUMENTS

VERTICAL BEINFORCING 66432

2. GROUT SHALL CONFORM TO ASTM CA76 COURSE GROUT AND SHALL HAVE A MINIMUM 28 DAY COMPRESSIVE STRENGTH OF 2000 PSI.

5. ROUGHEN AND CLEAN ALL CONSTRUCTION JOINTS IN WALLS AND SLASS AS SPECIFIED PRIOR TO PLACING ADJACENT CONCRETE. SANGELASTING OR OTHER PREPARATION OF HORIZONTAL AND VERTICAL JOINTS IS REQUIRED AS SPECIFIED.

GENERAL

.....

- ALL MATERIALS AND WORKMANSHIP SHALL CONFORM TO THE UNIFORM BUILDING CODE, 1994 EDITION (U.B.C.) AS AMENDED BY THE STATE OF OREGON.
- 2. LOADS: ADDF SNOW LOAD 25 PSF PLUS DRIFFING USC WIND PRESSURE 80 MPH WIND SPEED EXPOSURE C, 1+10 USC SEISMIC ZONE 3, 1+10, 5+15
- REFER TO INDIVIDUAL STRUCTURE DRAWINGS FOR ADDITIONAL LOADS, NOTES, AND REQUIREMENTS,
- 4. NET ALLOWABLE SOIL BEARING PRESSURE 4000 PSF
- 5. DRAINED EQUIVALENT FLUID PRESSURE 85 POF/FT AT REST 35 POF/FT ACTIVE
- 6. UNDRAINED EQUIVALENT RUHD PRESSURE 100 PCF/FT AT REST + 85 PCF/FY ACTIVE
- 7. DATUM: SEE SITE DRAWINGS.
- NO STRUCTURAL MEMBERS SHALL BE CUT FOR PIPES, DUCTS, ETC., UNLESS SPECIFICALLY DETAILED OR APPROVED IN WRITING BY THE ENGINEER.
- PROVISIONS FOR PUTURE EXPANSION: NO INTERNAL EXPANSION
- DETAILED. OF OTHER DATE OF THE DRAINING ARE DIFERENCE STANDARD DETAILS AS SHOWN ON THE DRAININGS ARE DIFERENCE TO BE TYPICAL AND SHALL APRLY TO ALL SAMLAR SITUATIONS OCCUMENTAGE ON THE PROVECT, WETTHER OR NOT THEY ARE KEYED IN SACH LOCATION. CONSALT THE ENGINEER FOR REVIEW PRIOR TO CONSTRUCTION.
- VISITS TO THE JOB SITE BY THE ENGINEER TO OBSERVE THE CONSTRUCTION OD NOT IN ANY WAY MEAN THAT THEY ARE GUARANTORS OF THE CONSTRUCTIONS WORK, NOR RESPONSIBLE FOR COMPRESENSIVE OR SPECIAL INSPECTIONS, COORDINATION, SUFERVISION, NOR SAFETY AT THE JOB SITE.
- SUPERVISION, INT OTEL: AL THE MOUSTLE. SECIAL INSPECTION (DWER FURNISHED) IS REQUIRED IN ACCORDANCE WITH USC SECTION 335 ON THE FOLLOWING PORTIONS OF THE WORK IT TEINFORCING STEEL PLACEMENT STRUCTIONS, BLEED AND BOLTS INSTALLED IN CONCRETE HIGH STRUCTION BOLTS INSTALLED IN CONCRETE HIGH STRUCTION OF THE INSPECTOR
- B. ALL SPECIFIED CONCRETE AND GROUT TESTING DURING CONSTRUCTION WILL BE OWNER RUPHISHED. ALL SPECIFIED LABORATORY TEST MIXES ARE THE RESPONSIBILITY OF THE CONTRACTOR.
- M. VERIFY ALL OPENING DIMENSIONS IN WALLS, SLABS, AND DECKS WITH THE ARCHITECTURAL, MECHANICAL, AND ELECTRICAL DRAWINGS.
- DRAWINGS, MO TEXT, PUBLISED, SEE "ABBREVIATIONS FOR USE ON DRAWINGS AND TEXT, PUBLISED BY THE AMERICAN NATIONAL STANDARDS INSTITUTE INC. (ANSI).

ECUNDATIONS:

The Convect Docement (Develop any the protect document allowed (DCC May date on develop an acceleration structure), with define the ecope. Structure of develop of the surfu-tion output Content of the surfu-tion output Content of the surfu-enter output Content of the surfu-oragon of May 1, 1997 (Structure of the).

211,200 1-11

騢

- PROVIDE MAD INSTALL MINIMAM 6 INONES COMPACTED GRANILAR FILL AS SPECIFIED HADER ALL AN ASKAND ROGINASTRES TO TO BANTROL SARTH, NO BALANDE BARTH, NO BALANDE BARTH, NO BALANDE BARTH, NO BALANDE BARTH, STECFIED COMPRESSIVE STREMATH. WALLS THEN TO ELEVATED FLOOD OR ROOF 2485 SHALL BE BRACED AND REMOVAL OF BRACING FOLLOWED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING AND FOLLOWED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING AND FOLLOWED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING AND FOLLOWED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING AND FOLLOWED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING AND FOLLOWED BY RACEFILING SHALED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING SHALED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING SHALED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING SHALED BY SHALED B
- EXCAVATIONS SHALL BE SHORED AS REQUIRED TO PREVENT SUBSIDENCE OR DAMAGE TO ADJACENT EXISTING STRUCTURES, STREETS, UTILITIES, ETC.
- ALL SOIL BEARING SUFFACES SHALL BE INSPECTED BY THE SOILS ENGINEER PRIOR TO PLACEMENT OF REINFORCING STEEL.
- THE ADDATION BASING AND ATTACHED PROCESS GALLERY BUILDING AND THE TWO SECONDARY CLARIFIERS SHALL HAVE AN UNDERDRIAIN SYSTEM. HOPER TO DRAWINGS GOTOOL AND GOTO-20.

CKMHIII

ÖLLERK

E PUR

H BRADDA

сн

RECORD DRAWINGS

FOLLOWS

WALE

. .

RECORD DRAWING

NO. DATE

THICKESS

INC. INC.

STRUCTURAL STEEL:

- ALL STRUCTURAL STEEL SHALL CONFORM TO ASTM A-36 UNLESS SHOWN OTHERWISE. SOLARE OR RECTANGULAR STEEL TUBERG SHALL CONFORM TO ASTM A-500, GRADE B. - REMPORCHOR STEEL SHALL COMPORE TO ASTM ASS, GRADE 60, REMPORCHOR TO REVEALED SHALL COMPORE TO ASTM ASS, GRADE REMOTENTION AND RECEIPTAT COMPORE TO ASTM ASS, GRADE REMOTENT OF AND RECEIPTATION AND RECEIPTATION AND RECEIPTATION REMOTENT ASSESSMENT AND RECEIPTATIONS FOR STRUCTURAL, CONCRETE FOR BULDBACK
 - ALL STRUCTURAL STEEL SHALL BE FABRICATED AND ERECTED IN CONFORMUTICE WITH THE AISC MANUAL OF STEEL CONSTRUCTION, OURSIN TEUTION.
 - ALL BOLTE SHALL BE HIGH STRENGTH BOLTS CONFORMING TO ASTM ASBEN ON ASSESS UMLESS OTHERWISE SHOWN, BOLTS NOIGATED AS MADINE BOLTS ING OR ANGLOY BOLTS AND SHALL CONFORM TO ATTM AST FOR CANDON STREE, AND FOR STAINLESS STEEL AND NOICATED OTHERWISE ALL DAT ON THAT SAFACES BHALL BE CLEAN AND FREE FROM OL, DRT AND FANT. э.
 - ALL WELDS SHALL BE DONE BY AWS CERTIFIED WELDERS AND SHALL CONFORM TO AWS 5 1. LATEST EDITION. ALL BUTT WELDS ARE RALL FROMTATION UNLESS WOLCAYED OTHERWISE, WELD FILLER METAL SHALL BE AWS AST OF ASE FROM ELECTRODES.
 - δ. ALL WELDS FOUND DEFECTIVE SHALL BE REPAIRED AND/OR REPLACED AND RETESTED FOR ADECLARCY AT THE CONTRACTOR'S EXPENSE.
 - AT ALL FRED WELDS, AT EMBED PLATES, AND ANGLES, LOW HEAT AND INTERMITTENT WELDS SHALL BE UTXLIZED TO AVOID SPALLING OR CRACKING THE EXISTING CONCRETE.
 - ALL STRUCTURAL STEEL TO BE EMBEDDED IN CONCRETE SHALL BE CLEAN AND FREE OF PAINT, OIL OR DIAT,
 - NO HOLES OTHER THAN THOSE SPECIFICALLY DETAILED SHALL BE ALLOWED THROUGH STRUCTURAL STEEL WELEBERS. NO CUTTING OR BUPNING OF STRUCTURAL STEEL WELE PERMITTED WITHOUT THE APPROVAL OF THE ENGINEER.

METAL DECKING:

- 3. SEE ROOF AND ELEVATED R.OOR PLANS FOR DECK SIZE AND WELDING REQUIREMENTS.
- 2. WELDING SHALL BE IN ACCORDANCE WITH AWS DIG. "STRUCTURAL WELDING CODE SHEET STEEL", WELDING FILLER METAL SHALL BE AWG AST OR AS.5 FROM ELECTRODES. WELDERS SHALL BE AWS CERTIFIED.
- 3. DECKING SHALL HAVE MINIMUM 2" BEARING ON ALL SUPPORTS. STEEL JOISTS

AND IS CAR, MAK (M

NOT CHE NON DA

CITY OF WILSONVELE WASTEWATER TREATMENT PLANT

WE SONVELE, ORECOM

- 3. SEE ROOF PLANS FOR DESIGN LOAD RECUREMENTS, MINIMUM SIZE. SPACING, AND BRIDGING REQUIREMENTS,
- 5. ALL CALLS IN BUILDING WALLS SHALL BE PARTIALLY GROUTED EXCEPT 2. ANAFACTURER SHALL BE A MEMBER OF THE STEEL JOIST INSTITUTE

- REINFORCING NOTES:
- THE MHYAMM REINFORCING FOR ALL CONCRETE WALLS AND SLABS SVALL BE AS FOLLOWS: WALL THICKNESS BEINF FACH WAY LOCATION BEINE EACH WAY CONTENED CENTENED EACH FACE EACH FACE
- 100 P PROVIDE LANGER SIZES AND MORE REMFORCING IN ALL SECTIONS OF CONCRETE WHERE RECURRED BY THE DETAILS ON THE DRAWINGS OR BY THE SPECIFICATIONS.
- CLEARANCE FOR REINFORCEMENT BARS, LINLESS SHOWN OTHERWISE, SHALL BE: +WHEN FLACED ON GROUND:--- 95

2.

INTERIOR BUILDLING SLAB SUPPACES

- REFER TO WALL CORNER AND WALL INTERSECTION REINFORCENCE DETAIL. IN GENERAL, THE WALL CORNER REINFORCENCE SIZES AND BRACINGS SHALL BE AS CALLED OUT ON THE FLANS AND REFERENCED TO THESE DETAILS AND THE THPICAL HORIZONTAL WALL REINFORCING SHALL LAW WITH THE HORIZONTAL REINFORCENCE
- AL SENDS, UNLESS OTHERWISE SHOWN, SHALL BE A BO DEGREE STANDARD HOOK AS DEFINED IN LATEST EDITION OF ACT 319.
- ALL WALL COMMEN AND WALL INTERSECTION REINFORCEMENT BARS SHALL BE CONTINUES RANDAR COMMENT AND INFOLMATE OR FILASTERS. REINFORCEMENT SHALL BE EXTENDED WITCH LAND CONSECTION WALLS AND LANTED ON THE OFFORTIE FACE OF THE CONSECTION WALLS, AS INCICATED ELSEWBERE. ALTERNATE HORIZONTAL MAIL LANS ON COMPOSITE FACE OF THE CONSECTION WALLS, AS INCICATED ELSEWBERE. ALTERNATE HORIZONTAL MAIL LANS ON COMPOSITE FACE OF WALLS. 5,
- WHITCAL WALL ARR SHALL BE LAPED WITH DOWELS FROM BASE SLASS AND EXTENDED AND THE TOP FACE OF ROOF SLASS AND LAPED WITH TOP SLASS REINFORCEMENT. PROVIDE A MINIMAM OF TWO FALL HEIGHT YERTICAL BARS WITH MATCHING DOWELS AT WALL SEDS, CORNERS AND INTERSECTIONS WITH SLES TO MATCH TYPICAL VERTICAL REINFORCING STEEL SHOWN OR RECLINED BY NOTES ABOVE.
- 7. UALESS INDICATED OTHERWISE, CONTRACTOR MAY SPLICE CONTINUOUS SLAS OR LONGITUDINAL BEAM BARS AT LICCATIONS OF HIS ONDERING, EXCEPT THAT TOP BAR SPLICES SHALL SE LICCATED AT MIDSPAN AND BOTTOM BAR SPLICES SHALL BE LICCATED AT SUPPORTS, ALL REINFORCEMENT BENS AND LAPS, LINESS OTHERWISE NOTED, SHALL BATISFY THE FOLLOWING MINIMAM REQUIRIENT:

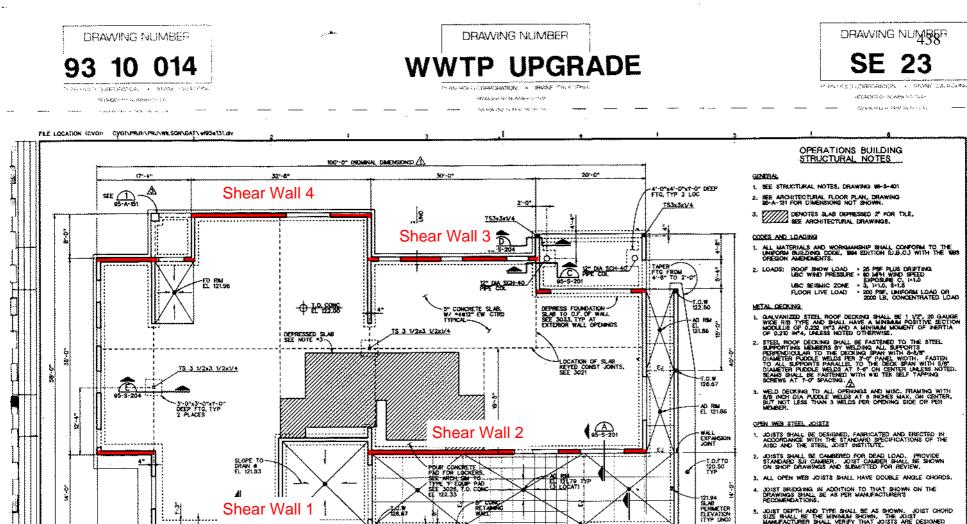
	DESIGN	-				. <u> </u>	1		#11
STRE		.1			<u> </u>	000 PSt			
68.40	TOP BAR	32	DIA.	MIN 2-	7	-		T	· · · · ·
	OTHER DA	n 22	DIA,	MIN 7-	r [-			
08 60	TOP BAR*	44	DIA,	MIN Z-	5 3-6	4-5	6-0° A	7-8 4	S-6 4
	OTHER SA	8 38	DIA.	MIN 2-4	7 2-5	3-6	4-6-	5 0	7.24
- FU CA	P BARS SH ACED SJICH ST IN THE RIZONTAL Y	THA	t MKO 1677 i	RE THA	N 12 OF	FRESH	CONCRUZ Y SINOL	ETÉ 1S F PORT	ı.
FLAR CAR A INSPIR	ST IN THE	THA MEME MALL	E MO BAR BAR GIR HAN	RE THA BELOW T IS ARE S SHOWN	n 12° of The Bari Consider Above Of Less	FRESH IN AN RED TO SY 255 S THAN	CONCRE Y SINGL P BARS. WHERE	ETÉ 15 E POUR BARS	ARE
FLAR CAR A INSPIR	ACED SJOH ST IN THE RIZONTAL Y CREASE LAP ACED CLOSE CE OF MENI	THA MEME MALL	E MO BAR BAR GIR	RE THA BELOW T IS ARE S SHOWN	n 12° of The Bari Consider Above Of Less	FRESH IN AN RED TO SY 255 S THAN	CONCRE Y SINGL P BARS. WHERE	ETÉ 15 E POUR BARS	ARE

DESIGN DETAILS

STRUCTURAL

DETAILS

PLOT DATE- 14-MAY-1998 09:40:35 w98a401.dv


3000

SHEET 92

96-5-401

GAIL DEC 1995

127645.44

JOIST BRIDGING IN ADDITION TO THAT SHOWN ON THE DRAWINGS SHALL BE AS PER MANUFACTURER'S RECOMENDATIONS. 5

DIST DEPTH AND TYPE SHALL BE AS SHOWN. JOIST CHORD SIZE BALL BE THE MANAJAS SHOWN. THE JOIST DATA SHORT A INFORMATION THE JOIST DATA SHORT A INFORM ROOF CAAD LOAD EQUAL TO 20 PSF FULS THE LIVE. SHOW AND CONCENTRATED LOADS SHOWN ON THE FLARS. PROVIDE ADDITIONAL DIAGONAL WEB MEMBERS AT CONCENTRATED LOAD LOCATIONS AS REQUIRED BY THE JOIST MANAFACTURER.

RECORD DRAWINGS

126.67

101 I.C.A. SELT 79 REUSE OF DOCUMENTS OPERATIONS BUILDING ้อเฮอ CITY OF WESONVELE WASTEWATER TREATMENT PLANT 5/98 7/98 11/16 7/98 RECORD CRAWFICS CL +31 REVERIME TO COLLAIN IN FOOTING CL +34 SHEET HETAL DECORD SEAR DOMECTION CL +15 ANDRESSES HOMMAN DRUCKS CRAPPENDAS NACE ALL RACE ALL NACE ALL RACE ALL PORTED NORD 20 95-5-121 STRUCTURAL C PU Cit. PROPERTY OF CHIM ۰. DATE DEC 1995 CRMHI FOUNDATION PLAN S N PITO F NOT CHE NEM (WALSONVILLE, DREGON 0. 17845.A4 BY APVO H SHACKED PLOT DATE+ 12-MAY-1998 16:34:13 wi95s131.dv

WALL EXPANSION JOINT

50'-0"

121.9

122.17

A A

4" CONC SLAB W/ *4415" EW CTRD TYP EXTERIOR SLAB

5"-0"

22'-4"

10 A

2

10'-0"

514 #9T

Shear Wall 1

40"-0"

16'-9'

3/187-7-0

95-5-201

A.

FOUNDATION PLAN

2

.

CONCRETE PATIO SLAB WITH-SMALL JOINT PATTERN SHALL HAVE EXPOSED AREGATE PINESH ALL OTHER PATIO SLAB AREAS SHALL HAVE A LIGHT BROOM FINISH.

BY:	BS	DATE	Sep-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	_	Operations Building	JOB NO.	11962A.00
DESIGN TAS	K				ASCE 41-17 - Tier 2 (BSE-2E)		

CMU IN-PLANE SHEAR WALL CHECK IN BUILDING N-S DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.

11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.

11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced Masonry Walls. The shear required to develop the expected

flexural strength of RM walls and wall piers shall be compared with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.

Shear wall 1

Roof seismic load. V = 198.8 kip diaphragm span, L = 60.00 ft roof tributary width for seismic, $T_w =$ 8 ft tributary seismic load on shear wall, Q_E = 26.5 kip wall height, h = 10.17 ft tributary seismic moment on shear wall, Mu = 269.6 kip*ft masonry strength, f'm = 1500 psi shear wall length, d = 40 ft vertitcal shear wall grout spacing = 32 in horizontal shear wall grout spacing = 48 in shear wall thickness, t = 7.625 in 1692.0 in² $A_n =$ Φ= 1.0 (assumed per Tier 2) $\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{n} \sqrt{f_{m}} + 0.25 P_{u} \right]$ masonry shear wall strength, $\phi QCE_m =$ 233.0 kip horizontal masonry shear wall strength, $\phi QCE_s =$ 28.7 kip combined masonry shear wall strength, ϕ QCE = 261.6 kip Determining m-factor for wall governed by flexure roof axial load on wall, P = 5544.0 lbs vertical compressive stress, f_{ae} = P/(d*t) = 1.5 psi factor for expected strength, F_{exp} = 1.3 (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp} * f'_m =$ 1950.0 psi $f_{ae}/f_{me} =$ 0.001

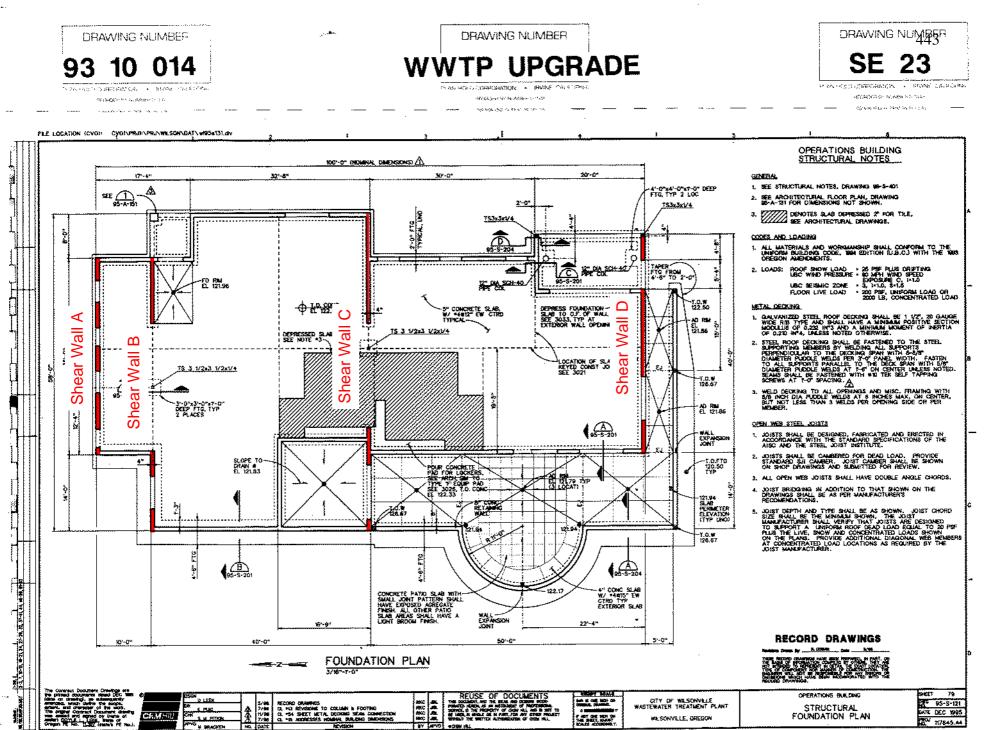
7.5.2 Linear Procedures

7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.

7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, Q_{UD} , shall be calculated in accordance with Eq. (7-34):

$$Q_{UD} = Q_G + Q_E \tag{7-34}$$

where


- Q_{UD} = Deformation-controlled action caused by gravity loads and earthquake forces.
- Q_G = Action caused by gravity loads as defined in Section 7.2.2; and
- Q_E = Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

h/L =	0.25	
steel reinforcing ratio, ρ_g =	0.003	
$ ho_{g}^{*}f_{ye}/f_{me} =$	0.08	
m-factor =	7.0	(interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90	
masonry shear wall strength, κmφQCE =	1648.3	kip
demand capacity ratio, DCR =	0.02	ОК
<u>Shear wall 2</u>		
Roof seismic load, V =	198.8	•
diaphragm span, L =	60.00	
roof tributary width for seismic, T_w =	25	ft
tributary seismic load on shear wall, Q_E =	82.8	kip
wall height, h =	10.17	ft
tributary seismic moment on shear wall, Mu =	842.4	kip*ft
masonry strength, f' _m =	1500	psi
shear wall length, d =	44	ft
vertitcal shear wall grout spacing =	32	in
horizontal shear wall grout spacing =	48	in
shear wall thickness, t =	7.625	in
A _n =	1853.0	in ²
Φ =	1.0	(assumed per Tier 2)
[[(м)]	<u> </u>	
$\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{y}} \right) \right] A_{n} \right]$	√f _m + 0.25P _u	
	-	
masonry shear wall strength, $\phi QCE_m =$	258.0	kip
horizontal masonry shear wall strength, $\phi QCE_s =$	28.7	-
combined masonry shear wall strength, $\phi QCE =$	286.7	•
	200.1	mμ
Determining m-factor for wall governed by flexure		
roof axial load on wall, P =	49500.0	lbs
vertical compressive stress, $f_{ae} = P/(d^*t) =$	12.3	
factor for expected strength, F _{exp} =		(ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f_m = f_{exp} * f_m = f_{exp} + f_{exp} * f_m = f_{exp} + f_{exp$	1950.0	psi
$f_{ae}/f_{me} =$	0.006	
h/L =	0.23	
steel reinforcing ratio, ρ_g =	0.003	
$ ho_{g}$ *f _{ye} /f _{me} =	0.08	
m-factor =	7.0	(interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90	
masonry shear wall strength, κmφQCE =	1806.3	kip
demand capacity ratio, DCR =	0.05	ОК
<u>Shear wall 3</u>		
Roof seismic load, V =	198.8	
diaphragm span, L =	60.00	
roof tributary width for seismic, T_w =	22	ft
tributary seismic load on shear wall, Q_E =	72.9	kip
wall height, h =	10.17	ft
tributary seismic moment on shear wall, Mu =	741.3	kip*ft
masonry strength, f' _m =	1500	psi
shear wall length, d =	40.67	
vertitcal shear wall grout spacing =	32	

horizontal shear wall grout spacing =	48	in
shear wall thickness, t =	7.625	
$A_n = $		
Φ =	1.0	(assumed per Tier 2)
$\phi V_{\rm m} = \phi \left[\left[4.0 - 1.75 \left(\frac{\rm M}{\rm V} {\rm d}_{\rm v} \right) \right] A_{\rm v} \right]$	$\sqrt{f_m + 0.25P_u}$	
masonry shear wall strength, ϕQCE_m =	236.2	kip
horizontal masonry shear wall strength, ϕQCE_{s} =	28.7	kip
combined masonry shear wall strength, φQCE =	264.9	kip
Determining m-factor for wall governed by flexure		
roof axial load on wall, P =	43560.0	
vertical compressive stress, $f_{ae} = P/(d^*t) =$	11.7	•
factor for expected strength, F_{exp} =		(ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f'_m =$	1950.0	•
$f_{ae}/f_{me} =$	0.006	psi
h/L =	0.25	
steel reinforcing ratio, ρ_g =	0.003	
$ ho_{g}^{*}f_{ye}/f_{me} =$	0.08	
m-factor =	7.0	(interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90	
masonry shear wall strength, κmφQCE =	1668.8	kip
demand capacity ratio, DCR =	0.04	ΟΚ
<u>Shear wall 4</u>		
Roof seismic load, V =	198.8	-
diaphragm span, L =	60.00	
roof tributary width for seismic, $T_w =$	5	
tributary seismic load on shear wall, Q_E =	16.6	кір
wall height, h =	10.17	ft
tributary seismic moment on shear wall, Mu =	168.5	kip*ft
masonry strength, f' _m =	1500	•
shear wall length, d =	24.67	
vertitcal shear wall grout spacing =	32	
horizontal shear wall grout spacing =	48	
shear wall thickness, t = A _n =	7.625 1068.1	
$\Phi =$		(assumed per Tier 2)
		(
$\phi V_{\rm m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{\rm v}} \right) \right] A_{\rm v} \right]$	$\sqrt{f_m} + 0.25P_u$	
masonry shear wall strength, $\phi QCE_m =$	135.6	kip
horizontal masonry shear wall strength, $\phi \text{QCE}_{\text{s}}$ =	28.7	kip
combined masonry shear wall strength, ϕ QCE =	164.3	kip
Determining m-factor for wall governed by flexure		
roof axial load on wall, P =	2587.5	lbs
vertical compressive stress, $f_{ae} = P/(d^*t) =$	1.1	psi
factor for expected strength, F_{exp} =	1.3	(ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f_m =$	1950.0	psi
$f_{ae}/f_{me} =$	0.001	psi
h/L =	0.41	
steel reinforcing ratio, ρ_g =	0.003	
$ ho_g * f_{ye} / f_{me} =$	0.08	

m-factor =	7.0	(interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90	
masonry shear wall strength, κmφQCE =	1035.1	kip

demand capacity ratio, DCR = 0.02 OK

10 A

PLOT DATE+ 12-MAY-1998 16:34:13 wi95s131.dv

BY:	BS	DATE	Sep-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	_	Operations Building	JOB NO.	11962A.00
DESIGN TAS	ĸ				ASCE 41-17 - Tier 2 (BSE-2E)		

CMU IN-PLANE SHEAR WALL CHECK IN BUILDING E-W DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers

In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.

11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.

11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced Masonry Walls. The shear required to develop the expected

flexural strength of RM walls and wall piers shall be compared with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.

Shear wall A

Roof seismic load, V = 198.8 kip diaphragm span, L = 102.00 ft roof tributary width for seismic, $T_w =$ 6 ft tributary seismic load on shear wall, Q_E = 11.7 kip wall height, h = 10.17 ft tributary seismic moment on shear wall, Mu = 118.9 kip*ft masonry strength, f'm = 1500 psi shear wall length, d = 20 ft vertitcal shear wall grout spacing = 32 in horizontal shear wall grout spacing = 48 in shear wall thickness, t = 7.625 in $A_n =$ 887.0 in² Φ= 1.0 (assumed per Tier 2) $\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{n} \sqrt{f_{m}} + 0.25 P_{u} \right]$ masonry shear wall strength, $\phi QCE_m =$ 106.8 kip horizontal masonry shear wall strength, $\phi QCE_s =$ 28.7 kip combined masonry shear wall strength, ϕ QCE = 135.5 kip Determining m-factor for wall governed by flexure roof axial load on wall, P = 3564.0 lbs vertical compressive stress $f = P/(d^*t) =$ 0.3 nei

ventical compressive sitess, rae = F/(u t) =	0.5 psi
factor for expected strength, F_{exp} =	1.3 (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f'_m =$	1950.0 psi

7.5.2 Linear Procedures

7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.

7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, Q_{UD} , shall be calculated in accordance with Eq. (7-34):

$$Q_{UD} = Q_G + Q_E \tag{7-34}$$

where

- Q_{UD} = Deformation-controlled action caused by gravity loads and earthquake forces.
- Q_G = Action caused by gravity loads as defined in Section 7.2.2; and
- Q_E = Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

$f_{ae}/f_{me} =$	0.000
h/L =	0.51
steel reinforcing ratio, ρ_g =	0.003
$ ho_g * f_{ye} / f_{me} =$	0.08
m factor -	7.0 (interpolated between LS & CD ASCE 41.17 Table 11.6)
m-factor = knowledge factor, κ =	7.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6) 0.90
masonry shear wall strength, κmφQCE =	853.8 kip
demand capacity ratio, DCR =	0.01 OK
<u>Shear wall B</u>	109.9 kin
Roof seismic load, V = diaphragm span, L =	198.8 kip 102.00 ft
roof tributary width for seismic, $T_w =$	25 ft
tributary seismic load on shear wall, $Q_E =$	
tributary seismic load on shear wall, $Q_E =$	48.7 kip
wall height, h =	10.17 ft
tributary seismic moment on shear wall, Mu =	495.5 kip*ft
masonry strength, f [*] _m =	1500 psi
shear wall length, d =	20.67 ft
vertitcal shear wall grout spacing =	32 in
horizontal shear wall grout spacing =	48 in
shear wall thickness, t =	7.625 in
$A_n =$	907.1 in ²
Φ =	1.0 (assumed per Tier 2)
$\phi V_{\rm m} = \phi \left[\left[4.0 - 1.75 \left(\frac{\rm M}{\rm V} {\rm d}_{\rm v} \right) \right] A_{\rm r} \right]$	$\sqrt{f_m} + 0.25P_u$
masonry shear wall strength, $\phi QCE_m =$	110.3 kip
	110.3 kip
horizontal masonry shear wall strength, $\phi QCE_s =$	28.7 kip
combined masonry shear wall strength, ϕ QCE =	139.0 kip
Determining m-factor for wall governed by flexure	
roof axial load on wall, P =	28710.0 lbs
vertical compressive stress, f _{ae} = P/(d*t) =	2.4 psi
factor for expected strength, F_{exp} =	1.3 (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp}^{a,b} f_{m}^{a,b} =$	1950.0 psi
$f_{ae}/f_{me} =$	-
ι _{ae} /ι _{me} – h/L =	0.001
	0.49
steel reinforcing ratio, $\rho_g = \frac{1}{2} \frac{1}{$	0.003
$ ho_{g}^{*}f_{ye}/f_{me} =$	0.08
m-factor =	7.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90
masonry shear wall strength, κmφQCE =	875.4 kip
demand capacity ratio, DCR =	0.06 <mark>OK</mark>
Shaar wall C	
<u>Shear wall C</u> Roof seismic load, V =	108.8 kin
diaphragm span, L =	198.8 kip 102.00 ft
roof tributary width for seismic, $T_w =$	45 ft
tributary seismic load on shear wall, $Q_{\rm E}$ =	
tributary seisifiit load off shear wall, $Q_{\rm E}$ -	87.7 kip
wall height, h =	10.17 ft
tributary seismic moment on shear wall, Mu =	892.0 kip*ft
masonry strength, $f_m =$	1500 psi
shear wall length, d =	28.67 ft

vertitcal shear wall grout spacing =	32	
horizontal shear wall grout spacing = shear wall thickness, t =	48 7.625	
Shear wait thickness, t = $A_n =$	1229.1	
Φ =		(assumed per Tier 2)
÷ .	1.0	
$\phi V_{\rm m} = \phi \Biggl[\Biggl[4.0 - 1.75 \Biggl(\frac{\rm M}{\rm V} \frac{\rm d_v}{\rm d_v} \Biggr) \Biggr] A$	$\sqrt{f_m} + 0.25P_u$	
masonry shear wall strength, $\phi QCE_m =$	160.9	kin
horizontal masonry shear wall strength, $\phi QCE_s =$	28.7	-
combined masonry shear wall strength, φQCE =	189.5	-
Determining m-factor for wall governed by flexure		
roof axial load on wall, P =	40788.0	
vertical compressive stress, $f_{ae} = P/(d^*t) =$	2.5	
factor for expected strength, F_{exp} =		(ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f'_m =$	1950.0	psi
$f_{ae}/f_{me} =$	0.001	
h/L =	0.35	
steel reinforcing ratio, ρ_g =	0.003	
$ ho_{g}^{*}f_{ye}/f_{me} =$	0.08	
m-factor =	7.0	(interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90	
masonry shear wall strength, кmфQCE =	1194.1	kip
demand capacity ratio, DCR =	0.07	OK
<u>Shear wall D</u>		
Roof seismic load, V =	198.8	kip
diaphragm span, L =	102.00	
roof tributary width for seismic, T_w =	26	ft
tributary seismic load on shear wall, Q_E =	50.7	kip
	40.47	0
wall height, h =	10.17	
tributary seismic moment on shear wall, Mu = masonry strength, f' _m =	515.4 1500	
shear wall length, d =	26.67	-
vertitcal shear wall grout spacing =	32	
horizontal shear wall grout spacing =	48	
shear wall thickness, t =	7.625	
A _n =	1128.1	in ²
Φ =	1.0	(assumed per Tier 2)
$\phi V_{\rm m} = \phi \left[\left[4.0 - 1.75 \left(\frac{\rm M}{\rm V \ d_v} \right) \right] A \right]$	$\sqrt{f_m^{'}} + 0.25P_u$	
masonry shear wall strength, $\phi QCE_m =$	145.6	kin
horizontal masonry shear wall strength, ϕQCE_{m}	28.7	-
combined masonry shear wall strength, $\phi QCE =$	174.3	•
		•
Determining m-factor for wall governed by flexure	17000	
roof axial load on wall, P = vertical compressive stress $f = P/(d^{*t})$ =	17820.0	
vertical compressive stress, $f_{ae} = P/(d^*t) =$	1.2	
factor for expected strength, $F_{exp} =$		(ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f_m = f_{exp} + f_m = f_{exp} + f_m = f_{exp} + f_m = f_m + f_$	1950.0	hei
$f_{ae}/f_{me} =$	0.001	
h/L = steel reinforcing ratio, $\rho_a =$	0.38 0.003	
stoor ronnoronig ratio, p _g –	0.000	

$ ho_{g}^{*}f_{ye}/f_{me} =$	0.08
m-factor =	7.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90
masonry shear wall strength, κmφQCE =	1098.0 kip

demand capacity ratio, DCR = 0.05 OK

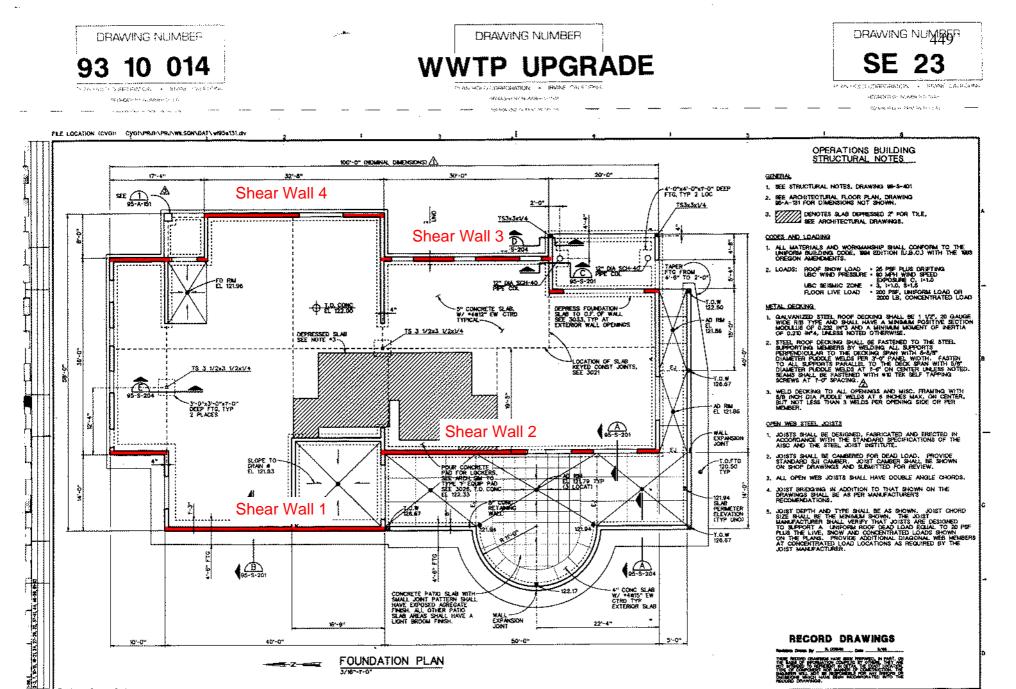
6.7

Engineers, Warking Wondors With Water *

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	_	Operations Building	JOB NO.	11962A.00
DESIGN TAS	δK				ASCE 41-17 - Tier 2 (CSZ)		

SEISMIC BASE SHEAR FOR OPERATIONS BUILDING

7.4.1.3.1 Pseudo Seismic Force for LSP. The pseudo lateral force in a given horizontal direction of a building shall be determined using Eq. (7-21). This force shall be used to evaluate or retrofit the vertical elements of the seismic-force-resisting system.


$$V = C_1 C_2 C_m S_a W \tag{7-21}$$

<i>m</i> _{max} < 2	$2 \le m_{\max} < 6$	$m_{\max} \ge 6$	No. of Stories	Concrete Moment Frame	Concrete Shear Wall	Concrete Pier-Spandrel	Steel Moment Frame	Steel Concentrically Braced Frame	Steel Eccentrically Braced Frame	Other
1.1	1.4	1.8	5-2	10	10	1.0	10	10	10	1.0
1.0	1.1	1.2	3 or more	0.9	0.0	0.0	0.9	0.9	0.9	1.0
	1.1	1.1 1.4	1.1 1.4 1.8	mmax < 2 2 ≤ mmax < 6 mmax ≥ 6 Stories 1.1 1.4 1.8 5-2	1.1 1.4 1.8 5-2 1.0	1.1 1.4 1.8 5000000000000000000000000000000000000	mmax < 2 2 ≤ mmax < 6 mmax ≥ 6 Stories Moment Frame Shear Wall Pier-Spandeel 1.1 1.4 1.8 5-2 1.0 1.0 1.0	mmax < 2 2 ≤ mmax < 6 mmax ≥ 6 No. of Stories Concrete Moment Frame Concrete Shear Wall Concrete Pier-Spandeel Moment Frame 1.1 1.4 1.8 5-2 1.0 1.0 1.0 1.0	mmax < 2 2 ≤ mmax < 6 mmax ≥ 6 No. of Stories Concrete Noment Frame Concrete Shear Wall Concrete Pier-Spandel Moment Frame Concentrically Braced Frame 1.1 1.4 1.8 1-2 1.0 1.0 1.0 1.0	mmax < 2 2 ≤ mmax < 6 mmax ≥ 6 No. of Stories Concrete Noment Frame Concrete Shear Wall Concrete Pier-Spandeel Moment Concentrically Frame Concentrically Braced Frame Eccentrically Braced Frame 1.1 1.4 1.8 1-2 1.0 1.0 1.0 1.0 1.0 1.0

Note: C_mshall be taken as 1.0 if the fundamental period, T, in the direction of response under consideration is greater than 1.0 s.

(CSZ seismic hazard)	0.446 g	spectral response acceleration, S_{xs} =
(CSZ seismic hazard)	0.332 g	spectral response acceleration, S_{x1} =
	0.114 s	building period, T =
	0.446 g	response spectrum acceleration, $S_a =$
	190.9 kip	effective seismic weight, W =
(Table 11-6 for mason	1.4	$C_1 C_2 =$
	1.0	effective mass factor, C_m =
	119.2 kip	seismic lateral force, V =

le 11-6 for masonry walls, m=2.0)

50'-0"

RECORD DRAWINGS

101 I.C.A. SELT 79 REUSE OF DOCUMENTS OPERATIONS BUILDING CITY OF WESONVELE WASTEWATER TREATMENT PLANT 5/98 7/98 11/16 7/98 RECORD CRAWFICS CL +31 REVERIME TO COLLAIN IN FOOTING CL +34 SHEET HETAL DECORD SEAR DOMECTION CL +15 ANDRESSES HOMMAN DRUCKS CRAPPENDAS NACE ALL RACE ALL NACE ALL RACE ALL PORTED INTER 20 95-5-121 STRUCTURAL PROPERTY OF CHIM ۰. DATE DEC 1995 FOUNDATION PLAN F NOT CHE NEM (WALSONVILLE, DREGON 0. 17845.A4 BY APVO

5"-0"

PLOT DATE+ 12-MAY-1998 16:34:13 wi95s131.dv

10 A

10'-0"

40"-0"

้อเฮอ

C PU Cit.

S N PITO

H SHACKED

CRMHI

FOUNDATION PLAN

3/187-7-0

BY:	BS	DATE		CLIENT	City of Wilsonville	SHEET		
CHKD BY		DESCRIF	TION		Operations Building	JOB NO.	11962A.00	
DESIGN TA	SK				ASCE 41-17 - Tier 2 (CSZ)			

CMU IN-PLANE SHEAR WALL CHECK IN BUILDING N-S DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.

11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.

11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced Masonry Walls. The shear required to develop the expected

flexural strength of RM walls and wall piers shall be compared with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.

Shear wall 1

Roof seismic load, V =	119.2	kip
diaphragm span, L =	60.00	ft
roof tributary width for seismic, T_w =	8	ft
tributary seismic load on shear wall, Q_E =	15.9	kip
wall height, h =	10.17	ft
tributary seismic moment on shear wall, Mu =	161.6	kip*ft
masonry strength, f' _m =	1500	psi
shear wall length, d =	40	ft
vertitcal shear wall grout spacing =	32	in
horizontal shear wall grout spacing =	48	in
shear wall thickness, t =	7.625	in
A _n =	1692.0	in²

1.0 (assumed per Tier 2)

$$\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V \ d_{v}} \right) \right] A_{n} \sqrt{f_{m}} + 0.25 P_{u} \right]$$

Φ=

masonry shear wall strength, ϕQCE_m =	233.0 kip
horizontal masonry shear wall strength, ϕQCE_s =	28.7 kip
combined masonry shear wall strength, ϕ QCE =	261.6 kip

Determining m-factor for wall governed by flexure roof axial load on wall. P = 5544.0 lbs

vertical compressive stress, f _{ae} = P/(d*t) =	1.5 psi

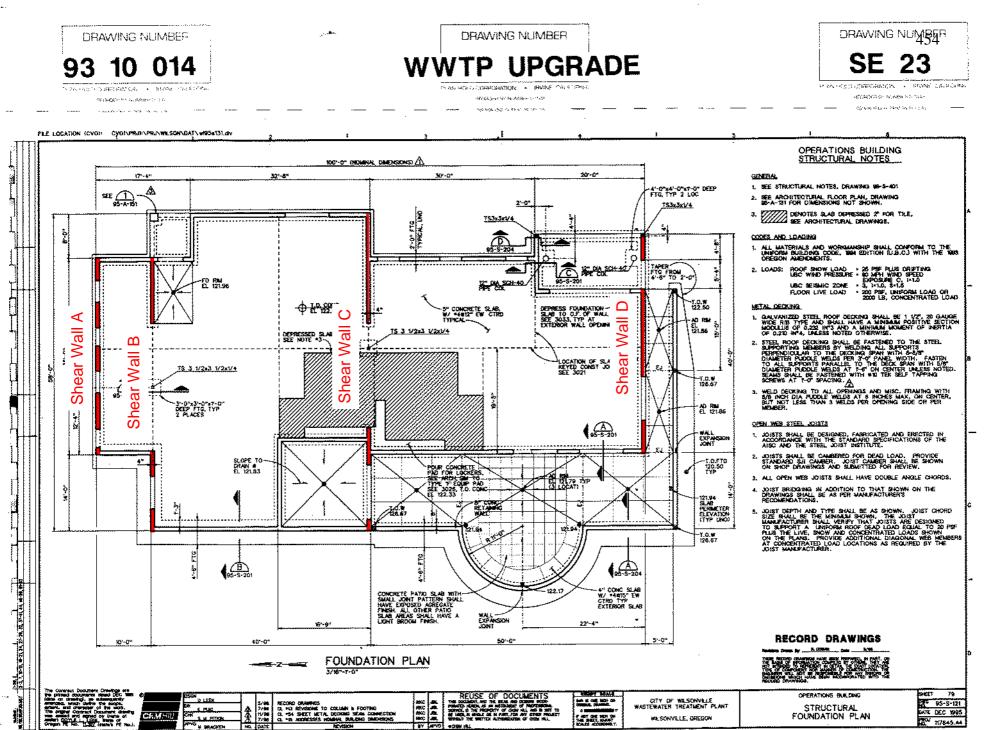
7.5.2 Linear Procedures

7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.

7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, Q_{UD} , shall be calculated in accordance with Eq. (7-34):

$$Q_{UD} = Q_G + Q_E \tag{7-34}$$

where


- Q_{UD} = Deformation-controlled action caused by gravity loads and earthquake forces.
- Q_G = Action caused by gravity loads as defined in Section 7.2.2; and
- Q_E = Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

factor for expected strength E	1.2 (ACCE 11.17 Table 11.1)
factor for expected strength, $F_{exp} =$	1.3 (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp}^{*} f_{m}^{*} =$	1950.0 psi
$f_{ae}/f_{me} =$	0.001
h/L =	0.25
steel reinforcing ratio, ρ_g =	0.003
$ ho_{g}^{*}f_{ye}/f_{me} =$	0.08
m-factor =	5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-6)
knowledge factor, κ = masonry shear wall strength, κmφQCE =	0.90 1177.4 kip
	ттт.4 кр
demand capacity ratio, DCR =	0.01 OK
<u>Shear wall 2</u>	
Roof seismic load, V =	119.2 kip
diaphragm span, L =	60.00 ft
roof tributary width for seismic, T_w =	25 ft
tributary seismic load on shear wall, Q_E =	49.7 kip
wall height, h =	10.17 ft
tributary seismic moment on shear wall, Mu =	505.1 kip*ft
masonry strength, f' _m =	1500 psi
shear wall length, d =	44 ft
vertitcal shear wall grout spacing =	32 in
horizontal shear wall grout spacing =	48 in
shear wall thickness, t =	7.625 in 1853.0 in ²
$A_n = \Phi$	
Ψ-	1.0 (assumed per Tier 2)
$\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{n} V_{v} \right]$	$\left[\overline{f_m} + 0.25P_u\right]$
$\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{n} V_{n} \right]$	$\left[\overline{f_{m}} + 0.25 P_{u} \right]$
$\phi V_m = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_v} \right) \right] A_n v \right]$ masonry shear wall strength, $\phi QCE_m =$	[f _m + 0.25P _u] 258.0 kip
masonry shear wall strength, $\phi QCE_m =$	258.0 kip
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$	258.0 kip 28.7 kip
masonry shear wall strength, φQCE _m = horizontal masonry shear wall strength, φQCE _s = combined masonry shear wall strength, φQCE = Determining <i>m</i> -factor for wall governed by flexure	258.0 kip 28.7 kip 286.7 kip
masonry shear wall strength, φQCE _m = horizontal masonry shear wall strength, φQCE _s = combined masonry shear wall strength, φQCE = Determining <i>m</i> -factor for wall governed by flexure roof axial load on wall, P =	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs
masonry shear wall strength, φQCE _m = horizontal masonry shear wall strength, φQCE _s = combined masonry shear wall strength, φQCE = Determining <i>m</i> -factor for wall governed by flexure	258.0 kip 28.7 kip 286.7 kip
masonry shear wall strength, φQCE _m = horizontal masonry shear wall strength, φQCE _s = combined masonry shear wall strength, φQCE = Determining m-factor for wall governed by flexure roof axial load on wall, P = vertical compressive stress, f _{ae} = P/(d*t) = factor for expected strength, F _{exp} =	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs
masonry shear wall strength, φQCE _m = horizontal masonry shear wall strength, φQCE _s = combined masonry shear wall strength, φQCE = Determining m-factor for wall governed by flexure roof axial load on wall, P = vertical compressive stress, f _{ae} = P/(d*t) =	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi
masonry shear wall strength, φQCE _m = horizontal masonry shear wall strength, φQCE _s = combined masonry shear wall strength, φQCE = Determining m-factor for wall governed by flexure roof axial load on wall, P = vertical compressive stress, f _{ae} = P/(d*t) = factor for expected strength, F _{exp} =	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1)
masonry shear wall strength, φQCE _m = horizontal masonry shear wall strength, φQCE _s = combined masonry shear wall strength, φQCE = Determining m-factor for wall governed by flexure roof axial load on wall, P = vertical compressive stress, f _{ae} = P/(d*t) = factor for expected strength, F _{exp} = expected compressive strength, f _{me} = F _{exp} *f _m =	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, f _{ae} = P/(d*t) = factor for expected strength, F _{exp} = expected compressive strength, f _{me} = F _{exp} *f _m = f _{ae} /f _{me} =	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, $f_{ae} = P/(d^*t) =$ factor for expected strength, $F_{exp} =$ expected compressive strength, $f_{me} = F_{exp} * f_m =$ $f_{ae}/f_{me} =$ h/L = steel reinforcing ratio, $\rho_g =$	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006 0.23
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, $f_{ae} = P/(d^*t) =$ factor for expected strength, $F_{exp} =$ expected compressive strength, $f_{me} = F_{exp} * f_m =$ $f_{ae}/f_{me} =$ h/L =	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006 0.23 0.003
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, $f_{ae} = P/(d^*t) =$ factor for expected strength, $F_{exp} =$ expected compressive strength, $f_{me} = F_{exp} * f_m =$ $f_{ae}/f_{me} =$ h/L = steel reinforcing ratio, $\rho_g =$	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006 0.23 0.003
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, $f_{ae} = P/(d^*t) =$ factor for expected strength, $F_{exp} =$ expected compressive strength, $f_{me} = F_{exp} * f_m =$ $f_{ae}/f_m = f_{ae}/f_m =$ h/L = steel reinforcing ratio, $\rho_g =$ $\rho_g * f_{ye}/f_m = $ m-factor = knowledge factor, $\kappa =$	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006 0.23 0.003 0.003 0.08
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, f _{ae} = P/(d*t) = factor for expected strength, F _{exp} = expected compressive strength, f _{me} = F _{exp} *f ^r _m = f _{ae} /f _{me} = h/L = steel reinforcing ratio, $\rho_g =$ $\rho_g*f_{ye}/f_{me} =$ m-factor =	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006 0.23 0.003 0.003 0.08 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-6)
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, $f_{ae} = P/(d^*t) =$ factor for expected strength, $F_{exp} =$ expected compressive strength, $f_{me} = F_{exp} * f_m =$ $f_{ae}/f_{me} =$ h/L = steel reinforcing ratio, $\rho_g =$ $\rho_g * f_{ye}/f_{me} =$ m-factor = knowledge factor, $\kappa =$ masonry shear wall strength, $\kappa m \phi QCE =$	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006 0.23 0.003 0.003 0.003 0.08 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-6) 0.90 1290.2 kip
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, $f_{ae} = P/(d^*t) =$ factor for expected strength, $F_{exp} =$ expected compressive strength, $f_{me} = F_{exp} * f_m =$ $f_{ae}/f_m = f_{ae}/f_m =$ h/L = steel reinforcing ratio, $\rho_g =$ $\rho_g * f_{ye}/f_m = $ m-factor = knowledge factor, $\kappa =$	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006 0.23 0.003 0.003 0.08 (interpolated between LS & IO. ASCE 41-17 Table 11-6) 0.90
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, $f_{ae} = P/(d^*t) =$ factor for expected strength, $F_{exp} =$ expected compressive strength, $f_{me} = F_{exp} * f_m =$ $f_{ae}/f_{me} =$ h/L = steel reinforcing ratio, $\rho_g =$ $\rho_g * f_{ye}/f_{me} =$ m-factor = knowledge factor, $\kappa =$ masonry shear wall strength, km ϕ QCE =	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006 0.23 0.003 0.003 0.003 0.08 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-6) 0.90 1290.2 kip
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, $f_{ae} = P/(d^*t) =$ factor for expected strength, $F_{exp} =$ expected compressive strength, $f_{me} = F_{exp} * f_m =$ $f_{ae}/f_m =$ h/L = steel reinforcing ratio, $\rho_g =$ $\rho_g * f_{ye}/f_m =$ m-factor = knowledge factor, $\kappa =$ masonry shear wall strength, km ϕ QCE = <i>Shear wall 3</i>	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006 0.23 0.003 0.003 0.003 0.003 0.003 0.004 0K
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, $f_{ae} = P/(d^*t) =$ factor for expected strength, $F_{exp} =$ expected compressive strength, $f_{me} = F_{exp} * f_m =$ $f_{ae}/f_{me} =$ h/L = steel reinforcing ratio, $\rho_g =$ $\rho_g * f_{ye}/f_m =$ m-factor = knowledge factor, $\kappa =$ masonry shear wall strength, $\kappa m \phi QCE =$ <i>demand capacity ratio, DCR</i> =	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006 0.23 0.003 0.003 0.003 0.08 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-6) 0.90 1290.2 kip 0.04 OK 119.2 kip
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, $f_{ae} = P/(d^*t) =$ factor for expected strength, $F_{exp} =$ expected compressive strength, $f_{me} = F_{exp} * f_m =$ $f_{ae}/f_{me} =$ h/L = steel reinforcing ratio, $\rho_g =$ $\rho_g * f_{ye}/f_m =$ m-factor = knowledge factor, $\kappa =$ masonry shear wall strength, $\kappa m \phi QCE =$ <i>demand capacity ratio, DCR</i> = <u>Shear wall 3</u> Roof seismic load, V = diaphragm span, L =	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006 0.23 0.003 0.003 0.08 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-6) 0.90 1290.2 kip 0.04 OK 119.2 kip 60.00 ft
masonry shear wall strength, $\phi QCE_m =$ horizontal masonry shear wall strength, $\phi QCE_s =$ combined masonry shear wall strength, $\phi QCE =$ <i>Determining m-factor for wall governed by flexure</i> roof axial load on wall, P = vertical compressive stress, $f_{ae} = P/(d^*t) =$ factor for expected strength, $F_{exp} =$ expected compressive strength, $f_{me} = F_{exp} * f_m =$ $f_{ae}/f_{me} =$ h/L = steel reinforcing ratio, $\rho_g =$ $\rho_g * f_{ye}/f_m =$ m-factor = knowledge factor, $\kappa =$ masonry shear wall strength, $\kappa m \phi QCE =$ <i>demand capacity ratio, DCR</i> =	258.0 kip 28.7 kip 286.7 kip 49500.0 lbs 12.3 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.006 0.23 0.003 0.003 0.003 0.08 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-6) 0.90 1290.2 kip 0.04 OK 119.2 kip

wall height, h =	10.17 ft
tributary seismic moment on shear wall, Mu =	
masonry strength, f' _m =	
shear wall length, d =	
vertitcal shear wall grout spacing =	
horizontal shear wall grout spacing =	48 in
shear wall thickness, t =	
A _n =	= 1712.1 in ²
Φ =	1.0 (assumed per Tier 2)
	_ 1
$\phi V_{\rm m} = \phi \left[\left[4.0 - 1.75 \left(\frac{\rm M}{\rm V \ d_v} \right) \right] A_{\rm r} \right]$	$A_n \sqrt{f_m} + 0.25 P_u$
masonry shear wall strength, $\phi QCE_m =$	= 236.2 kip
horizontal masonry shear wall strength, φQCE _s = combined masonry shear wall strength, φQCE =	•
combined masonry snear wan strength, water -	= 264.9 kip
Determining m-factor for wall governed by flexure	
roof axial load on wall, P =	
vertical compressive stress, $f_{ae} = P/(d^*t) =$	
factor for expected strength, F_{exp} =	1.3 (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp}^* f_m^* =$	= 1950.0 psi
$f_{ae}/f_{me} =$	= 0.006 psi
h/L =	0.25
steel reinforcing ratio, ρ_g =	- 0.003
$ ho_g * f_{ye} / f_{me} =$	0.08
m-factor =	
knowledge factor, κ = masonry shear wall strength, κmφQCE =	
	= 1192.0 kip
demand capacity ratio, DCR =	0.04 OK
Shear wall 4	
Roof seismic load, V =	119.2 kip
diaphragm span, L =	
roof tributary width for seismic, T_w =	5 ft
tributary seismic load on shear wall, Q_E =	9.9 kip
	10.17 (
wall height, h = tributary seismic moment on shear wall, Mu =	
masonry strength, $f'_m =$	
shear wall length, d =	
vertitcal shear wall grout spacing =	
horizontal shear wall grout spacing =	
shear wall thickness, t =	
$A_n =$	
	7.625 in
Φ =	7.625 in 1068.1 in ²
Φ =	7.625 in 1068.1 in ² 1.0 (assumed per Tier 2)
	7.625 in 1068.1 in ² 1.0 (assumed per Tier 2)
Φ =	$\begin{bmatrix} 7.625 \\ in \\ 1068.1 \\ in^{2} \\ 1.0 \\ (assumed per Tier 2) \\ A_{n}\sqrt{f_{m}} + 0.25P_{u} \end{bmatrix}$
$\Phi = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_v} \right) \right] A_v \right]$	$\begin{bmatrix} 7.625 & \text{in} \\ 1068.1 & \text{in}^2 \\ 1.0 & (\text{assumed per Tier 2}) \\ A_n \sqrt{f_m} + 0.25 P_u \end{bmatrix}$ = 135.6 kip
$\Phi = \phi V_m = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_v} \right) \right] A_v \right]$ masonry shear wall strength, $\phi QCE_m = 0$	$\begin{bmatrix} 7.625 & \text{in} \\ 1068.1 & \text{in}^2 \\ \hline 1.0 & (\text{assumed per Tier 2}) \\ A_n \sqrt{f_m} + 0.25 P_u \end{bmatrix}$ = 135.6 kip = 28.7 kip

Determining m-factor for wall governed by flexure

roof axial load on wall, P =	2587.5 lbs
vertical compressive stress, f _{ae} = P/(d*t) =	1.1 psi
factor for expected strength, F_{exp} =	1.3 (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f'_m =$	1950.0 psi
$f_{ae}/f_{me} =$	0.001 psi
h/L =	0.41
steel reinforcing ratio, ρ_g =	0.003
$ ho_{g}*f_{ye}/f_{me} =$	0.08
m-factor =	5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90
masonry shear wall strength, κmφQCE =	739.4 kip
demand capacity ratio, DCR =	0.01 OK

PLOT DATE+ 12-MAY-1998 16:34:13 w195s131.div

SF-1

BY:	BS	DATE		CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIF	TION		Operations Building	JOB NO.	11962A.00
DESIGN TA	SK				ASCE 41-17 - Tier 2 (CSZ)		

CMU IN-PLANE SHEAR WALL CHECK IN BUILDING E-W DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers

In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.

11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.

11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced Masonry Walls. The shear required to develop the expected

flexural strength of RM walls and wall piers shall be compared with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.

Shear wall A

Roof seismic load, V =	119.2	kip
diaphragm span, L =	102.00	ft
roof tributary width for seismic, T_w =	6	ft
tributary seismic load on shear wall, Q_E =	7.0	kip
wall height, h =	10.17	ft
tributary seismic moment on shear wall, Mu =	71.3	kip*ft
masonry strength, f' _m =	1500	psi
shear wall length, d =	20	ft
vertitcal shear wall grout spacing =	32	in
horizontal shear wall grout spacing =	48	in
shear wall thickness, t =	7.625	in
A _n =	887.0	in∠
Φ =	1.0	(assumed

$$\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V \ d_{v}} \right) \right] A_{n} \sqrt{f_{m}} + 0.25 P_{u} \right]$$

masonry shear wall strength, $\phi QCE_m =$	106.8 kip
---	-----------

- horizontal masonry shear wall strength, $\phi QCE_s = 28.7$ kip
- combined masonry shear wall strength, ϕ QCE = 135.5 kip

Determining m-factor for wall governed by flexure

roof axial load on wall, P = 3564.0 lbs

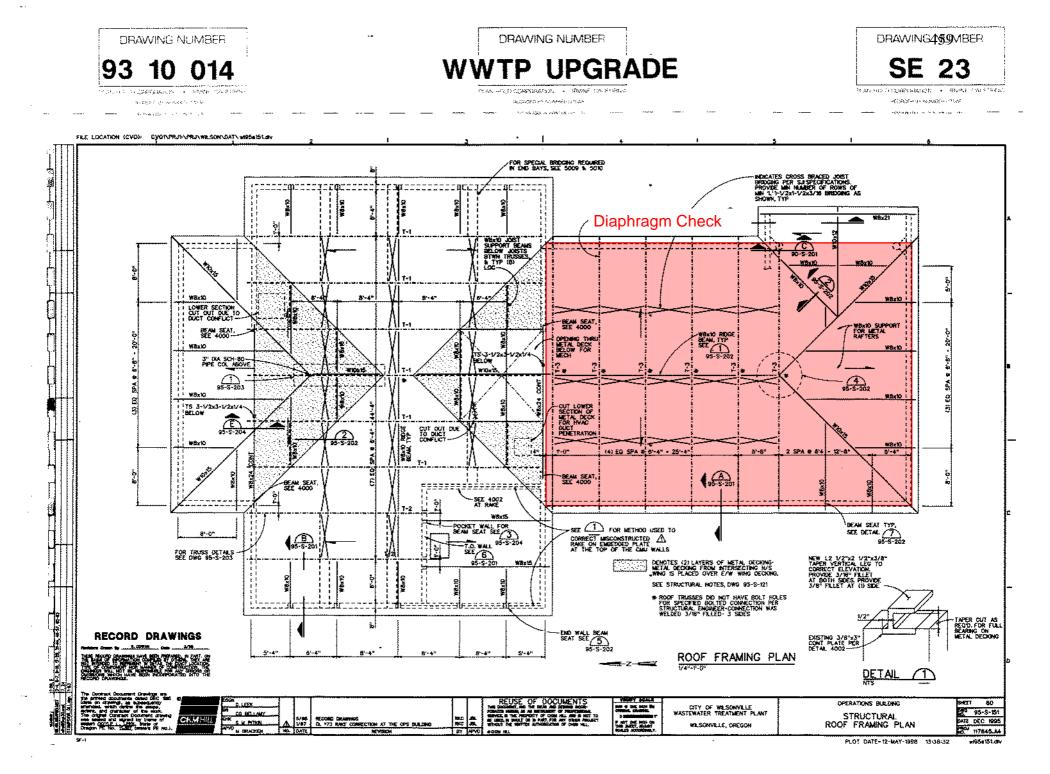
7.5.2 Linear Procedures

7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.

7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, Q_{UD} , shall be calculated in accordance with Eq. (7-34):

$$Q_{UD} = Q_G + Q_E \tag{7-34}$$

where


- Q_{UD} = Deformation-controlled action caused by gravity loads and earthquake forces.
- Q_G = Action caused by gravity loads as defined in Section 7.2.2; and
- Q_E = Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

per Tier 2)

vertical compressive stress, $f_{ae} = P/(d^*t) = 0.3 \text{ psi}$ factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp}*f_m = 1950.0 \text{ psi}$ $f_{ae}/f_{me} = 0.000$ h/L = 0.51 steel reinforcing ratio, $\rho_g = 0.003$ $\rho_g*f_{ye}/f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11	
expected compressive strength, $f_{me} = F_{exp}*f'_{m} = 1950.0$ psi $f_{ae}/f_{me} = 0.000$ h/L = 0.51 steel reinforcing ratio, $\rho_g = 0.003$ $\rho_g*f_{ye}/f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11)	
$f_{ae}/f_{me} = 0.000$ $h/L = 0.51$ steel reinforcing ratio, $\rho_g = 0.003$ $\rho_g^* f_{ye}/f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 1)	
$\begin{aligned} h/L &= 0.51 \\ \text{steel reinforcing ratio, } \rho_g &= 0.003 \\ \rho_g^* f_{ye}/f_{me} &= 0.08 \\ \end{aligned}$ $\begin{aligned} \text{m-factor} &= 5.0 \text{ (interpolated between LS & IO. ASCE 41-17 Table 1)} \end{aligned}$	
steel reinforcing ratio, $\rho_g = 0.003$ $\rho_g^* f_{ye}/f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 17	
$\rho_g * f_{ye} / f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 1	
m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 1	
	1-6)
knowledge factor, $\kappa = 0.90$	0)
masonry shear wall strength, κmφQCE = 609.8 kip	
demand capacity ratio, $DCR = 0.01$ OK	
Shear wall B	
Roof seismic load, V = 119.2 kip	
diaphragm span, L = 102.00 ft	
roof tributary width for seismic, $T_w = 25$ ft	
tributary seismic load on shear wall, Q _E = 29.2 kip	
wall height, h = 10.17 ft	
tributary seismic moment on shear wall, Mu = 297.1 kip*ft	
masonry strength, f' _m = 1500 psi	
shear wall length, d = 20.67 ft	
vertitcal shear wall grout spacing = 32 in	
horizontal shear wall grout spacing = 48 in	
shear wall thickness, t = 7.625 in $A_n = 907.1 \text{ in}^2$	
$A_n = 907.1 \text{ in}^2$ $\Phi = 1.0 \text{ (assumed per Tier 2)}$	
$\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V \ d_{v}} \right) \right] A_{n} \sqrt{f_{m}} + 0.25 P_{u} \right]$	
masonry shear wall strength, φQCE _m = 110.3 kip	
horizontal masonry shear wall strength, $\phi QCE_s = 28.7$ kip	
combined masonry shear wall strength, ϕ QCE = 139.0 kip	
Determining m-factor for wall governed by flexure	
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 Ibs	
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4$ psi	
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4$ psi factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1)	
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4$ psi factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp} * f_m = 1950.0$ psi	
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4$ psi factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp}^* f_m^* = 1950.0$ psi $f_{ae}/f_{me} = 0.001$	
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4$ psi factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp}^* f_m^r = 1950.0$ psi $f_{ae}/f_{me} = 0.001$ h/L = 0.49	
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4$ psi factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp}^*f_m^r = 1950.0$ psi $f_{ae}/f_{me} = 0.001$ h/L = 0.49 steel reinforcing ratio, $\rho_g = 0.003$	
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4$ psi factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp}^* f_m^r = 1950.0$ psi $f_{ae}/f_{me} = 0.001$ h/L = 0.49	
$\begin{array}{rcl} \hline Determining \ m\ factor \ for \ wall \ governed \ by \ flexure \ & \ roof \ axial \ load \ on \ wall, \ P = & 28710.0 \ lbs \ & \ vertical \ compressive \ stress, \ f_{ae} = P/(d^*t) = & 2.4 \ psi \ & \ factor \ for \ expected \ strength, \ F_{exp} = & 1.3 \ (ASCE \ 41-17 \ Table \ 11-1) \ & \ expected \ compressive \ strength, \ f_{me} = \ F_{exp}^*f_m^* = & 1950.0 \ psi \ & \ f_{ae}/f_{me} = & 0.001 \ & \ h/L = & 0.49 \ & \ steel \ reinforcing \ ratio, \ \rho_g = & 0.003 \ & \ \rho_g^*f_{ye}/f_{me} = & 0.08 \ & \ \end{array}$	6)
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4 \text{ psi}$ factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp}^* f_m^* = 1950.0 \text{ psi}$ $f_{ae}/f_{me} = 0.001$ h/L = 0.49 steel reinforcing ratio, $\rho_g = 0.003$ $\rho_g^* f_{ye}/f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 1	-6)
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4 \text{ psi}$ factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp} * f_m = 1950.0 \text{ psi}$ $f_{ae}/f_{me} = 0.001$ h/L = 0.49 steel reinforcing ratio, $\rho_g = 0.003$ $\rho_g * f_{ye}/f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 1 knowledge factor, $\kappa = 0.90$	-6)
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4 \text{ psi}$ factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp}^* f_m^* = 1950.0 \text{ psi}$ $f_{ae}/f_{me} = 0.001$ h/L = 0.49 steel reinforcing ratio, $\rho_g = 0.003$ $\rho_g^* f_{ye}/f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 1	-6)
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4 \text{ psi}$ factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp} * f_m = 1950.0 \text{ psi}$ $f_{ae}/f_{me} = 0.001$ h/L = 0.49 steel reinforcing ratio, $\rho_g = 0.003$ $\rho_g * f_{ye}/f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 1 knowledge factor, $\kappa = 0.90$	-6)
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4 \text{ psi}$ factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp} * f_m^m = 1950.0 \text{ psi}$ $f_{ae}/f_{me} = 0.001$ h/L = 0.49 steel reinforcing ratio, $\rho_g = 0.003$ $\rho_g * f_{ye}/f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11 for the second strength, $Km\phi QCE = 625.3 \text{ kip}$ demand capacity ratio, DCR = 0.05 OK	I-6)
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^{*}t) = 2.4 \text{ psi}$ factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp} * f_m = 1950.0 \text{ psi}$ $f_{ae}/f_{me} = 0.001$ h/L = 0.49 steel reinforcing ratio, $\rho_g = 0.003$ $\rho_g * f_{ye}/f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11 knowledge factor, $\kappa = 0.90$ masonry shear wall strength, $\kappa m \phi QCE = 0.05$ OK Shear wall C	-6)
Determining <i>m</i> -factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) = 2.4 \text{ psi}$ factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp}*f_m^* = 1950.0 \text{ psi}$ $f_{ae}/f_{me} = 0.001$ h/L = 0.49 steel reinforcing ratio, $\rho_g = 0.003$ $\rho_g * f_{ye}/f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-17 masonry shear wall strength, $\kappa m\phi QCE = 625.3 \text{ kip}$ demand capacity ratio, $DCR = 0.05$ OK Shear wall C Roof seismic load, V = 119.2 kip	-6)
Determining m-factor for wall governed by flexure roof axial load on wall, P = 28710.0 lbs vertical compressive stress, $f_{ae} = P/(d^{*}t) = 2.4 \text{ psi}$ factor for expected strength, $F_{exp} = 1.3$ (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp} * f_m = 1950.0 \text{ psi}$ $f_{ae}/f_{me} = 0.001$ h/L = 0.49 steel reinforcing ratio, $\rho_g = 0.003$ $\rho_g * f_{ye}/f_{me} = 0.08$ m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11 knowledge factor, $\kappa = 0.90$ masonry shear wall strength, $\kappa m \phi QCE = 0.05$ OK Shear wall C	-6)

tributary seismic load on shear wall, Q_E = 52.6 kip 10.17 ft wall height, h = tributary seismic moment on shear wall, Mu = 534.8 kip*ft masonry strength, f'm = 1500 psi shear wall length, d = 28.67 ft vertitcal shear wall grout spacing = 32 in horizontal shear wall grout spacing = 48 in 7.625 in shear wall thickness, t = 1229.1 in² $A_n =$ Φ= 1.0 (assumed per Tier 2) $\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V \ d_{v}} \right) \right] A_{n} \sqrt{f_{m}} + 0.25 P_{u} \right]$ masonry shear wall strength, $\phi QCE_m =$ 160.9 kip horizontal masonry shear wall strength, ϕQCE_s = 28.7 kip combined masonry shear wall strength, ϕ QCE = 189.5 kip Determining m-factor for wall governed by flexure roof axial load on wall, P = 40788.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) =$ 2.5 psi factor for expected strength, F_{exp} = 1.3 (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp} * f'_m =$ 1950.0 psi $f_{ae}/f_{me} =$ 0.001 h/L = 0.35 steel reinforcing ratio, ρ_{α} = 0.003 $\rho_{g} * f_{ye} / f_{me} =$ 0.08 m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-6) knowledge factor, κ = 0.90 masonry shear wall strength, κmφQCE = 852.9 kip demand capacity ratio, DCR = 0.06 OK Shear wall D Roof seismic load, V = 119.2 kip 102.00 ft diaphragm span, L = roof tributary width for seismic, $T_w =$ 26 ft tributary seismic load on shear wall, Q_F = 30.4 kip wall height, h = 10.17 ft tributary seismic moment on shear wall, Mu = 309.0 kip*ft masonry strength, $f'_m =$ 1500 psi shear wall length, d = 26.67 ft vertitcal shear wall grout spacing = 32 in horizontal shear wall grout spacing = 48 in shear wall thickness, t = 7.625 in 1128.1 in² $A_n =$ Φ= 1.0 (assumed per Tier 2) $\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{n} \sqrt{f_{m}} + 0.25 P_{u} \right]$ masonry shear wall strength, $\phi QCE_m =$ 145.6 kip horizontal masonry shear wall strength, ϕQCE_s = 28.7 kip combined masonry shear wall strength, ϕ QCE = 174.3 kip

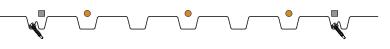
Determining m-factor for wall governed by flexure roof axial load on wall, P = 17820.0 lbs vertical compressive stress, $f_{ae} = P/(d^*t) =$ 1.2 psi factor for expected strength, F_{exp} = 1.3 (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp} * f'_m =$ 1950.0 psi $f_{ae}/f_{me} =$ 0.001 h/L = 0.38 steel reinforcing ratio, ρ_g = 0.003 $\rho_g * f_{ye} / f_{me} =$ 0.08 m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-6) knowledge factor, κ = 0.90 masonry shear wall strength, κmφQCE = 784.3 kip demand capacity ratio, DCR = 0.04 ΟΚ

BY:	BS	DATE	Sep-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	_	Operations Building	JOB NO.	11962A.00
DESIGN TA	SK				ASCE 41-17 - Tier 2 (CSZ)		

DIAPHRAGM METAL DECK CHECK

9.10.1.3 Strength of Bare Metal Deck Diaphragms. The strength of bare metal deck diaphragms shall be determined in accordance with Section 9.3.2 and the requirements of this section.

Expected strength, Q_{CE} , for bare metal deck diaphragms shall be taken as 2 times allowable values specified in approved codes and standards, unless a larger value is justified by test data. Alternatively, lower-bound strength shall be taken as nominal strength published in approved codes or standards, except that the strength reduction factor, ϕ , shall be taken as equal to 1.0.


Lower-bound strengths, Q_{CL} , of welded connectors shall be as specified in AWS D1.3, or other approved standard.

Roof seismic load, V =	119.2	kin	
diaphragm span, L =	102.00	•	
roof unit diaphragm load, v =	1.17		
roor unit diaphragmioad, v –	1.17	кір/п	
		_	
Roof span between shear walls, $L_1 =$	50.00	ft	
Roof depth, d =	36.00	ft	
diaphragm shear, $v_1 =$	0.812	kip/ft	
diaphragm strength, Q _{allow} =	530	lbs/ft	
expected diaphragm strength, Q_{CE} =	1060	lbs/ft	(expected strength shall be 2x the allowable
			per ASCE 41-17 Section 9.10.1.3)
m-factor =	1.625	(interpolate	d between LS & IO. ASCE 41-17 Table 9-6)
knowledge factor, κ =	0.90	、 1	
diaphragm strength, kmoQ _{CE} =	1.550	kin/ft	
diapinagin strength, kingQCE -	1.550	кірлі	
demand capacity ratio, DCR =	0.52	ΟΚ	

Type HSB®-36-SS

• 36/5 Weld Pattern at Supports

Sidelaps Connected with #10 Screws

Allowable Diaphragm Shear Strength, q (plf) and Flexibility Factors, F ((in./lb)x10⁶)

DECK	SIDELAP					S	PAN (ft-in)			
GAGE	ATTACHMENT		4'-0''	5'-0''	6'-0"	7'-0"	8'-0"	9'-0"	10'-0''	11'-0"	12'-0"
	#10 @ 24"	q	431	378	310	289	249	242	218		
	#10 @ 24	F	-2.3+190R	0.2+152R	2.9+126R	3.9+108R	5.6+94R	6.1+83R	7.4+75R		
	#10 @ 19"	q	480	417	343	317	298	264	257		
	#10 @ 18"	F	-3.3+190R	-0.7+152R	1.8+126R	3+108R	3.8+95R	5.2+84R	5.7+75R		
	#40 @ 40"	q	527	456	408	373	347	329	316		
~~	#10 @ 12"	F	-4+190R	-1.3+152R	0.5+127R	1.8+109R	2.8+95R	3.5+84R	4.1+76R		
22	#10 @ 0"	q	607	565	506	485	445	438	414		
	#10 @ 8"	F	-4.8+191R	-2.5+153R	-0.6+127R	0.4+109R	1.5+95R	2.1+85R	2.8+76R		
	#40 O C	q	682	627	589	561	539	522	509		
	#10 @ 6"	F	-5.4+191R	-2.9+153R	-1.3+127R	-0.1+109R	0.8+95R	1.5+85R	2+76R		
		q	817	769	736	712	693	678	666		
	#10 @ 4"	F	-6+191R	-3.6+153R	-2+127R	-0.9+109R	0+96R	0.7+85R	1.2+76R		
		q	601	526	433	403	349	335	301	297	272
	#10 @ 24"	F	0.9+120R	2.5+95R	4.5+79R	5.1+68R	6.5+59R	6.7+52R	7.7+47R	7.8+43R	8.6+39
		q	662	577	476	440	413	363	352	344	315
	#10 @ 18"	F	0+120R	1.7+96R	3.5+79R	4.3+68R	4.8+60R	5.9+53R	6.2+47R	6.4+43R	7.1+39
		q	716	629	561	513	477	449	430	414	401
	#10 @ 12"	F	-0.6+120R	1.1+96R	2.3+80R	3.2+68R	3.8+60R	4.3+53R	4.8+48R	5 1+43R	5.4+40
20		q	820	760	683	658	606	592	558	554	530
	#10 @ 8"	F	-1.5+121R	0+96R	1.3+80R	2+69R	2.7+60R	3+54R	3.5+48R	3.7+44R	4.1+40
			916	841	788	750	720	697	678	662	649
	#10 @ 6"	q F	-2+121R	-0.4+97R	0.7+80R	1.4+69R	2+60R	2.5+54R	2.8+48R	3.1+44R	3.4+40
			1089	1024	979	945	920	899	883	869	857
	#10 @ 4"	q									
		F	-2.5+121R	-1+97R	0+81R	0.8+69R	1.3+60R	1.7+54R	2.1+48R	2.4+44R	2.6+40
	#10 @ 24"	q	1002	885	731	677	588	562	502	491	450
		F	3.2+58R	4+46R	5.4+38R	5.6+33R	6.6+28R	6.6+25R	7.4+22R	7.4+20R	8+18F
	#10 @ 18"	q	1085	956	797	734	687	606	581	563	516
		F	2.4+58R	3.3+46R	4.5+38R	4.9+33R	5.2+29R	6+25R	6.1+23R	6.2+21R	6.7+19
	#10 @ 12"	q	1166	1024	925	847	786	738	700	670	647
18		F	1.9+58R	2.8+47R	3.5+39R	4+33R	4.3+29R	4.6+26R	4.9+23R	5.1+21R	5.2+19
10	#10 @ 8"	q	1321	1219	1094	1049	973	951	898	886	845
		F	1.1+59R	1.9+47R	2.6+39R	2.9+34R	3.3+29R	3.5+26R	3.8+23R	3.9+21R	4.1+19
	#10 @ 6"	q	1465	1340	1253	1189	1139	1100	1068	1042	1020
		F	0.7+59R	1.5+47R	2.1+39R	2.5+34R	2.8+29R	3+26R	3.2+24R	3.3+21R	3.4+20
	#10 @ 4"	q	1721	1615	1540	1484	1441	1407	1379	1356	1337
	# 10 @ 1	F	0.2+59R	1+47R	1.5+39R	1.9+34R	2.1+30R	2.4+26R	2.5+24R	2.7+21R	2.8+20
	#10 @ 24"	q	1277	1139	946	884	768	739	661	647	590
	110 @ 21	F	3.8+33R	4.3+26R	5.3+21R	5.4+18R	6.2+16R	6.2+14R	6.9+12R	6.8+11R	7.3+10
	#10 @ 18"	q	1393	1235	1038	963	906	801	771	748	683
	#10 @ 10	F	3.1+33R	3.7+26R	4.6+22R	4.8+18R	5+16R	5.6+14R	5.7+13R	5.7+12R	6.2+10
	#10 @ 12"	q	1505	1330	1208	1118	1044	985	937	899	867
40	#10 @ 12"	F	2.6+33R	3.2+26R	3.6+22R	4+19R	4.2+16R	4.4+15R	4.6+13R	4.7+12R	4.8+11
16	#10 @ 0"	q	1717	1597	1440	1389	1292	1268	1200	1188	1138
	#10 @ 8"	F	2+33R	2.4+27R	2.9+22R	3+19R	3.3+17R	3.4+15R	3.6+13R	3.6+12R	3.8+11
		q	1914	1763	1658	1580	1520	1472	1433	1402	1375
	#10 @ 6"	F	1.6+34R	2.1+27R	2.4+22R	2.6+19R	2.8+17R	2.9+15R	3.1+13R	3.2+12R	3.2+11
		q	2258	2132	2043	1977	1926	1886	1853	1825	1802
	#10 @ 4"	F	1.1+34R	1.6+27R	1.9+22R	2.1+19R	2.3+17R	2.4+15R	2.5+13R	2.6+12R	2.6+11

See footnotes on page 28.

Deck Span = 6'-8" q = 530 psf (interpolated)

PROCESS GALLERY - TIER 2 CALCULATIONS

Engineers, Warking Wondors Wish Water

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	_	Process Gallery	JOB NO.	11962A.00
DESIGN TAS	βK				ASCE 41-17 - Tier 2 (BSE-2E)		

SEISMIC BASE SHEAR FOR PROCESS GALLERY

7.4.1.3.1 Pseudo Seismic Force for LSP. The pseudo lateral force in a given horizontal direction of a building shall be determined using Eq. (7-21). This force shall be used to evaluate or retrofit the vertical elements of the seismic-force-resisting system.

$$V = C_1 C_2 C_m S_a W \tag{7-21}$$

Table 7-3. Alternate Values for Modification Factors C_1C_2	Table 7-4. Values for Effective Mass Factor Cm

Fundamental Period	$m_{\rm max}$ < 2	$2 \le m_{\max} < 6$	$m_{\max} \ge 6$	No. of Stories	Concrete Noment Frame	Concrete Shear Wall	Concrete Pier-Spandrel	Steel Moment Frame	Steel Concentrically Braced Frame	Steel Eccentrically Braced Frame	Other
<i>T</i> ≤0.3	1.1	1.4	1.8	5-2	1.0	1.0	1.0	1.0	1.0	1.0	1.0
$0.3 < T \le 1.0$	1.0	1.1	1.2	3 or more	0.9	0.0	0.0	0.9	0.9	0.9	1.0
T>1.0	1.0	1.0	1.1	Note: C., sha	all be taken as 1.0 if th	e fundamental p	eriod. T, in the dire	ction of resp	onse under consid	eration is greater #	an 1.0 s.

spectral response acceleration, S_{xs} = 0.744 g spectral response acceleration, S_{x1} = 0.405 g building period, T = 0.114 s response spectrum acceleration, S_a = 0.744 g effective seismic weight, W = 1267.3 kip $C_1C_2 =$ 1.4 effective mass factor, C_m = 1.0 seismic lateral force, V = 1320.0 kip

(Table 11-6 for masonry walls, m=2.5)

(BSE-2E seismic hazard)

(BSE-2E seismic hazard)

Story	Weight, w _x (kip)	Floor Height, h _x (ft)	k factor	w _x h _x ^k (kip*ft ²)	C _{vx}	Force on Level, F _x (kip)	Story Force, V _j (kip)
Roof	189.8	32.63	1.0	6193.2	0.242	319.5	319.5
1st	1077.5	18.00	1.0	19395.0	0.758	1000.5	1320.0

 $\Sigma w_{x}h_{x}^{k} =$ 25588.2

DRAWING NUMBER

93 10 014 Price and Constructions - Restation and Second

Wednet of the Number of American the COMPANY CONTRACT OF A STATE OF **DRAWING NUMBER**

AND DESCRIPTION AND A DOMAIN

denters come to market sectors take

			, i
SE	2	23	
METER TO CORPORADON	·	1000	. We strong a
ad a fair of the first start of	60.55	1004	

The state of the state of the state of the

ORAWING NUMBER

FILE LOCATION (CVO): CVO1\PRUI\PRUVULSDN\DAT\ #982401.div

GENERAL STRUCTURAL NOTES

GENERAL

.....

ALL MATERIALS AND WORKMANSHIP SHALL CONFORM TO THE UNIFORM BUILDING CODE, NON EDITION (U.B.C.) AS AMENDED BY THE STATE OF OREGON.

CONCRETE:

7

1.

6.

MASONRY

1. ALL CAST-IN-PLACE CONCRETE SHALL HAVE A MINBAUM 28 DAY COMPRESSIVE STRENGTH OF 4000 PSI.

CONSTRUCTION WORTS HOLICATED ARE SUGGESTED LOCATIONS, SONTINGTON BUN REPERTOR OF ADDITION, SUBJECT TO THE RECORD RECEIPTION OF ADDITION, SUBJECT TO SON REVEN BY THE SUMMERS ADDITIONAL CONSTRUCTION TONY LOCATIONS, AS REQUIRED FOR CONSTRUCTION, BALL BE SUBMITTED FOR REVEN.

4. CONTINUOUS GALVANIZED STEEL WATERSTOP AS SPECIFIED SHALL BE RATALLED IN ALL CONSTRUCTION JOINTS IN WALLS OF WATER HALDING BASIES AND CHANNELS CUEPT WHERE MOLICITED OTHERWISE, AT CONTINUETOR'S OFTION, PLASTIC WATERSTOPS MAY BE USED IN PLACE OF GALVANIZED STEEL WATERSTOPS.

THE CONTRACTOR SHALL COORDINATE PLACEMENT OF ALL OPENINGS, CLRBS, DOWELS, SLEEVES, CONDUITS, BOLTS AND INSENTS PRIOR TO PLACEMENT OF CONFERTS.

NG ALLMENUM CONDUIT OF PRODUCTS CONTAINING ALLMINUM OF ANY OTHER MATERIAL INJURIOUS TO THE CONCRETE SHALL BE EMBEDDED IN THE CONCRETE.

MONTAR SHALL CONFORM TO ASTM C270, TYPE S, HYDRATED, MASONRY CEMENT SHALL NOT BE USED.

2. GROUT SHALL CONFORM TO ASTM CA76 COURSE GROUT AND SHALL HAVE A MINIMUM 28 DAY CONFRESSIVE STRENGTH OF 2000 PSI.

HAVE A WATE COMPRESSIVE MARCHARY STRESS OF INC PSEL AND SHALL COMPOSED TO ASTIN COO.

7. PROVIDE RUL DECONT VETTICAL BATS AT EXCESS OF ALL OPENINGS AND RUL HEIGHT VETTICAL BATS AT EXCESS OF ALL OPENINGS PROVIDE MATCHING DOWELS FOR ALL VETTICAL BATS. PROVIDE MATCHING DOWELS FOR ALL VETTICAL BATS. PROVIDE MATCHING DOWELS FOR ALL VETTICAL BATS. PROVIDE VETTICAL BATS WITH KININGM. ALL OPENINGS. PROVIDE VORIZONTAL CORNET BARS WITH KININGM. 2-6 LEGG AT ALL OWNERS. SEE DETAILS 4001, 4003, AND 4004.

MASONRY UNIT AND GROUT TESTING SHALL BE IN CONFORMANCE WITH THE UBC 2003CCS, "UNIT STRENGTH METHOD". TESTING WILL BE OWNER FURNISHED.

9. THE MINIMUM REINFORCING FOR ALL CONCRETE BLOCK WALLS SHALL BE AS FOLLOWS!

PROVIDE LARGER SIZES AND MORE REINFORCING IN ALL WALLS WHERE REQUIRED BY THE DETAILS ON THE DRAWINGS OR SY THE SPECIFICATIONS.

HORIZONTAL REINFORCING #5448

LOCATION

CENTERED

REUSE OF DOCUMENTS

VERTICAL BEINEORCING 66432

LAP VILL BURS AL BAR DIALETERS MINIMUM. SLAGGER ALL ADJACENT

4. THE DESIGN THE OF THE FINISHED ASSEMBLY SHALL BE 1500 PSI.

5. ROUGHEN AND CLEAN ALL CONSTRUCTION JOINTS IN WALLS AND SLASS AS SPECIFIED PRIOR TO PLACING ADJACENT CONCRETE. SANGELASTING OR OTHER PREPARATION OF HORIZONTAL AND VERTICAL JOINTS IS REQUIRED AS SPECIFIED.

- 2. LOADS: ADDF SNOW LOAD 25 PSF PLUS DRIFFING USC WIND PRESSURE 20 MPH WIND SPEED EXPOSURE C, 1+10 USC SEISMIC ZONE 3, 1+10, 5+15
- REFER TO INDIVIDUAL STRUCTURE DRAWINGS FOR ADDITIONAL LOADS, NOTES, AND REQUIREMENTS,
- 4. NET ALLOWABLE SOIL BEARING PRESSURE 4000 PSF
- 5. DRAINED EQUIVALENT FLUID PRESSURE 65 PCF/FT AT REST 35 PCF/FT ACTIVE
- 6. UNDRAINED EQUIVALENT RUHD PRESSURE 100 PCF/FT AT REST + 85 PCF/FY ACTIVE
- 7. DATUM: SEE SITE DRAWINGS.
- NO STRUCTURAL MEMBERS SHALL BE CUT FOR PIPES, DUCTS, ETC., UNLESS SPECIFICALLY DETAILED OR APPROVED IN WRITING BY THE ENGINEER.
- PROVISIONS FOR PUTURE EXPANSION: NO INTERNAL EXPANSION
- DETAILED. OF OTHER DATE OF THE DRAINING ARE DIFERENCE STANDARD DETAILS AS SHOWN ON THE DRAININGS ARE DIFERENCE TO BE TYPICAL AND SHALL APRLY TO ALL SAMLAR SITUATIONS OCCUMENTAGE ON THE PROVECT, WETTHER OR NOT THEY ARE KEYED IN SACH LOCATION. CONSALT THE ENGINEER FOR REVIEW PRIOR TO CONSTRUCTION.
- VISITS TO THE JOB SITE BY THE ENGINEER TO OBSERVE THE CONSTRUCTION OD NOT IN ANY WAY MEAN THAT THEY ARE GUARANTORS OF THE CONSTRUCTIONS WORK, NOR RESPONSIBLE FOR COMPRESENSIVE OR SPECIAL INSPECTIONS, COORDINATION, SUFERVISION, NOR SAFETY AT THE JOB SITE.
- SUPERVISION, INTO ANTELL AL THE MOD STIEL SECIAL INSPECTION (DWER PLANDSHEED) IS REQUIRED IN ACCORDANCE WITH USC SECTION 305 ON THE FOLLOWING PORTIONS OF THE MORENT SETUCTION OF THE ADDR TO STRUCTIONS, BUREL PLACEMENT STRUCTIONS, BURELS AND BOLTS INSTALLED IN CONCRETE HIGH STRUCTION OF THE INSPECTION CONCRETE HIGH STRUCTION OF THE INSPECTION MASONNY CONSTRUCTION MEN INDICATED
- B. ALL SPECIFIED CONCRETE AND GROUT TESTING DURING CONSTRUCTION WILL BE OWNER RUPHISHED. ALL SPECIFIED LABORATORY TEST MIXES ARE THE RESPONSIBILITY OF THE CONTRACTOR.
- M. VERIFY ALL OPENING DIMENSIONS IN WALLS, SLABS, AND DECKS WITH THE ARCHITECTURAL, MECHANICAL, AND ELECTRICAL DRAWINGS.
- DRAWINGS, MO TEXT, PUBLISED, SEE "ABBREVIATIONS FOR USE ON DRAWINGS AND TEXT, PUBLISED BY THE AMERICAN NATIONAL STANDARDS INSTITUTE INC. (ANSI).

ECUNDATIONS:

The Convent Document (Develop any the protect document added (DEC Web (date on develop), as accurately startical, with dates for ecce. The original Content of the scott, the original Content of the scott, the original Content of the scott, and the scott of the scott of the scott of the scott of the scott origin of the scott of the scott origin of the scott of the scott of the origin of the scott of the scott of the origin of the scott of the scott of the scott origin of the scott of the scott of the scott of the origin of the scott of the scott of the scott of the origin of the scott of the origin of the scott of the scott of the scott of the scott of the origin of the scott of the scott of the scott of the scott of the origin of the scott of the scott of the scott of the scott of the origin of the scott of the scott of the scott of the scott of the origin of the scott of the scott of the scott of the scott of the origin of the scott of the scott of the scott of the scott of the origin of the scott of the scott of the scott of the scott of the origin of the scott of the scott of the scott of the scott of the origin of the scott of the origin of the scott of

ALTON PAS

騢

- PROVIDE MAD INSTALL MINIMAM 6 INONES COMPACTED GRANILAR FILL AS SPECIFIED HADER ALL AN ASKAND ROGINASTRES TO TO BANTROL SARTH, NO BALANDE BARTH, NO BALANDE BARTH, NO BALANDE BARTH, NO BALANDE BARTH, STECFIED COMPRESSIVE STREMATH. WALLS THEN TO ELEVATED FLOOD OR ROOF 2485 SHALL BE BRACED AND REMOVAL OF BRACING FOLLOWED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING AND FOLLOWED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING AND FOLLOWED BY RACEFILING SHALED AND REMOVAL OF SHALED BY RACEFILING SHALED AND REMOVAL OF SHALED BY RACEFILING AND FOLLOWED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING SHALED AND FOLLOWED BY RACEFILING SHALED AND REMOVAL OF SHALED BY RACEFILING SHALED BY RACEFILING SHALED AND REMOVAL OF SHALED BY RACEFILING SHALED AND SHALED SHALED BY RACEFILING SHALED AND SHALED SHALED BY RACEFILING SHALED AND SHALED BY RACEFILING SHALED AND SHALED SHALED BY RACEFILING SHALED AND SHALED SHALED SHALED SHALED BY RACEFILING SHALED AND SHALED SH
- EXCAVATIONS SHALL BE SHORED AS REQUIRED TO PREVENT SUBSIDENCE OR DAMAGE TO ADJACENT EXISTING STRUCTURES, STREETS, UTILITIES, ETC.
- ALL SOIL BEARING SUFFACES SHALL BE INSPECTED BY THE SOILS ENGINEER PRIOR TO PLACEMENT OF REINFORCING STEEL.
- THE ADDATION BASING AND ATTACHED PROCESS GALLERY BUILDING AND THE TWO SECONDARY CLARIFIERS SHALL HAVE AN UNDERDRIAIN SYSTEM. HOPER TO DRAWINGS GOTOOL AND GOTO-20.

CKMHIII

сн

ÖLLERK

E PUR

RECORD DRAWINGS

FOLLOWS

WALE

. .

RECORD DRAWINGS

NO. DATE

THICKESS

INC. INC.

STRUCTURAL STEEL:

- ALL STRUCTURAL STEEL SHALL CONFORM TO ASTM A-36 UNLESS SHOWN OTHERWISE. SOLIARE OR RECTANGULAR STEEL TUBERG SHALL CONFORM TO ASTM A-300, GRADE B. - REMPORCHIG STEED. SHALL COMPORE TO ASTM ASIS, GRADE DO, REMPORCHIG TO REMEDIDE DENAL COMPORE TO ASTM ASIS, GRADE REMPORCHIGH AND RECEDEDENAL COMPORE TO ASTM ASIS, GRADE REMOVED AND AST RECEDENCE TO ASTM ASIS, GRADE REMOVED AST STEEDER AST ASSAULT AND AST AST ASTM AST REMOVED AST STEEDER AST ASSAULT AST AST ASSAULT AST REMOVED AST AST ASSAULT ASSAULT AST ASSAULT ASSAULT AST REMOVED AST ASSAULT ASSAULT ASSAULT ASSAULT AST ASSAULT AS REMOVED AST ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT AS REMOVED AST ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT AS REMOVED AST ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT AS REMOVED ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT AS REMOVED AS A ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT AS ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT AS ASSAULT AS ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT ASSAULT AS ASSAULT A
 - ALL STRUCTURAL STEEL SHALL BE FABRICATED AND ERECTED IN CONFORMUTICE WITH THE AISC MANUAL OF STEEL CONSTRUCTION, OURSIN TEUTION.
 - 3. ALL BOLTS SHALL BE HIGH STRENGTH BOLTS CONFORMING TO ASTM ASD-N ON ASD-SC DAEDS OTHERWISE SHOWN, BOLTS NORCATED AS MACHINE BOLTS NUEL OR ANALYSIS BY ALL CONFORM TO ASTM ADD TON COMPONESTEEL, AND FOR STAMLESS STEEL, AND TO ASTM ADD THE STEEL CADET WHITE SECRETCALLY NORCATED OTHERINGS STEEL, DAT MORE AND AND THE THE STEEL AND CLEAN AND THE FROM OL, DIRT AND FANT.
 - ALL WELDS SHALL BE DONE BY AWS CERTIFIED WELDERS AND SHALL CONFORM TO AWS 5 1. LATEST EDITION. ALL BUTT WELDS ARE RALL FROMTATION UNLESS WOLCAYED OTHERWISE, WELD FILLER METAL SHALL BE AWS AST OF ASE FROM ELECTRODES.
 - δ. ALL WELDS FOUND DEFECTIVE SHALL BE REPAIRED AND/OR REPLACED AND RETESTED FOR ADEQUACY AT THE CONTRACTOR'S EXPENSE.
 - AT ALL FRED WELDS, AT EMBED PLATES, AND ANGLES, LOW HEAT AND INTERMITTENT WELDS SHALL BE UTXLIZED TO AVOID SPALLING OR CRACKING THE EXISTING CONCRETE.
 - ALL STRUCTURAL STEEL TO BE EMBEDDED IN CONCRETE SHALL BE CLEAN AND FREE OF PAINT, OIL OR DIAT,
 - NO HOLES OTHER THAN THOSE SPECIFICALLY DETAILED SHALL BE ALLOWED THROUGH STRUCTURAL STEEL MEMBERS. NO CUTTING OR BUPNING OF STRUCTURAL STEEL WILL BE PERMITTED WITHOUT THE APPROVAL OF THE ENGINEER.

METAL DECKING:

- 3. SEE ROOF AND ELEVATED R.OOR PLANS FOR DECK SIZE AND WELDING REQUIREMENTS.
- 2. WELDING SHALL BE IN ACCORDANCE WITH AWS DIG. "STRUCTURAL WELDING CODE SHEET STEEL", WELDING FILLER METAL SHALL BE AWG AST OR AS.5 FROM ELECTRODES. WELDERS SHALL BE AWS CERTIFIED.
- 3. DECKING SHALL HAVE MINIMUM 2" BEARING ON ALL SUPPORTS. STEEL JOISTS

AND IS CAR, MAK (M

NOT CHE NON DA

CITY OF WILSONVELE WASTEWATER TREATMENT PLANT

WE SONVELE, ORECOM

- 3. SEE ROOF PLANS FOR DESIGN LOAD REQUIREMENTS, MINIMUM SIZE. SPACING, AND BRIDGING REQUIREMENTS,
- 5. ALL CALLS IN BUILDING WALLS SHALL SE PARTIALLY GROUTED EXCEPT 2. ANAFACTURER SHALL BE A MEMBER OF THE STEEL JOIST INSTITUTE

REINFORCING NOTES: THE MENAMAR REINFORCING FOR ALL CONCRETE WALLS AND SLABS SVALL BE AS FOLLOWS: WALL THICKNESS BENE FACT WAY LOCATION

<u>.</u>		VERTERED
8	ače 12*	CENTERED
20"	8.46 12	EACH FACE
17	666 T.	EACH FACE
COOVING LABORER SIZES	AND MORE REINFORCING	
	PROVINCE REPORTERA	IN ALL SECTIONS
OF CONCIDENT, INTERE H	EQUIRED BY THE DETAILS	ONTHE
DRAWINGS OF BY THE	SPECIFICATIONS.	

- CLEARANCE FOR REINFORCEMENT BARS, LINLESS SHOWN OTHERWISE, SHALL BE: -WHEN PLACED ON GROUND:--

2.

- INTERIOR BUILDLING SLAB SUPPACES
- REFER TO WALL CORNER AND WALL INTERSECTION REINFORCENCE DETAIL. IN GENERAL, THE WALL CORNER REINFORCENCE SIZES AND BRACINGS SHALL BE AS CALLED OUT ON THE FLANS AND REFERENCED TO THESE DETAILS AND THE THPICAL HORIZONTAL WALL REINFORCING SHALL LAW WITH THE HORIZONTAL REINFORCENCE
- AL SENDS, LINLESS OTHERWISE SHOWN, SHALL BE A BO DEGREE STANDARD HOOK AS DEFINED IN LATEST EDITION OF ACT 319.
- ALL WALL COMMEN AND WALL INTERSECTION REINFORCEMENT BARS SHALL BE CONTINUES RANDAR COMMENT AND INFOLMATE OR FILASTERS. REINFORCEMENT SHALL BE EXTENDED WITCH LAND CONSECTION WALLS AND LANTED ON THE OFFORTIE FACE OF THE CONSECTION WALLS, AS INCICATED ELSEWBERE. ALTERNATE HORIZONTAL MAIL LANS ON COMPOSITE FACE OF THE CONSECTION WALLS, AS INCICATED ELSEWBERE. ALTERNATE HORIZONTAL MAIL LANS ON COMPOSITE FACE OF WALLS. 5,
- 6. VERTICAL WALL BARS SHALL BE LAPED WITH DOWELS FROM BASE SLASS AND EXTENDED ANTO THE TOP FACE OF ROOF SLASS AND LAPED WITH TOP SLASS REINFORCEMENT. PROVIDE A MINIMAM OF TWO FALL HEIGHT VERTICAL BARS WITH MATCHING DOWELS AT WALL SEDS, CORPERS AND INTERSECTIONS WITH SLEE TO MATCH TYPICAL VERTICAL REINFORCING STEEL SHOWN OR REQUIRED BY NOTES ABOVE.
- 7. UALESS INDICATED OTHERWISE, CONTRACTOR MAY SPLICE CONTINUOUS SLAS OR LONGITUDINAL BEAM BARS AT LICCATIONS OF HIS ONDERING, EXCEPT THAT TOP BAR SPLICES SHALL SE LICCATED AT MIDSPAN AND BOTTOM BAR SPLICES SHALL BE LICCATED AT SUPPORTS, ALL REINFORCEMENT BENS AND LAPS, LINESS OTHERWISE NOTED, SHALL BATISFY THE FOLLOWING MINIMAM REQUIRIENT:

BAR :				R SMA		#7	-8	#9	ex 0	#11
STRE	DESIGN					40	00 #St			
38.40	TOP BA	9	32 DI	A. MIN	2-0	[T	1
	OTHER	DAR	22 D)	A, MIN	1-6					
38 60	TOP BA	R*	48 DI	A, MIÑ	Z~6	3-6"	4-9	6-0 🔺	7-8 A	8-6 4
347 64	OTHER	SAR	36 01	A, MIN	2.0	2-9	3-6	4-6	5.0	7-2
CA	P BARS : ACED S.K ST IN TH RIZONTA	걸게	HAT I	NKORE REELC	THAN W TH	E BAR	TRESH IN AN	CONCRE Y SINOL	ETÉ 1S F PORT	ı.
FU CAI HO MIN SP/ FA	NCED SUC	en ti Eme LWA Ap 1	HAT I MEET LL B ENGI THA	HORE RELC ARS A HS SH	THAN WE TH RE CO OWN	tz" of E Bari, Insidet Above H Less	FRESH IN AN IED TO SY 255	CONCRE Y SINGL P BARS. WHERE	ETÉ 15 E POUR BARS	ARE
FU CAI HO MIN SP/ FA	ACED SUC ST IN TH HIZONTA CREASE L ACED CLO CE OF M	en ti Eme LWA Ap 1	HAT I MEET LL B ENGI THA	HORE RELC ARS A HS SH	THAN WE TH RE CO OWN	tz" of E Bari, Insidet Above H Less	FRESH IN AN IED TO SY 255	CONCRE Y SINGL P BARS. WHERE	ETÉ 15 E POUR BARS	ARE

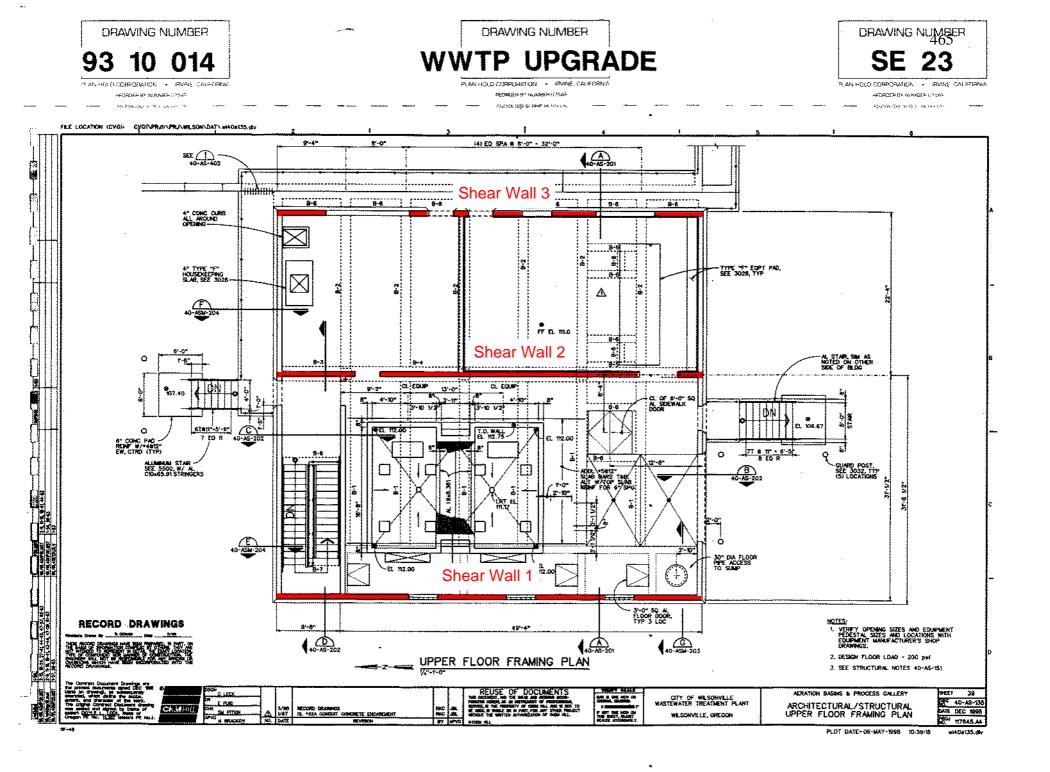
PLOT DATE- 14-MAY-1998 09:40:35

DESIGN DETAILS

STRUCTURAL

DETAILS

wi96s401.dv


3000

SHEET 92

96-5-401

GAIL DEC 199

127645.44

Working Wooders With Wate

Engineere

BY:	BS	DATE	Sep-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIF	PTION	_	Process Gallery	JOB NO.	11962A.00
DESIGN T	ASK				ASCE 41-17 - Tier 2 (BSE-21	Ξ)	

CMU IN-PLANE SHEAR WALL CHECK IN BUILDING N-S DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.

11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.

11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced Masonry Walls. The shear required to develop the expected

flexural strength of RM walls and wall piers shall be compared with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.

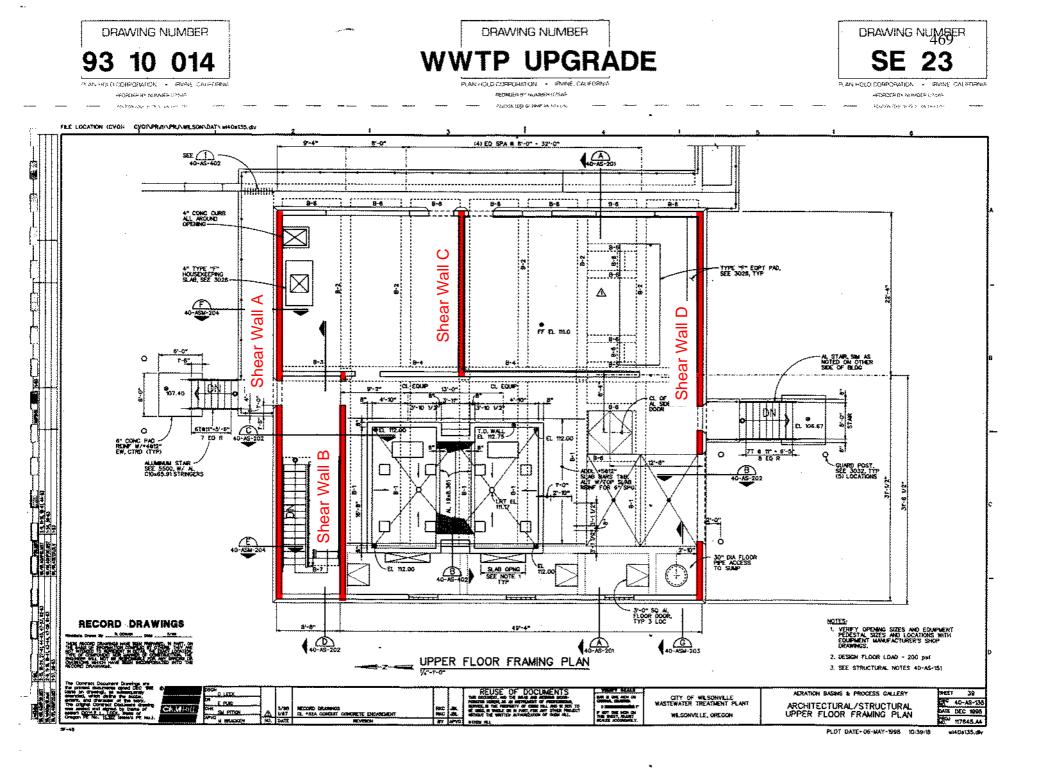
Shear wall 1

Roof seismic load. V = 319.5 kip diaphragm span, L = 52.00 ft roof tributary width for seismic, $T_w =$ 15 ft tributary seismic load on shear wall, Q_E = 92.2 kip wall height, h = 14.63 ft tributary seismic moment on shear wall, Mu = 1348.4 kip*ft masonry strength, f'm = 1500 psi shear wall length, d = 46 ft vertitcal shear wall grout spacing = 24 in horizontal shear wall grout spacing = 48 in shear wall thickness, t = 7.625 in 2077.0 in² $A_n =$ Φ= 1.0 (assumed per Tier 2) $\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{n} \sqrt{f_{m}} + 0.25 P_{u} \right]$ masonry shear wall strength, $\phi QCE_m =$ 277.0 kip horizontal masonry shear wall strength, $\phi QCE_s =$ 28.7 kip combined masonry shear wall strength, ϕ QCE = 305.7 kip Determining m-factor for wall governed by flexure roof axial load on wall, P = 13608.3 lbs vertical compressive stress, f_{ae} = P/(d*t) = 0.5 psi factor for expected strength, F_{exp} = 1.3 (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp} * f'_m =$ 1950.0 psi $f_{ae}/f_{me} =$ 0.000

7.5.2 Linear Procedures

7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.

7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, Q_{UD} , shall be calculated in accordance with Eq. (7-34):


$$Q_{UD} = Q_G + Q_E \tag{7-34}$$

where

- Q_{UD} = Deformation-controlled action caused by gravity loads and earthquake forces.
- Q_G = Action caused by gravity loads as defined in Section 7.2.2; and
- Q_E = Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

h/L =	0.32	
steel reinforcing ratio, ρ_g =	0.004	
$\rho_{g} f_{ve}/f_{me} =$	0.11	
m-factor =	7.0	(interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, к =	0.90	, , , , , , , , , , , , , , , , , , ,
masonry shear wall strength, κmφQCE =	1925.7	kip
,		···F
demand capacity ratio, DCR =	0.05	ΟΚ
	0.00	
<u>Shear wall 2</u>		
Roof seismic load, V =	319.5	kip
diaphragm span, L =	52.00	
roof tributary width for seismic, $T_w =$	26	
tributary seismic load on shear wall, Q_{E} =	159.8	
	159.0	κip
wall beight b	14.60	4
wall height, h =	14.63	
tributary seismic moment on shear wall, Mu =	2337.1	•
masonry strength, f' _m =	1500	-
shear wall length, d =	48	
vertitcal shear wall grout spacing =	32	
horizontal shear wall grout spacing =	48	
shear wall thickness, t =	7.625	
A _n =	2014.0	in ²
Φ =	1.0	(assumed per Tier 2)
	[
$\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{n} \right]$	$\sqrt{T_m + 0.25P_u}$	
masonry shear wall strength, $\phi QCE_m =$	270.4	kip
horizontal masonry shear wall strength, $\phi QCE_s =$	28.7	-
combined masonry shear wall strength, ϕ QCE =	299.1	
	200.1	мþ
Determining m-factor for wall governed by flexure		
roof axial load on wall, P =	23369.7	lbs
vertical compressive stress, $f_{ae} = P/(d*t) =$	0.8	
factor for expected strength, $F_{exp} =$		•
		(ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f'_m =$	1950.0	psi
$f_{ae}/f_{me} =$	0.000	
h/L =	0.30	
steel reinforcing ratio, ρ_g =	0.003	
$\rho_{g} * f_{ye} / f_{me} =$	0.09	
m-factor =	7.0	(interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90	· · · · · · · · · · · · · · · · · · ·
masonry shear wall strength, κmφQCE =	1884.2	kip
, , , , , , , , , , , , , , , , , , , ,		
demand capacity ratio, DCR =	0.08	ΟΚ
<u>Shear wall 3</u>		
Roof seismic load, V =	319.5	kip
diaphragm span, L =	52.00	
roof tributary width for seismic, $T_w =$	10.67	
tributary seismic load on shear wall, Q_E =	65.6	
	00.0	···F
wall height, h =	14.63	ft
tributary seismic moment on shear wall, Mu =	959.1	
-		-
masonry strength, f' _m =	1500	
shear wall length, d =	28	
vertitcal shear wall grout spacing =	24	111

horizontal shear wall grout spacing = shear wall thickness, t = $A_n = \Phi$	48 in 7.625 in 1291.0 in ² 1.0 (assumed per Tier 2)
$\phi \mathbf{V}_{\mathrm{m}} = \phi \left[\left[4.0 - 1.75 \left(\frac{\mathrm{M}}{\mathrm{V} \mathrm{d}_{\mathrm{v}}} \right) \right] \mathrm{A}_{\mathrm{r}} \right]$	$\sqrt{f_m} + 0.25P_u$
masonry shear wall strength, $\phi QCE_m =$	154.3 kip
horizontal masonry shear wall strength, ϕQCE_s =	28.7 kip
combined masonry shear wall strength, ϕ QCE =	183.0 kip
$\label{eq:product} \begin{array}{l} \textit{Determining m-factor for wall governed by flexure} \\ \textit{roof axial load on wall, P} = \\ \textit{vertical compressive stress, } f_{ae} = P/(d*t) = \\ \textit{factor for expected strength, } F_{exp} = \\ \textit{factor for expected strength, } F_{exp} = \\ \textit{expected compressive strength, } f_{me} = F_{exp} * f_m = \\ f_{ae}/f_{me} = \\ h/L = \\ \textit{steel reinforcing ratio, } \rho_g = \\ \rho_g * f_{ye}/f_{me} = \\ \end{array}$	9761.4 lbs 0.6 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.000 0.52 0.004 0.11
m-factor = knowledge factor, κ =	2.5 (interpolated between LS & CP. ASCE 41-17 Table 11-6) 0.90
masonry shear wall strength, kmoQCE =	411.7 kip
demand capacity ratio, DCR =	0.16 OK

BY:	BS	DATE	Sep-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	Process Gallery		JOB NO.	11962A.00
DESIGN TAS	ĸ				ASCE 41-17 - Tier 2 (BSE-2E)		

CMU IN-PLANE SHEAR WALL CHECK IN BUILDING E-W DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers

In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.

11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.

11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced Masonry Walls. The shear required to develop the expected

flexural strength of RM walls and wall piers shall be compared with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.

Shear wall A

Roof seismic load, V = 319.5 kip diaphragm span, L = 56.67 ft roof tributary width for seismic, $T_w =$ 4 ft tributary seismic load on shear wall, Q_E = 22.6 kip wall height, h = 14.63 ft tributary seismic moment on shear wall, Mu = 329.9 kip*ft masonry strength, f'm = 1500 psi shear wall length, d = 50 ft vertitcal shear wall grout spacing = 24 in horizontal shear wall grout spacing = 48 in shear wall thickness, t = 7.625 in $A_n =$ 2238.0 in² Φ= 1.0 (assumed per Tier 2) $\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{n} \sqrt{f_{m}} + 0.25 P_{u} \right]$ masonry shear wall strength, $\phi QCE_m =$ 302.3 kip horizontal masonry shear wall strength, $\phi QCE_s =$ 28.7 kip combined masonry shear wall strength, ϕ QCE = 331.0 kip Determining m-factor for wall governed by flexure roof axial load on wall, P = 3537.1 lbs vertical compressive stress $f = P/(d^*t) =$ 0.1 noi

ventical compressive sitess, $I_{ae} = P/(u_{1}) =$	0.1 psi
factor for expected strength, F_{exp} =	1.3 (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f'_m =$	1950.0 psi

7.5.2 Linear Procedures

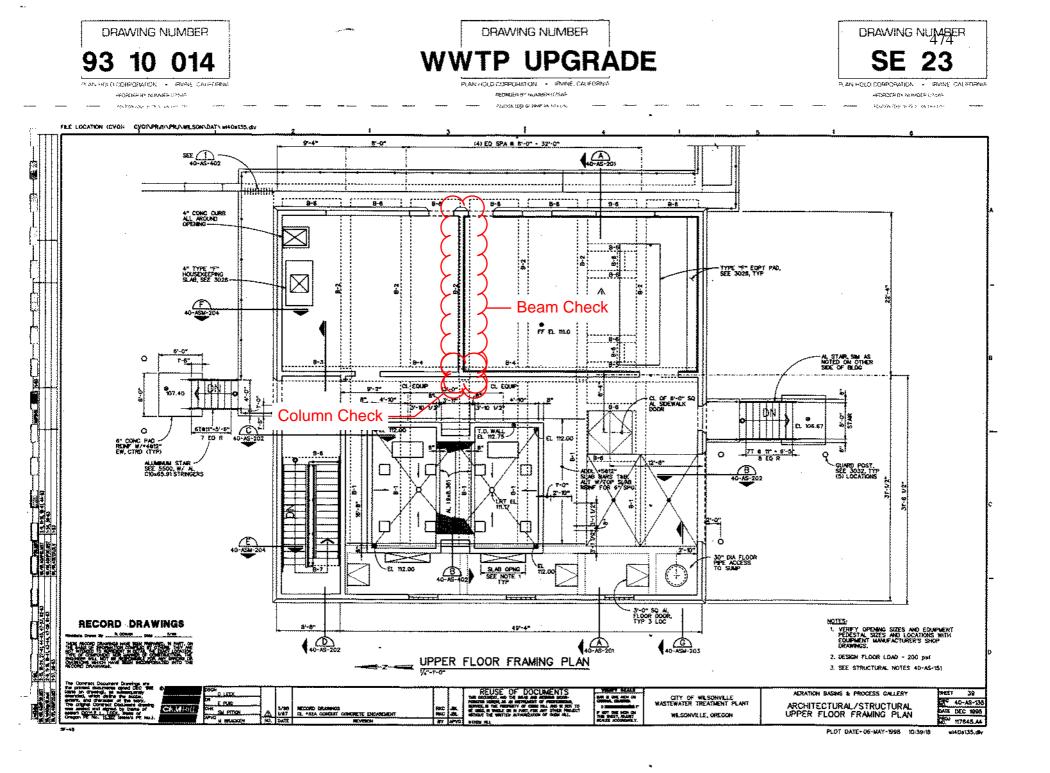
7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.

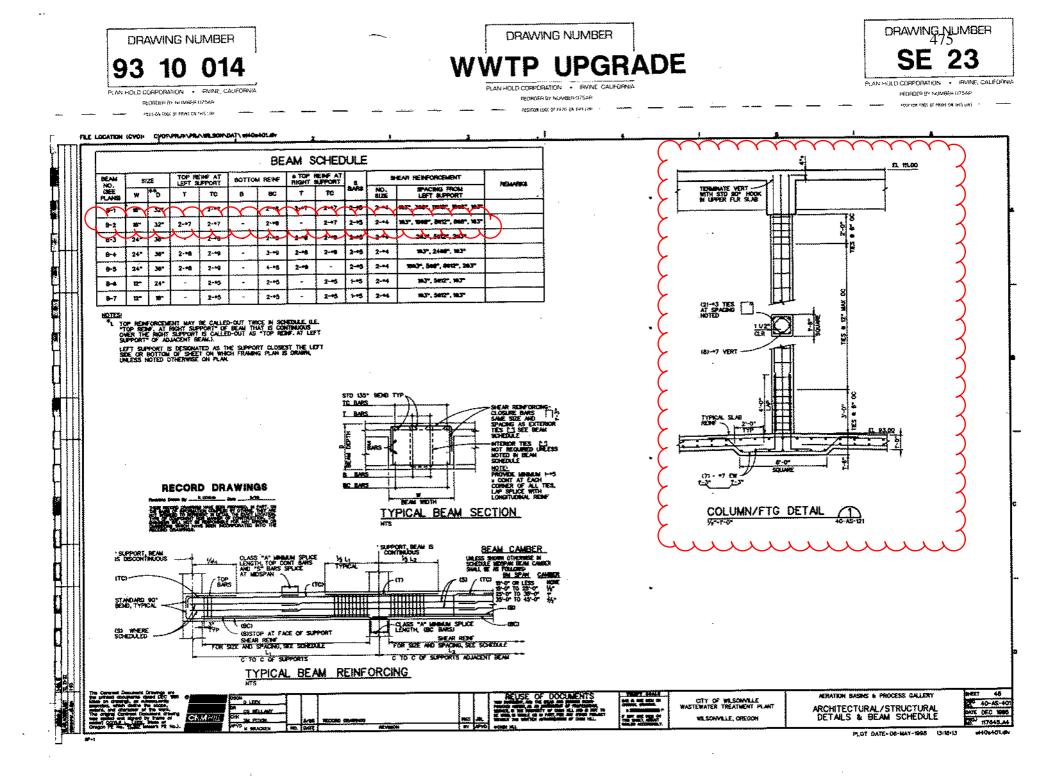
7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, Q_{UD} , shall be calculated in accordance with Eq. (7-34):

$$Q_{UD} = Q_G + Q_E \tag{7-34}$$

where

- Q_{UD} = Deformation-controlled action caused by gravity loads and earthquake forces.
- Q_G = Action caused by gravity loads as defined in Section 7.2.2; and
- Q_E = Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;


$f_{ae}/f_{me} =$	0.000
h/L =	0.29
steel reinforcing ratio, ρ_g =	0.004
$ ho_g * f_{ye} / f_{me} =$	0.11
m faster -	7.0 (internalated between LC & CD ACCE 41.17 Table 11.6)
m-factor = knowledge factor, κ =	7.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6) 0.90
masonry shear wall strength, κmφQCE =	2085.3 kip
, <u> </u>	
demand capacity ratio, DCR =	0.01 <mark>OK</mark>
<u>Shear wall B</u>	
Roof seismic load, V =	319.5 kip
diaphragm span, L = roof tributary width for seismic, T_w =	56.67 ft 12 ft
tributary seismic load on shear wall, Q_E =	67.7 kip
wall height, h =	14.63 ft
tributary seismic moment on shear wall, Mu =	989.8 kip*ft
masonry strength, $f_m =$	1500 psi
shear wall length, d =	26.67 ft
vertitcal shear wall grout spacing =	32 in
horizontal shear wall grout spacing =	48 in
shear wall thickness, t =	7.625 in
A _n =	1128.1 ^{in²}
Φ =	1.0 (assumed per Tier 2)
$\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{r} \right]$	$\sqrt{f_m} + 0.25P_u$
masonry shear wall strength, $\phi QCE_m =$	132.8 kip
horizontal masonry shear wall strength, $\phi QCE_s =$	-
combined masonry shear wall strength, ϕQCE_s =	28.7 kip 161.5 kip
	101.5 кр
Determining m-factor for wall governed by flexure	
roof axial load on wall, P =	10064.7 lbs
vertical compressive stress, f _{ae} = P/(d*t) =	0.7 psi
factor for expected strength, F_{exp} =	1.3 (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f_m =$	1950.0 psi
$f_{ae}/f_{me} =$	0.000
h/L =	0.55
steel reinforcing ratio, ρ_g =	0.004
$\rho_{g} * f_{ye} / f_{me} =$	0.11
m-factor =	7.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90
masonry shear wall strength, $\kappa m \phi QCE$ =	1017.4 kip
	0.07
demand capacity ratio, DCR =	0.07 OK
<u>Shear wall C</u>	
Roof seismic load, V =	319.5 kip
diaphragm span, L =	56.67 ft
roof tributary width for seismic, T_w =	24.33 ft
tributary seismic load on shear wall, Q_E =	137.2 kip
wall height, h =	14.63 ft
tributary seismic moment on shear wall, Mu =	2006.8 kip*ft
masonry strength, f' _m =	1500 psi
shear wall length, d =	21.33 ft


vertitcal shear wall grout spacing = horizontal shear wall grout spacing =	
shear wall thickness, t =	
A _n =	926.9 in ²
Φ =	1.0 (assumed per Tier 2)
$\phi V_{\rm m} = \phi \left[\left[4.0 - 1.75 \left(\frac{\rm M}{\rm V} {\rm d_v} \right) \right] A \right]$	$v_n \sqrt{f_m} + 0.25 P_u$
masonry shear wall strength, $\phi QCE_m =$	100.5 kip
horizontal masonry shear wall strength, ϕQCE_s =	28.7 kip
combined masonry shear wall strength, ϕ QCE =	129.2 kip
Determining m-factor for wall governed by flexure	
roof axial load on wall, $P = D(d^{*t})$	
vertical compressive stress, $f_{ae} = P/(d^*t) =$	
factor for expected strength, F_{exp} =	
expected compressive strength, $f_{me} = F_{exp} * f'_m =$	•
$f_{ae}/f_{me} =$	
h/L =	
steel reinforcing ratio, ρ_g =	
$ ho_{g}$ *f _{ye} /f _{me} =	0.11
m-factor = knowledge factor, κ =	
masonry shear wall strength, kmoQCE =	
	010.0 Kip
demand capacity ratio, DCR =	0.17 OK
<u>Shear wall D</u>	
Roof seismic load, V =	
diaphragm span, L = roof tributary width for seismic, T_w =	
tributary seismic load on shear wall, $Q_F =$	
tributary seismic load on shear wall, $q_{\rm E}$ =	92.1 kip
wall height, h =	14.63 ft
tributary seismic moment on shear wall, Mu =	
masonry strength, f' _m =	
shear wall length, d =	38 ft
vertitcal shear wall grout spacing =	24 in
horizontal shear wall grout spacing =	48 in
shear wall thickness, t =	
$A_n =$	
Φ =	1.0 (assumed per Tier 2)
$\phi V_{\rm m} = \phi \left[\left[4.0 - 1.75 \left(\frac{\rm M}{\rm V \ d_v} \right) \right] A \right]$	$v_n \sqrt{f_m} + 0.25 P_u$
masonry shear wall strength, $\phi QCE_m =$	220.8 kip
horizontal masonry shear wall strength, $\phi QCE_s =$	•
combined masonry shear wall strength, $\phi QCE =$	•
······································	
Determining m-factor for wall governed by flexure	
roof axial load on wall, P =	
vertical compressive stress, $f_{ae} = P/(d^*t) =$	·
factor for expected strength, F_{exp} =	1.3 (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f'_m =$	1950.0 psi
$f_{ae}/f_{me} =$	0.000
h/L =	0.39
steel reinforcing ratio, ρ_g =	0.004

 $\rho_g^* f_{ye} / f_{me} = 0.11$

m-factor =	7.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90
masonry shear wall strength, κmφQCE =	1571.7 kip

demand capacity ratio, DCR = 0.06 OK

DESIGN TASK

Beam B2

Engineers.	Markox) Wondors	With Water "				
BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRI	PTION		Process Gallery	JOB NO.	

BEAM AND COLUMN CHECK SUPPORTING CMU WALL ABOVE (VERTICAL IRREGULARITY TIER 1 FINDING)

ASCE 41-17 - Tier 2 (BSE-2E)

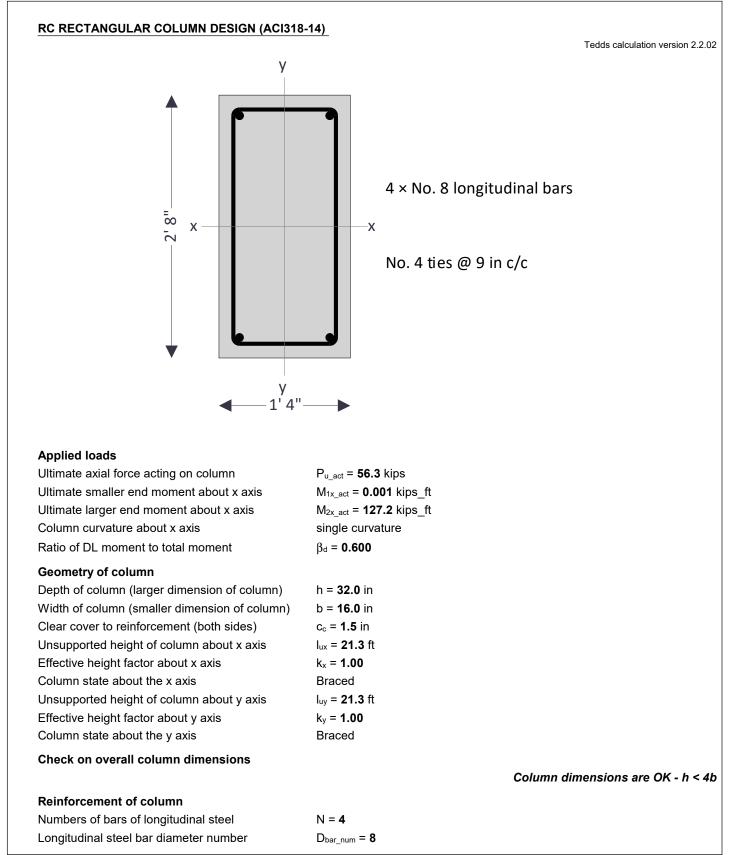
5.4.2.3 Vertical Irregularities. An analysis shall be performed in accordance with Section 5.2.4, and the demand-capacity ratio (DCR) shall be determined in accordance with Section 7.3.1.1 for all elements of the seismic-force-resisting system in the noncompliant stories. The adequacy of the elements and connections below the vertical discontinuities shall be evaluated in accordance with Section 5.2.5 as force-controlled elements. The adequacy of struts and diaphragms to transfer loads to adjacent seismic-force-resisting elements as force-controlled elements shall be evaluated.

7.5.2.1.2 Force-Controlled Actions for LSP or LDP. Forcecontrolled actions, Q_{UF} , shall be calculated using one of the following methods:

1. Q_{UF} shall be taken as the maximum action that can be developed in a component based on a limit-state analysis considering the expected strength of the components delivering force to the component under consideration, or the maximum action developed in the component as limited by the nonlinear response of the building.

 Alternatively, Q_{UF} shall be calculated in accordance with Eq. (7-35).

$$Q_{UF} = Q_G \pm \frac{\chi Q_E}{C_1 C_2 J} \tag{7-35}$$


ed elements shar be evaluated.	$\sim C_1 \sim C_1 C_2 J$
	-
Roof seismic load, V =	319.5 kip
diaphragm span, L =	56.67 ft
roof tributary width for seismic, T_w =	24.33 ft
wall height, h =	14.63 ft
tributary seismic load on shear wall, V_E =	137.2 kip
seismic overturning on shear wall, M_E =	2006.8 kip*ft
Wall length, L _w =	21.33 ft
Factor for adjusting action, χ =	1.15 (interpolated between LS & CP)
$C_1 C_2 =$	1.4
Force delivery reduction factor, J =	2
? (16"x32") Check	
Roof unit weight, w _{Droof} =	15.3 psf
Wall unit weight, w _{Dwall} =	47.0 lb/ft
Floor unit weight, w _{Dfloor} =	183 psf
Floor unit live load, w _{Lfloor} =	200 psf
Tributary width to beam, T _{wbeam} =	8 ft
supported gravity loads on beam, $Q_D =$	1633.4 lb/ft
supported live loads on beam, $Q_L =$	400 lb/ft (assume only 25% of LL)
supported combined loads on beam, Q_{G} =	2236.7 lb/ft
Axial load on beam, Q _{UF} =	56.3 kip
Bending moment demand on beam, Q_{UF} =	127.2 kip*ft
Shear demand on beam, Q_{UF} =	23.9 kip
Beam axial strength, Q _{CL} =	1534.8 kip (From TEDDS calculation)
Beam bending strength, Q_{CL} =	296.6 kip*ft (From TEDDS calculation)
Beam shear strength, Q_{CL} =	58.7 kip (From TEDDS calculation)
knowledge factor, κ =	0.90
Beam axial strength, κ*Q _{CL} =	1381.32 kip
Beam bending strength, $\kappa^*Q_{CL} =$	266.94 kip*ft
Beam shear strength, κ^*Q_{CL} =	52.83 kip
Axial DCR =	0.04 OK
Moment DCR =	0.48 OK
Shear DCR =	0.45 OK

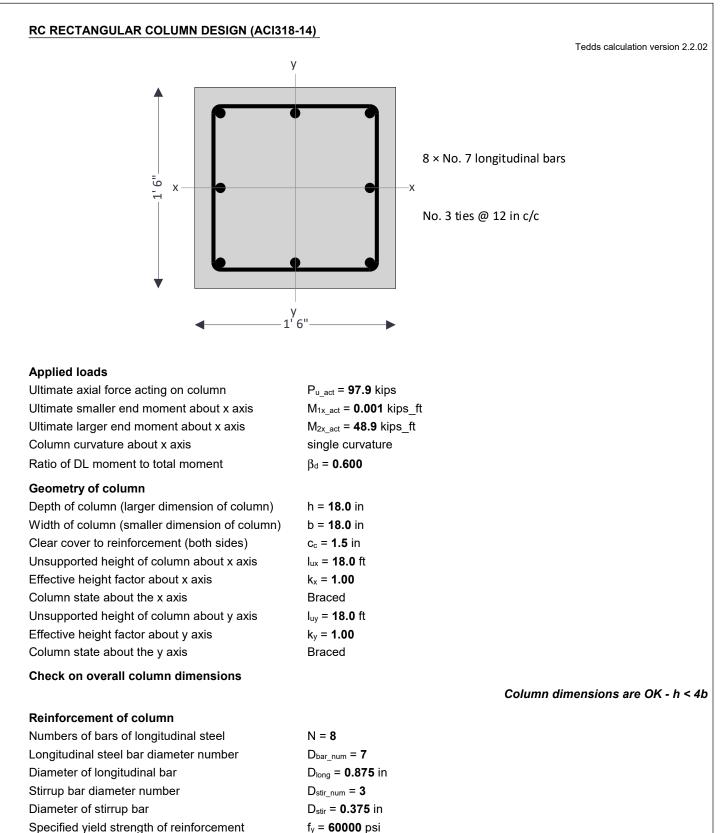
11962A.00

Column (18"x18") Check

<u>18"x18") Check</u>			
Roof unit weight, w _{Droof} =	15.3 p	osf	
Wall unit weight, w _{Dwall} =	47.0 II	b/ft	
Floor unit weight, w _{Dfloor} =	183 p	osf	
Floor unit live load, w _{Lfloor} =	200 p	osf	
Tributary area to column, T _{wcolumn} =	213.36 f	't∠	
supported gravity loads on column, Q_D =	43.2 k	kip	
supported live loads on column, Q_L =	10.7 k	kip	(assume only 25% of LL)
supported combined loads on column, Q_G =	59.2 k	kip	
supported overturning loads on column, Q_E =	38.6 k	kip	
Axial compression load on column, Q_{UFcomp} =	97.9 k	kip	
Axial tension load on column, Q _{UFten} =	0.2 k	kip	
Bending moment demand on column, Q_{UF} =	48.9 k	kip*ft	
Shear demand on column, Q_{UF} =	6.9 k	kip	
Column axial strength, Q _{CL} =	1099.1 k	kip	(From TEDDS calculation)
Column bending strength, Q _{CL} =	230.5 k	kip*ft	(From TEDDS calculation)
Column shear strength, Q_{CL} =	33.8 k	kip	(From TEDDS calculation)
knowledge factor, κ =	0.90		
Column axial strength, κ^*Q_{CL} =	989.19 k	•	
Column bending strength, κ^*Q_{CL} =	207.45 k	-	
Column shear strength, κ^*Q_{CL} =	30.42 k	•	
Axial DCR =		OK	
Moment DCR = Shear DCR =	··	OK	
Snear DCR =	0.23	ΟΚ	

Tekla Tedds Carollo Engineers	City of Wilsonville - Process Gallery				Job Ref. 478 11962A.00	
3150 Bristol St. Suite 500, Costa Mesa, CA, 92626	Section Beam B-2 Che	ck (Vertical Irreg	Sheet no./rev. 1			
	Calc. by BS	Date 8/23/2021	Chk'd by	Date	App'd by	Date

-	oncrete ement	Date 8/23/2021 D _{long} = 1.000 D _{stir_num} = 4 D _{stir} = 0.500 f _y = 60000 ps f'c = 4000 ps E _s = 29 × 10	Chk'd by in in si i ⁶ psi < f'c ^{1/2} × (1psi) ^{1/2}	Date = 3604997 psi	Sheet no./rev. 2 App'd by	Date
Diameter of longitudinal bar Stirrup bar diameter number Diameter of stirrup bar Specified yield strength of reinforcer Specified compressive strength of co Modulus of elasticity of bar reinforce Modulus of elasticity of concrete Yield strain Ultimate design strain	BS ment oncrete ement	$8/23/2021$ $D_{long} = 1.000$ $D_{stir_num} = 4$ $D_{stir} = 0.500$ $f_y = 60000 \text{ ps}$ $f_c = 4000 \text{ ps}$ $E_s = 29 \times 100$ $E_c = 57000 \times \epsilon_y = f_y / E_s = 0$	in in si i ⁶ psi < f'c ^{1/2} × (1psi) ^{1/2}		App'd by	Date
Stirrup bar diameter number Diameter of stirrup bar Specified yield strength of reinforcer Specified compressive strength of co Modulus of elasticity of bar reinforce Modulus of elasticity of concrete Yield strain Ultimate design strain	oncrete ement	$D_{stir_num} = 4$ $D_{stir} = 0.500$ $f_y = 60000 \text{ ps}$ $f_c = 4000 \text{ ps}$ $E_s = 29 \times 10^\circ$ $E_c = 57000 \times \epsilon_y = f_y / E_s = 0^\circ$	in si i ⁵psi < f'c ^{1/2} × (1psi) ^{1/2}	² = 3604997 psi		
Diameter of stirrup bar Specified yield strength of reinforcer Specified compressive strength of co Modulus of elasticity of bar reinforce Modulus of elasticity of concrete Yield strain Ultimate design strain	oncrete ement	$D_{stir} = 0.500$ fy = 60000 ps f'c = 4000 ps Es = 29 × 10' Ec = 57000 > $\epsilon_y = f_y / E_s = 0$	si i ⁶ psi < f°c ^{1/2} × (1psi) ^{1/2}	² = 3604997 psi		
Specified yield strength of reinforcer Specified compressive strength of co Modulus of elasticity of bar reinforce Modulus of elasticity of concrete Yield strain Ultimate design strain	oncrete ement	$f_{y} = 60000 \text{ ps}$ $f_{c} = 4000 \text{ ps}$ $E_{s} = 29 \times 10^{\circ}$ $E_{c} = 57000 \times \epsilon_{y} = f_{y} / E_{s} = 0$	si i ⁶ psi < f°c ^{1/2} × (1psi) ^{1/2}	^e = 3604997 psi		
Specified compressive strength of co Modulus of elasticity of bar reinforce Modulus of elasticity of concrete Yield strain Ultimate design strain	oncrete ement	$f_{c}^{*} = 4000 \text{ ps}$ $E_{s} = 29 \times 10^{\circ}$ $E_{c} = 57000 \times \epsilon_{y} = f_{y} / E_{s} = 0^{\circ}$	i ⁶ psi ≪ f'c ^{1/2} × (1psi) ^{1/2}	² = 3604997 psi		
Modulus of elasticity of bar reinforce Modulus of elasticity of concrete Yield strain Ultimate design strain	ement	$E_s = 29 \times 10^{\circ}$ $E_c = 57000 \times \epsilon_y = f_y / E_s = 0^{\circ}$	⁶ psi < f'c ^{1/2} × (1psi) ^{1/2}	e = 3604997 psi		
Modulus of elasticity of concrete Yield strain Ultimate design strain		$E_c = 57000 \times \epsilon_y = f_y / E_s = 0$	f [°] c ^{1/2} × (1psi) ^{1/2}	e = 3604997 psi		
Yield strain Ultimate design strain	- 10.6.1.1	$\epsilon_y = f_y / E_s = 0$,	^z = 3604997 psi		
Ultimate design strain	- 10.6.1.1		0.00207			
	- 10.6.1.1	ε _c = 0.003 in				
Check for minimum area of steel	- 10.6.1.1		/in			
Gross area of column		$A_g = h \times b = \xi$		_		
Area of steel			$\times D_{long^2}) / 4 = 3$			
Minimum area of steel required		$A_{st_min} = 0.01$	× A _g = 5.120 in			
				Ast < Ast_min	, FAIL- Minim	um steel cheo
Check for maximum area of steel	- 10.6.1.1					
Permissible maximum area of steel		$A_{st_max} = 0.08$	B× A _g = 40.960			
				A _{st} < A _{st_max} ,	PASS - Maxim	um steel che
Slenderness check about x axis						
Radius of gyration		$r_x = 0.3 \times h =$	9.6 in			
Actual slenderness ratio		s_{rx_act} = $k_x \times$	u _x / r _x = 26.66			
Permissible slenderness ratio		s _{rx_perm} = min		_{act} / M _{2x_act}),40) = ss effects may b		bout the X ax
Slenderness check about y axis						
Radius of gyration		$r_y = 0.3 \times b =$	4.8 in			
Actual slenderness ratio		$s_{ry_{act}} = k_y \times $	_{uy} / r _y = 53.33			
Permissible slenderness ratio		s _{ry_perm} = min	(34 - 12 * (M _{1y}	_{act} / M _{2y_act}),40) =	34	
				Colum	nn is slender a	bout the Y ax
Magnified moments about y axis						
Moment of inertia of section		$I_{gy} = (h \times b^3)$	/ 12 = 10922.6	67 in ⁴		
Euler's buckling load		$P_{cy} = (\pi^2 / (k_{y}$	$\times _{uy})^2) \times (0.4 >$	$(E_c \times I_{gy} / (1 + \beta_d))$) = 1482.96 kip	S
Correction factor for actual to equiv.	mmt.diagram		. •	//		
Moment magnifier		δ _{nsy} = max(C	_{my} / (1 - (P _{u_act}	′ (0.75 × P _{cy}))),1	.0) = 1.053	
Minimum factored moment about y a	axis			03 × b) = 5.07 ki		
Minimum magnified moment about y			× M _{2y_min} = 5.34		-	
Axial load capacity of axially load		,		· _		
Strength reduction factor		φ = 1.00				
Area of steel on compression face		4's = Ast / 2 =	1.571 in ²			
Area of steel on tension face		$A_s = A_{st} / 2 =$				
Net axial load capacity of column				A_{st}) + $f_y \times A_{st}$) = $f_y \times A_{st}$	1534.891 kips	
Ultimate axial load capacity of colum	าท		1534.891 kips	· · ·	-	


Tekla Tedds Carollo Engineers	,				Job Ref. 480 11962A.00	
3150 Bristol St. Suite 500, Costa Mesa, CA, 92626	Section Beam B-2 Che	ck (Vertical Irre	Sheet no./rev. 3			
	Calc. by BS	Date 8/23/2021	App'd by	Date		

Total moment carried by column	M _{ox} = 296.599 kip_ft	
Total moment carried by column		
Ultimate axial load carrying capacity of column	$\varphi_x = 1.000$ $P_{ux} = \varphi_x \times P_{nx} = 56.305$ kips	
Nominal axial load strength Strength reduction factor	P _{nx} = 62.561 kips _{0x} = 1.000	
Total force carried by column	D - 62 564 king	
Sum of forces by steel	P _{xs} = -76.5 kips	
Force carried by steel		
Moment carried by steel layer	M _{x2} = P _{x2} * ((h / 2) - x _{x2}) = 106.029 kip_ft	
Force carried by layer	$P_{x2} = N_x * A_{bar} * \sigma_{x2} = -94.248$ kips	
Stress in layer	σ _{x2} = max(-1 * f _y , E _s * ε _{x2}) = -60000.00 psi	
Strain of layer	$\varepsilon_{x2} = \varepsilon_c * (1 - x_{x2} / c_x) = -0.02642$	
Depth of layer	x _{x2} = 29.500 in	
Details of steel layer 2		
Moment carried by steel layer	M _{x1} = P _{x1} * ((h / 2) - x _{x1}) = 19.946 kip_ft	
Force carried by layer	$P_{x1} = N_x * A_{bar} * \sigma_{x1} = 17.730$ kips	
Stress in layer	σ _{x1} = min(f _y , E _s * ε _{x1}) - 0.85 * f ⁺ _c = 11287.26 psi	
Strain of layer	$\epsilon_{x1} = \epsilon_c * (1 - x_{x1} / c_x) = 0.00051$	
Depth of layer	x _{x1} = 2.500 in	
Details of steel layer 1		
Moment carried by concrete	M _{xcon} = P _{xcon} × ((h/2) – (a _x /2)) = 170.624 kip_ft	
Moment carried by concrete		
Forces carried by concrete	$P_{xcon} = 0.85 \times f'_c \times b \times a_x = 139.079 \text{ kips}$	
Force carried by concrete		
Details of concrete block		
Strength reduction factor	$\varphi_{X} = 0.900$	
Yield strain in steel	$\epsilon_{sx} = f_y / E_s = 0.002$	
Depth of equivalent rectangular stress block	$a_x = min((\beta_1 \times c_x), h) = 2.557$ in	
Factor of depth of compressive stress block	β ₁ = 0.850	
Depth of NA from extreme compression face	$c_x = r_{xb} \times d_t = 3.008$ in	
Depth of tension steel	dt = h - d' = 29.500 in	
Spacing between bars	s = ((h - (2×d')))/ ((N/2)-1) = 27.000 in	
Effective cover to reinforcement	d' = $c_c + D_{stir} + (D_{long}/2) = 2.500$ in	
c/dt ratio	r _{xb} = 0.102	
Details of column cross-section		
Uniaxially loaded column about major axis		
Net moment about minor (Y) axis	$M_{ny} = M_{cy_{min}} / \phi = 8.21 \text{ kips_ft}$	
Net moment about major (X) axis	$M_{nx} = M_{ux act} / \phi = 0$ kips_ft	
Assuming strength reduction factor	$\phi = 0.65$	

Tekla Tedds Carollo Engineers	onville - Process	Gallery		Job Ref. 11962A.00	481				
3150 Bristol St. Suite 500, Costa Mesa, CA, 92626					Sheet no./rev.				
	Beam B-2 (Check (Vertical Irr		4					
	Calc. by BS	Date 8/23/2021	Chk'd by	Date	App'd by	Date			
Ultimate moment strength capacity	of column	$M_{ux} = \phi_x \times M_c$	_{ox} = 296.599 ki	p_ft					
Equivalent required uniaxial mor	nent about :	x axis							
Equivalent required uniaxial nomination	al moment	$M_{nxe} = M_{nx} +$	$M_{ny} \times h / b \times (a)$	(1 - β) / β) = 16	.422 kip_ft				
Equivalent required uniaxial ultimat	te moment	$M_{uxe} = M_{nxe} \times$	α φ _x = 14.780 k	ip_ft					
Check load capacity about the x	axis								
Factored axial load		P _{u_act} = 56.3	kips						
Ultimate axial capacity		P _{ux} = 56.3 ki	ps						
			PASS - Ultima	ate axial capao	city exceeds fac	ctored axial load			
Equivalent required uniaxial factore	ed moment	M _{uxe} = 14.8 k	kip_ft						
Ultimate moment capacity about th	e x axis	M _{ux} = 266.9	• =						
		PASS - Ultimat	e moment ca	pacity exceeds	s factored mom	ent about x axis			
Uniaxially loaded column about i	minor axis								
Details of column cross-section									
c/d _t ratio		r _{yb} = 0.151							
Effective cover to reinforcement	Effective cover to reinforcement		+ $(D_{long}/2) = 2$. 500 in					
Spacing between bars		$s = ((b - (2 \times$	d')))/ ((N/2)-1)	= 11.000 in					
Depth of tension steel		$b_t = b - d' = 1$	b _t = b - d' = 13.500 in						
Depth of NA from extreme compres	ssion face	$c_y = r_{yb} \times b_t =$	2.034 in						
Factor of depth of compressive stre	ess block	β1 = 0.850	β ₁ = 0.850						
Depth of equivalent rectangular stre	ess block	a _y = min((β ₁ >	< c _y), b)= 1.729	in					
Yield strain in steel		$\varepsilon_{sy} = f_y / E_s = 0.002$							
Strength reduction factor		$\phi_{y} = 0.900$							
Details of concrete block									
Force carried by concrete									
Forces carried by concrete		P _{ycon} = 0.85 :	× f' _c × h × a_y =	188.109 kips					
Moment carried by concrete									
Moment carried by concrete		Mycon = Pycon	\times ((b/2) – (a _y /2	2)) = 111.855 ki	p_ft				
Details of steel layer 1									
Depth of layer		x _{y1} = 2.500 ir	า						
Strain of layer		$\varepsilon_{y1} = \varepsilon_c * (1 -$	x _{y1} / c _y) = -0.0	0069					
Stress in layer	Stress in layer		$\sigma_{y1} = max(-1 * f_y, E_s * \varepsilon_{y1}) = -19929.49 \text{ psi}$						
Force carried by layer		$P_{y1} = N_y * A_{bar} * \sigma_{y1} = -31.305$ kips							
Moment carried by steel layer	Moment carried by steel layer		$M_{y_1} = P_{y_1} * ((b / 2) - x_{y_1}) = -14.348 \text{ kip_ft}$						
Details of steel layer 2									
Depth of layer		x _{y2} = 13.500	in						
Strain of layer		ε _{y2} = ε _c * (1 -	$\epsilon_{y2} = \epsilon_c * (1 - x_{y2} / c_y) = -0.01691$						
Stress in layer		σ _{y2} = max(-1	$\sigma_{y2} = max(-1 * f_y, E_s * \epsilon_{y2}) = -60000.00 \text{ psi}$						
Force carried by layer		$P_{y2} = N_y * A_{bar} * \sigma_{y2} = -94.248$ kips							
Moment carried by steel layer		$M_{y2} = P_{y2} * ((b / 2) - x_{y2}) = 43.197 \text{ kip_ft}$							

Tekla Tedds Carollo Engineers	ville - Process	Gallery		Job Ref. 11962A.00	482			
50 Bristol St. Suite 500, Costa Mesa, CA, 92626	Section	,						
	Beam B-2 Che	eck (Vertical Irr	egularity)		Sheet no./rev. 5			
	Calc. by BS	Date 8/23/2021	Chk'd by	Date	App'd by	Date		
Force carried by steel								
Sum of forces by steel		P _{ys} = -125.6	kips					
Total force carried by column								
Nominal axial load strength		P _{ny} = 62.556	kips					
Strength reduction factor		φ _y = 1.000						
Ultimate axial load carrying capacity	y of column	$P_{uy} = \phi_y \times P_n$	_y = 62.556 kip)S				
Moment carried by biaxial colum	n minor axis							
Nominal moment strength		M _{oy} = 140.70	3 kip_ft					
Contour beta factor								
Contour beta factor		β = 0.500						
		$M_{nx}_{ox1} = M_{nx} / M_{ox} = 0.000$						
		M _{ny} _upon_M	_{oy} = 1.000					
Net moment along minor axis resist	ed by column	$M_{ny1} = M_{oy} \times$	(M _{ny} _upon_M	_{oy}) = 140.703	kip_ft			
Ultimate moment along minor axis		$M_{uy} = M_{ny1} \times \phi_y =$ 126.633 kip_ft						
Check load capacity about the y	axis							
Factored axial load		P _{u_act} = 56.3 kips						
Ultimate axial capacity		P _{uy} = 56.3 kips						
			PASS - Ultima	ate axial capa	city exceeds fac	tored axial lo		
Factored moment about the y axis		$M_{uy_max} = \phi * M_{ny} = 5.3 \text{ kip}_ft$						
Ultimate moment capacity about the	-	M _{uy} = 126.6 kip_ft						
	P	ASS - Ultimat	e moment cap	pacity exceed	Is factored mome	ent about y a		
Design of column ties - 25.7.2								
Spacing of lateral ties		sv_ties = 9.000) in					
16 times longitudinal bar diameter	$s_{v1} = 16 \times D_{long} =$ 16.000 in							
48 times tie bar diameter		$s_{v2} = 48 \times D_s$	_{tir} = 24.000 in					
Least column dimension		•	o) = 16.000 in					
Required tie spacing		s = min(s _{v1} ,s	_{v2} ,s _{v3}) = 16.000	0 in				

Tekla Tedds Carollo Engineers	Project City of Wilsonville - Process Gallery				Job Ref. 483 11962A.00	
3150 Bristol St. Suite 500, Costa Mesa, CA, 92626	Section Column Check (Vertical Irregularity)				Sheet no./rev. 1	
	Calc. by BS	Date 8/23/2021	Chk'd by	Date	App'd by	Date

Tekla Tedds Carollo Engineers	Project City of Wilson	ville - Process	Gallery		Job Ref. 11962A.00	484		
i0 Bristol St. Suite 500, Costa Mesa, CA, 92626	Section Column Check		-		Sheet no./rev. 2			
	Calc. by BS	Date 8/23/2021	Chk'd by	Date	App'd by	Date		
Specified compressive strength of o		f' _c = 4000 ps						
Modulus of elasticity of bar reinforc	ement	E _s = 29 × 10	•	2 - 2004007 -	:			
Modulus of elasticity of concrete Yield strain		$E_c = 57000$ $\varepsilon_y = f_y / E_s =$,	² = 3604997 ps	1			
Ultimate design strain		$\epsilon_{\rm y} = 1_{\rm y} / \Box_{\rm s} =$ $\epsilon_{\rm c} = 0.003$ in						
-		ec – 0.003 m	/ 11 1					
Check for minimum area of steel Gross area of column	- 10.6.1.1		224 000 in ²					
Area of steel		$A_g = h \times b = 3$	$\times D_{long}^2) / 4 = 4$	011 in2				
			÷ ,					
Minimum area of steel required		$A_{st_min} = 0.01$	l×A _g = 3.240 ir		in, PASS- Minim	um steel cher		
Check for movimum and of the	10644			risir Ast_Mi	,			
Check for maximum area of steel Permissible maximum area of steel			8× A _g = 25.920	in ²				
i ennissine maximum area ui steel		∽si_max − 0.00	57 mg - 23.320		, PASS - Maxin	num steel che		
Slenderness check about x axis				Vist Vist_max				
		$r = 0.2 \times h$	- 5 1 in					
Radius of gyration		$r_x = 0.3 \times h = 5.4$ in $s_{rx \ act} = k_x \times l_{ux} / r_x = 40$						
Actual slenderness ratio Permissible slenderness ratio		-		(M) (M)	- 24			
		Srx_perm - IIII	I(34 - 12 (IVI1x	_{_act} / M _{2x_act}),40) Colu	ı – 34 ımn is slender a	about the X ax		
Magnified moments about x axis								
Moment of inertia of section		$I_{gx} = (b \times h^3)$	/ 12 = 8748 in ²	ļ				
Euler's buckling load		$P_{cx} = (\pi^2 / (k_x \times I_{ux})^2) \times (0.4 \times E_c \times I_{gx} / (1+\beta_d)) = 1667.81$ kips						
Correction factor for actual to equiv	. mmt.diagram	$C_{mx} = 0.6 + (0.4 * M_{1x_act} / M_{2x_act}) = 0.600$						
Moment magnifier		δ_{nsx} = max(C_mx / (1 - ($P_{u_act} / (0.75 \times P_{cx}$))),1.0) = 1						
Magnified moment about x axis		$M_{cx} = \delta_{nsx} \times M_{2x_act} = 48.9 \text{ kip}_ft$						
Minimum factored moment about x	axis	$M_{2x_{min}} = P_{u_{act}} \times (0.6 \text{ in } + 0.03 \times h) = 9.3 \text{ kip_ft}$						
Minimum magnified moment about	x axis	$M_{cx_min} = \delta_{nsx} \times M_{2x_min} = 9.3 \text{ kip_ft}$						
Slenderness check about y axis								
Radius of gyration		$r_y = 0.3 \times b =$	= 5.4 in					
Actual slenderness ratio		$s_{ry_act} = k_y \times I_{uy} / r_y = 40$						
Permissible slenderness ratio		$s_{ry_perm} = min(34 - 12 * (M_{1y_act} / M_{2y_act}), 40) = 34$						
				Colu	ımn is slender a	about the Y ax		
Magnified moments about y axis								
Moment of inertia of section		$I_{gy} = (h \times b^3)$	/ 12 = 8748 in ²	Ļ				
Euler's buckling load		$P_{cy} = (\pi^2 / (k_y \times l_{uy})^2) \times (0.4 \times E_c \times l_{gy} / (1+\beta_d)) = 1667.81 \text{ kips}$						
Correction factor for actual to equiv	. mmt.diagram	$C_{my} = 1.0$						
Moment magnifier		$\delta_{nsy} = max(C_{my} / (1 - (P_{u_{act}} / (0.75 \times P_{cy}))), 1.0) = 1.085$						
Minimum factored moment about y axis		$M_{2y_{min}} = P_{u_{act}} \times (0.6 \text{ in } + 0.03 \times b) = 9.3 \text{ kip_ft}$						
Minimum magnified moment about	y axis	$M_{cy_{min}} = \delta_{nsy} \times M_{2y_{min}} = 10.09 \text{ kip_ft}$						
Axial load capacity of axially load	led column							
Strength reduction factor		φ = 1.00						

Tekla Tedds Carollo Engineers	onville - Process	Gallery		Job Ref. 11962A.00	485					
150 Bristol St. Suite 500, Costa Mesa, CA, 92626	eck (Vertical Irreg	jularity)	Sheet no./rev 3	Sheet no./rev. 3						
	Calc. by BS	Date 8/23/2021	Chk'd by	Date	App'd by	Date				
Area of steel on compression face		A's = Ast / 2 =	2.405 in ²							
Area of steel on tension face			2.405 in ²							
Net axial load capacity of column		$P_n = 0.8 \times (0.11)^{10}$	$85 imes f'_c imes (A_g - A_g)$	A_{st}) + $f_y \times A_{st}$)	= 1099.102 kips					
Ultimate axial load capacity of colu	mn	$P_u = \phi \times P_n =$	1099.102 kips		o					
Net moments for biaxial column				PA35 :	Column is safe	in axial loading				
Assuming strength reduction factor		φ = 0.65								
Net moment about major (X) axis			= 75.23 kips f	t						
Net moment about major (X) axis			/ ϕ = 15.52 kips_i							
Uniaxially loaded column about i	maior axis	yoy	,	·						
Details of column cross-section										
c/dt ratio		r _{xb} = 0.273								
Effective cover to reinforcement			+ (D _{long} /2) = 2 .	312 in						
Spacing between bars			$s = ((h - (2 \times d')))/((N/2)-1) = 4.458$ in							
Depth of tension steel			$d_t = h - d' = 15.688$ in							
Depth of NA from extreme compres	ssion face	$c_x = r_{xb} \times d_t =$	$c_x = r_{xb} \times d_t = 4.287$ in							
Factor of depth of compressive stre		β ₁ = 0.850	β ₁ = 0.850							
Depth of equivalent rectangular str		a _x = min((β ₁ >	a _x = min((β₁× c _x), h)= 3.644 in							
Yield strain in steel		$\varepsilon_{sx} = f_v / E_s =$								
Strength reduction factor		$\phi_{x} = 1.000$								
Details of concrete block										
Force carried by concrete										
Forces carried by concrete		P _{xcon} = 0.85 :	\times f' _c \times b \times a _x =	223.022 kips						
Moment carried by concrete										
Moment carried by concrete		$M_{xcon} = P_{xcon} \times ((h/2) - (a_x/2)) =$ 133.403 kip_ft								
Details of steel layer 1										
Depth of layer		x _{x1} = 2.312 ir	า							
Strain of layer		$\varepsilon_{x1} = \varepsilon_c * (1 -$	$\varepsilon_{x1} = \varepsilon_c * (1 - x_{x1} / c_x) = 0.00138$							
Stress in layer		$\sigma_{x1} = \min(f_y,$	Es * ε _{x1}) - 0.85	* f'c = 36672.9	12 psi					
Force carried by layer			$P_{x1} = N_x * A_{bar} * \sigma_{x1} =$ 66.157 kips							
Moment carried by steel layer		$M_{x1} = P_{x1} * (($	h / 2) - x _{x1}) = 3	6.868 kip_ft						
Details of steel layer 2										
Depth of layer		x _{x2} = 9.000 ir								
Strain of layer		$\varepsilon_{x2} = \varepsilon_c * (1 - x_{x2} / c_x) = -0.00330$								
Stress in layer		$\sigma_{x2} = \max(-1 * f_y, E_s * \varepsilon_{x2}) = -60000.00 \text{ psi}$								
Force carried by layer		$P_{x2} = 2 * A_{bar} * \sigma_{x2} = -72.158$ kips $M_{x2} = P_{x2} * ((h / 2) - x_{x2}) = 0.000$ kip_ft								
Moment carried by steel layer		ıvı _{x2} − ۲ _{x2} " (($(1 / 2) - x_{x2} = 0$	kip_it						
Details of steel layer 3 Depth of layer		x _{x3} = 15.688	in							
Strain of layer				0798						
Strain of layer		ε _{x3} = ε _c * (1 - x _{x3} / c _x) = -0.00798 σ _{x3} = max(-1 * f _y , E _s * ε _{x3}) = -60000.00 psi								

Tekla Tedds Carollo Engineers	onville - Process	Gallery		Job Ref. 11962A.00	486				
i0 Bristol St. Suite 500, Costa Mesa, CA, 926	Section	eck (Vertical Irreg	jularity)		Sheet no./rev. 4	Sheet no./rev.			
	Calc. by BS	Date 8/23/2021	Chk'd by	Date	App'd by	Date			
Force carried by layer		P _{x3} = N _x * A _b	_{ar} * σ _{x3} = -108 .	. 238 kips					
Moment carried by steel layer		M _{x3} = P _{x3} * ((h / 2) - x _{x3}) = 6	0.320 kip_ft					
Force carried by steel									
Sum of forces by steel		P _{xs} = -114.2	kips						
Total force carried by column									
Nominal axial load strength		P _{nx} = 108.78	2 kips						
Strength reduction factor		φ _x = 1.000							
Ultimate axial load carrying capa	city of column	$P_{ux} = \phi_x \times P_1$	nx = 97.904 kip	os					
Total moment carried by colun	n								
Total moment carried by column		$M_{ox} = 230.5$	91 kip_ft						
Ultimate moment strength capac	ity of column	$M_{ux} = \phi_x \times M_d$	_{ox} = 230.591 ki	p_ft					
Equivalent required uniaxial m	oment about >	k axis							
Equivalent required uniaxial nominal moment		$M_{nxe} = M_{nx} +$	$M_{nxe} = M_{nx} + M_{ny} \times h / b \times ((1 - \beta) / \beta) = 90.754 \text{ kip_ft}$						
Equivalent required uniaxial ultim	ate moment	$M_{uxe} = M_{nxe} \times \phi_x =$ 90.754 kip_ft							
Check load capacity about the	x axis								
Factored axial load		P _{u_act} = 97.9 kips							
Ultimate axial capacity		P _{ux} = 97.9 kips PASS - Ultimate axial capacity exceeds factored axial lo							
				ate axial capad	city exceeds fac	tored axial l			
Equivalent required uniaxial factor Ultimate moment capacity about		M _{uxe} = 81.7 k M _{ux} = 207.5	• —						
Onimate moment supporty about				pacity exceeds	s factored mom	ent about x a			
Uniaxially loaded column abou	t minor axis			-					
Details of column cross-sectio									
c/d _t ratio		r _{vb} = 0.273							
Effective cover to reinforcement		$d' = c_c + D_{stir}$	$d' = c_c + D_{stir} + (D_{long}/2) = 2.312$ in						
Spacing between bars		s = ((b - (2×d')))/ ((N/2)-1) = 4.458 in							
Depth of tension steel		b _t = b - d' = 1	$b_t = b - d' = 15.688$ in						
Depth of NA from extreme comp	ression face	$c_y = r_{yb} \times b_t =$	$c_y = r_{yb} \times b_t = 4.287$ in						
Factor of depth of compressive s	tress block	β ₁ = 0.850	β ₁ = 0.850						
Depth of equivalent rectangular	stress block	a _y = min((β ₁ >	a _y = min((β₁× c _y), b)= 3.644 in						
Yield strain in steel		$\varepsilon_{sy} = f_y / E_s = 0.002$							
Strength reduction factor		φ _y = 0.900							
Details of concrete block									
Force carried by concrete									
Forces carried by concrete		P _{ycon} = 0.85 :	× f' _c × h × a_y =	223.022 kips					
Moment carried by concrete									
Moment carried by concrete		Mycon = Pycon	\times ((b/2) – (a _y /2	2)) = 133.403 ki	p_ft				
Details of steel layer 1									
Depth of layer		x _{y1} = 2.312 ir	ı						
	$\epsilon_{y1} = \epsilon_c * (1 - x_{y1} / c_y) = 0.00138$								

Tekla Tedds Carollo Engineers	Project City of Wilso	bject Job Ref. 487 ty of Wilsonville - Process Gallery 11962A.00							
3150 Bristol St. Suite 500, Costa Mesa, CA, 92626	Section Column Che	ck (Vertical Irreg	jularity)		Sheet no./rev. 5				
	Calc. by BS	Date 8/23/2021	Chk'd by	Date	App'd by	Date			
Stress in layer		$\sigma_{y1} = \min(f_{y},$	Es * ε _{y1}) - 0.85	* f'c = 36672.9	2 psi				
Force carried by layer		$P_{y1} = N_{y} * A_{b}$	ar * σ _{y1} = 66.1	57 kips					
Moment carried by steel layer		M _{y1} = P _{y1} * (((b / 2) - x _{y1}) = 3	6.868 kip_ft					
Details of steel layer 2									
Depth of layer		x _{y2} = 9.000 ii	n						
Strain of layer		$\varepsilon_{y2} = \varepsilon_c * (1 -$	x _{y2} / c _y) = -0.0	0330					
Stress in layer		σ _{y2} = max(-1	* f _y , E _s * ε _{y2}) =	-60000.00 psi					
Force carried by layer		P _{y2} = 2 * A _{bas}	* σ _{y2} = -72.15	5 8 kips					
Moment carried by steel layer		M _{y2} = P _{y2} * (((b / 2) - x _{y2}) = 0	. 000 kip_ft					
Details of steel layer 3									
Depth of layer		x _{y3} = 15.688	in						
Strain of layer		$\varepsilon_{y3} = \varepsilon_c * (1 -$	x _{y3} / c _y) = -0.0	0798					
Stress in layer		σ _{y3} = max(-1	* f _y , E _s * ε _{y3}) =	-60000.00 psi					
Force carried by layer		P _{y3} = N _y * A _b	$P_{y3} = N_y * A_{bar} * \sigma_{y3} = -108.238 \text{ kips}$						
Moment carried by steel layer		M _{y3} = P _{y3} * (($M_{y3} = P_{y3} * ((b / 2) - x_{y3}) = 60.320 \text{ kip_ft}$						
Force carried by steel									
Sum of forces by steel		P _{ys} = -114.2	kips						
Total force carried by column									
Nominal axial load strength		P _{ny} = 108.78	2 kips						
Strength reduction factor		φ _y = 1.000							
Ultimate axial load carrying capaci	ty of column	$P_{uy} = \phi_y \times P_{ny} =$ 97.904 kips							
Moment carried by biaxial colum	n minor axis								
Nominal moment strength		M _{oy} = 230.5 9)1 kip ft						
Contour beta factor									
Contour beta factor		β = 0.500							
		·	I _{ox1} = M _{nx} / M _{ox}	= 0.326					
		M _{ny} _upon_N	l _{oy} = 0.674						
Net moment along minor axis resis	ted by columr	$M_{ny1} = M_{oy} \times$	M _{ny1} = M _{oy} ×(M _{ny} _upon_M _{oy}) = 155.419 kip_ft						
Ultimate moment along minor axis		$M_{uy} = M_{ny1} \times \phi_y =$ 155.419 kip_ft							
Check load capacity about the y	axis								
Factored axial load		P _{u_act} = 97.9	kips						
Ultimate axial capacity		-	P _{uy} = 97.9 kips						
			PASS - Ultima	ate axial capad	ity exceeds fa	ctored axial load			
Factored moment about the y axis		$M_{uy_max} = \phi * M_{ny} = 10.1 \text{ kip}_ft$							
Ultimate moment capacity about the y axis		M _{uy} = 139.9 kip_ft							
		PASS - Ultimat	e moment caj	pacity exceeds	factored mon	nent about y axis			
Design of column ties - 25.7.2									
Spacing of lateral ties			s _{v_ties} = 12.000 in						
16 times longitudinal bar diameter		$s_{v1} = 16 \times D_{long} =$ 14.000 in							
48 times tie bar diameter		$s_{v2} = 48 \times D_{stir} = 18.000$ in							
Least column dimension		s _{v3} = min (h,b) = 18.000 in							

Tekla Tedds Carollo Engineers	Project City of Wilsonv	ille - Process Ga	Job Ref. 488 11962A.00			
3150 Bristol St. Suite 500, Costa Mesa, CA, 92626	Section Column Check (Vertical Irregularity)				Sheet no./rev. 6	
	Calc. by BS	Date 8/23/2021	Chk'd by	Date	App'd by	Date

Required	tie	spacing

 $s = min(s_{v1}, s_{v2}, s_{v3}) = 14.000$ in

sv_ties < s PASS

6.782

Engineers, Warking Wondors With Water

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	_	Process Gallery	JOB NO.	11962A.00
DESIGN TAS	κ				ASCE 41-17 - Tier 2 (CSZ)		

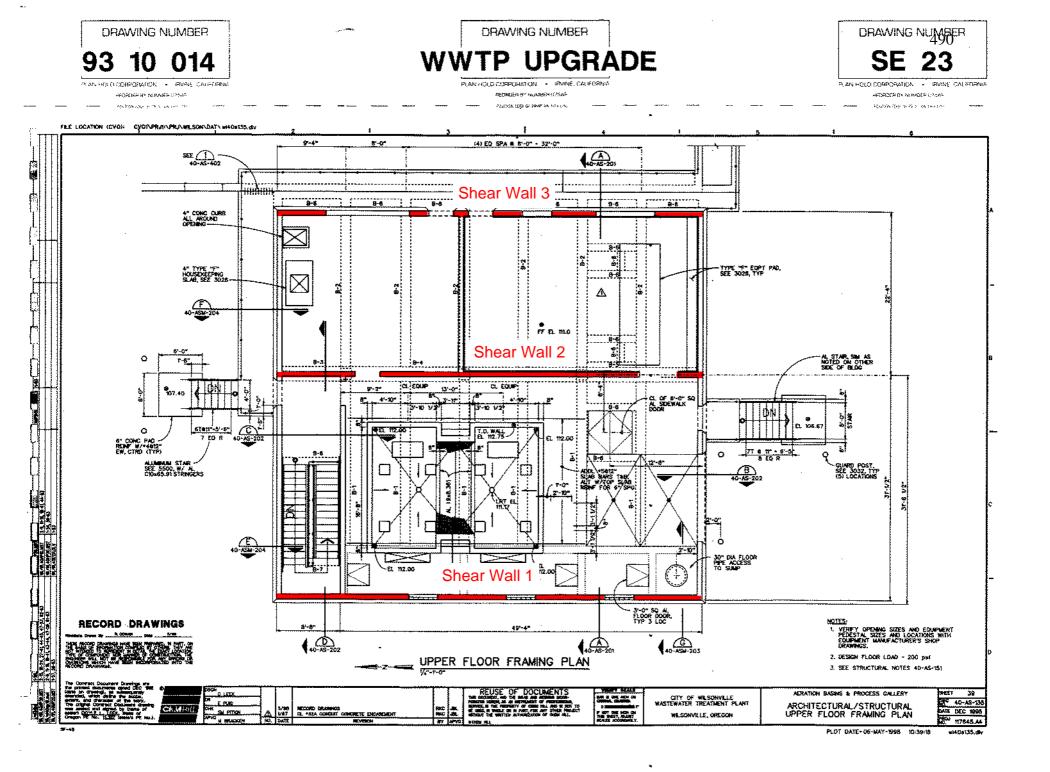
SEISMIC BASE SHEAR FOR PROCESS GALLERY

7.4.1.3.1 Pseudo Seismic Force for LSP. The pseudo lateral force in a given horizontal direction of a building shall be determined using Eq. (7-21). This force shall be used to evaluate or retrofit the vertical elements of the seismic-force-resisting system.

$$V = C_1 C_2 C_m S_a W \tag{7-21}$$

Table 7-3. Alternate Values for Modification Factors C_1C_2	Table 7-4. Values for Effective Mass Factor Cm
---	--

Fundamental Period	$m_{\rm max}$ < 2	$2 \le m_{\max} < 6$	$m_{\max} \ge 6$	No. of Stories	Concrete Noment Frame	Concrete Shear Wall	Concrete Pier-Spandrel	Steel Moment Frame	Steel Concentrically Braced Frame	Steel Eccentrically Braced Frame	Other
<i>T</i> ≤0.3	1.1	1.4	1.8	5-2	1.0	1.0	1.0	1.0	1.0	1.0	1.0
$0.3 < T \le 1.0$	1.0	1.1	1.2	3 or more	0.9	0.0	0.0	0.9	0.9	0.9	1.0
T>1.0	1.0	1.0	1.1	Note: C., sha	I be taken as 1.0 if th	e fundamental p	eriod. T, in the dire	ction of resp	onse under consid	eration is greater #	tan 1.0 s.


(CSZ seismic hazard) (CSZ seismic hazard)

spectral response acceleration, S_{xs} =	0.446	g
spectral response acceleration, S_{x1} =	0.332	g
building period, T =	0.114	s
response spectrum acceleration, S_a =		0
effective seismic weight, W =	1267.3	kip
$C_1 C_2 =$	1.4	
effective mass factor, C_m =	1.0	
seismic lateral force, V =	791.3	kip

(Table 11-6 for masonry walls, m=2.0)

Story	Weight, w _x (kip)	Floor Height, h _x (ft)	k factor	w _x h _x ^k (kip*ft ²)	C _{vx}	Force on Level, F _x (kip)	Story Force, V _j (kip)
Roof	189.8	32.63	1.0	6193.2	0.242	191.5	191.5
1st	1077.5	18.00	1.0	19395.0	0.758	599.8	791.3

 $\Sigma w_{x}h_{x}^{k} = 25588.2$

BY: BS DATE Sep-21		CLIENT	City of Wilsonville	SHEET			
CHKD BY		DESCRIP	TION	_	Process Gallery	JOB NO.	11962A.00
DESIGN TASK			ASCE 41-17 - Tier 2 (CSZ)				

CMU IN-PLANE SHEAR WALL CHECK IN BUILDING N-S DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.

11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.

11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced Masonry Walls. The shear required to develop the expected

flexural strength of RM walls and wall piers shall be compared with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.

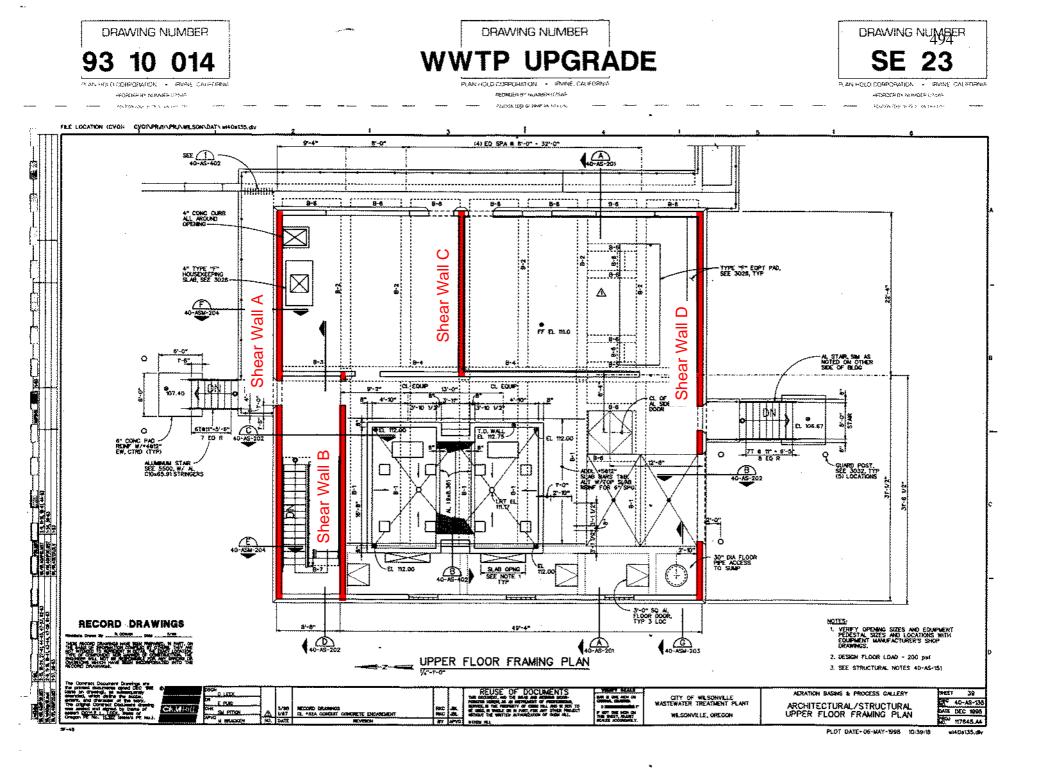
Shear wall 1

Roof seismic load. V = 191.5 kip diaphragm span, L = 52.00 ft roof tributary width for seismic, $T_w =$ 15 ft tributary seismic load on shear wall, Q_E = 55.2 kip wall height, h = 14.63 ft tributary seismic moment on shear wall, Mu = 808.2 kip*ft masonry strength, f'm = 1500 psi shear wall length, d = 46 ft vertitcal shear wall grout spacing = 24 in horizontal shear wall grout spacing = 48 in shear wall thickness, t = 7.625 in 2077.0 in² $A_n =$ Φ= 1.0 (assumed per Tier 2) $\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{n} \sqrt{f_{m}} + 0.25 P_{u} \right]$ masonry shear wall strength, $\phi QCE_m =$ 277.0 kip horizontal masonry shear wall strength, $\phi QCE_s =$ 28.7 kip combined masonry shear wall strength, ϕ QCE = 305.7 kip Determining m-factor for wall governed by flexure roof axial load on wall, P = 13608.3 lbs vertical compressive stress, fae = P/(d*t) = 0.5 psi factor for expected strength, F_{exp} = 1.3 (ASCE 41-17 Table 11-1) expected compressive strength, $f_{me} = F_{exp} * f'_m =$ 1950.0 psi $f_{ae}/f_{me} =$ 0.000

7.5.2 Linear Procedures

7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.

7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, Q_{UD} , shall be calculated in accordance with Eq. (7-34):


$$Q_{UD} = Q_G + Q_E \tag{7-34}$$

where

- Q_{UD} = Deformation-controlled action caused by gravity loads and earthquake forces.
- Q_G = Action caused by gravity loads as defined in Section 7.2.2; and
- Q_E = Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

h/L =	0.32
steel reinforcing ratio, ρ_g =	0.004
$ ho_{g}^{*}f_{ye}/f_{me} =$	0.11
m-factor = knowledge factor, κ =	5.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6) 0.90
masonry shear wall strength, κmφQCE =	1375.5 kip
demand capacity ratio, DCR =	0.04 OK
<u>Shear wall 2</u>	
Roof seismic load, V =	191.5 kip
diaphragm span, L =	52.00 ft
roof tributary width for seismic, $T_w =$	26 ft
tributary seismic load on shear wall, Q_E =	95.8 kip
wall height, h =	14.63 ft
tributary seismic moment on shear wall, Mu =	1400.8 kip*ft
masonry strength, $f_m =$	1500 psi
shear wall length, d =	48 ft
vertitcal shear wall grout spacing =	32 in
horizontal shear wall grout spacing =	48 in
shear wall thickness, t =	7.625 in
A _n =	2014.0 in ²
Φ =	1.0 (assumed per Tier 2)
$\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{n} \sqrt{100} \right]$	$\left[\overline{f_m} + 0.25P_u\right]$
masonry shear wall strength, ϕQCE_m =	270.4 kip
horizontal masonry shear wall strength, $\phi QCE_s =$	28.7 kip
combined masonry shear wall strength, ϕ QCE =	299.1 kip
Determining m-factor for wall governed by flexure	
roof axial load on wall, P =	23369.7 lbs
vertical compressive stress, $f_{ae} = P/(d^*t) =$	0.8 psi
factor for expected strength, F_{exp} =	1.3 (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp}^* f_m^* =$	1950.0 psi
$f_{ae}/f_{me} =$	0.000
h/L =	0.30
steel reinforcing ratio, ρ_q =	0.003
$\rho_{g}^{*}f_{ye}/f_{me} =$	0.09
m-factor =	5.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90
masonry shear wall strength, κmφQCE =	1345.8 kip
demand capacity ratio, DCR =	0.07 <mark>OK</mark>
Shear wall 2	
<u>Shear wall 3</u> Roof seismic load, V =	191.5 kip
diaphragm span, L =	52.00 ft
roof tributary width for seismic, $T_w =$	10.67 ft
tributary seismic load on shear wall, $Q_E =$	39.3 kip
,, <u></u>	····· T
wall height, h =	14.63 ft
tributary seismic moment on shear wall, Mu =	574.9 kip*ft
masonry strength, f' _m =	1500 psi
shear wall length, d =	28 ft
vertitcal shear wall grout spacing =	24 in
5 · 0	

horizontal shear wall grout spacing = shear wall thickness, t = $A_n = \Phi$	48 in 7.625 in 1291.0 in ² 1.0 (assumed per Tier 2)
$\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{v} \right]$	$\sqrt{f_m} + 0.25P_u$
masonry shear wall strength, $\phi QCE_m =$	154.3 kip
horizontal masonry shear wall strength, $\phi QCE_s =$	28.7 kip
combined masonry shear wall strength, ϕ QCE =	183.0 kip
$\begin{array}{l} \textit{Determining m-factor for wall governed by flexure} \\ \textit{roof axial load on wall, P} = \\ \textit{vertical compressive stress, } f_{ae} = P/(d^{*}t) = \\ \textit{factor for expected strength, } F_{exp} = \\ \textit{expected compressive strength, } f_{me} = F_{exp}^{*}f_{m}^{*} = \\ f_{ae}/f_{me} = \\ h/L = \\ \textit{steel reinforcing ratio, } \rho_{g} = \\ \rho_{g}^{*}f_{ye}/f_{me} = \end{array}$	9761.4 lbs 0.6 psi 1.3 (ASCE 41-17 Table 11-1) 1950.0 psi 0.000 0.52 0.004 0.11
m-factor = knowledge factor, κ = masonry shear wall strength, κmφQCE = demand capacity ratio, DCR =	5.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6) 0.90 823.3 kip 0.05 OK

BY:	BS	DATE	Sep-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	_	Process Gallery	JOB NO.	11962A.00
DESIGN TAS	ĸ				ASCE 41-17 - Tier 2 (CSZ)		

CMU IN-PLANE SHEAR WALL CHECK IN BUILDING E-W DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers

In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.

11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.

11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced Masonry Walls. The shear required to develop the expected

flexural strength of RM walls and wall piers shall be compared with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.

Shear wall A

Roof seismic load, V = 191.5 kip diaphragm span, L = 56.67 ft roof tributary width for seismic, $T_w =$ 4 ft tributary seismic load on shear wall, Q_E = 13.5 kip wall height, h = 14.63 ft tributary seismic moment on shear wall, Mu = 197.8 kip*ft masonry strength, f'm = 1500 psi 50 ft shear wall length, d = vertitcal shear wall grout spacing = 24 in horizontal shear wall grout spacing = 48 in shear wall thickness, t = 7.625 in $A_n =$ 2238.0 in² Φ= 1.0 (assumed per Tier 2) $\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A_{n} \sqrt{f_{m}} + 0.25 P_{u} \right]$ masonry shear wall strength, $\phi QCE_m =$ 302.3 kip horizontal masonry shear wall strength, $\phi QCE_s =$ 28.7 kip combined masonry shear wall strength, ϕ QCE = 331.0 kip Determining m-factor for wall governed by flexure roof axial load on wall, P = 3537.1 lbs vertical compressive stress, $f_{ae} = P/(d^*t) =$ 0.1 psi factor for expected strength, F_{exp} = 1.3 (ASCE 41-17 Table 11-1)

expected compressive strength, $f_{me} = F_{exp} * f'_m = 1950.0$ psi

7.5.2 Linear Procedures

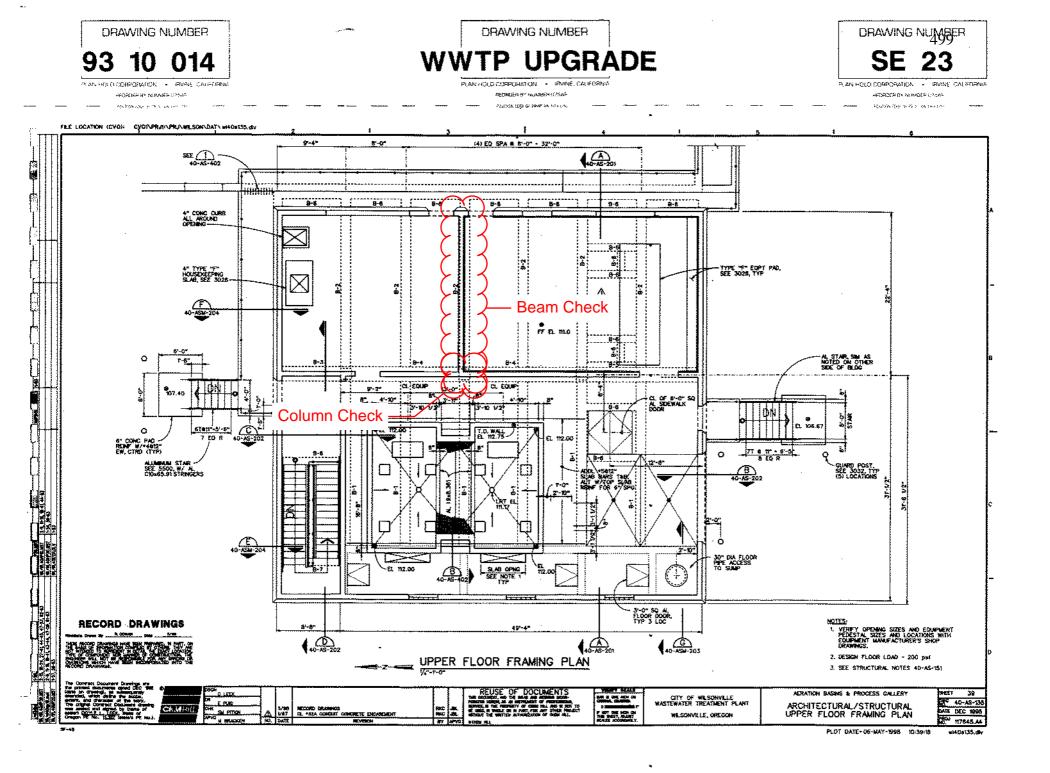
7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.

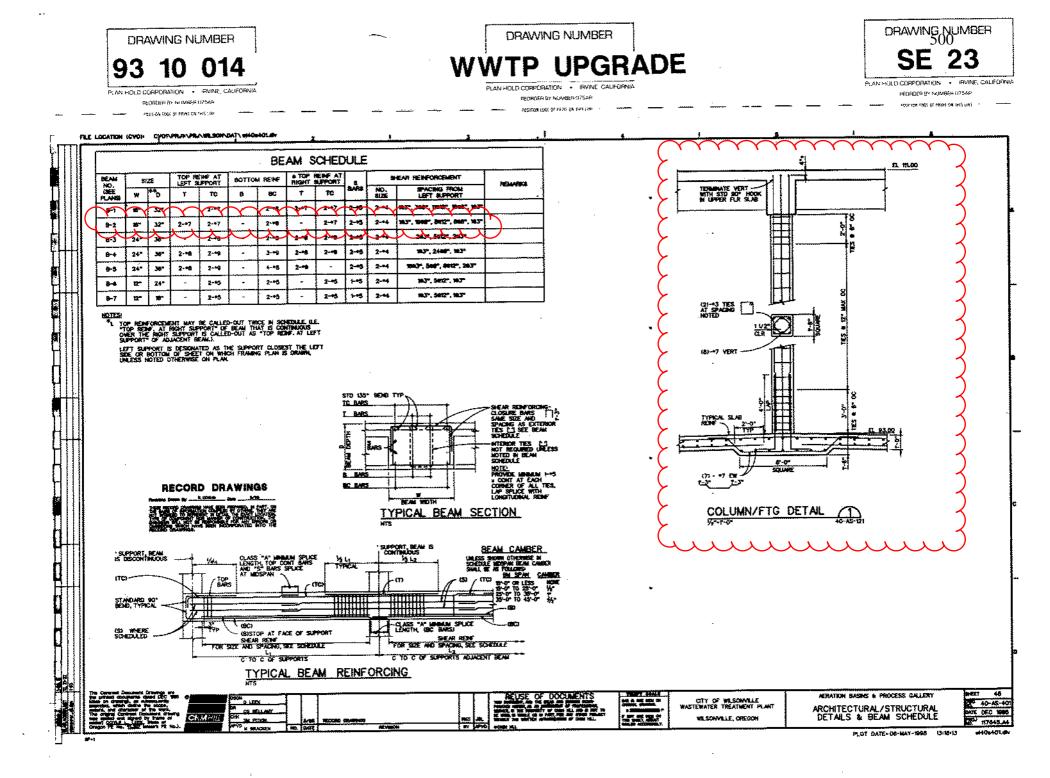
7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, Q_{UD} , shall be calculated in accordance with Eq. (7-34):

$$Q_{UD} = Q_G + Q_E \tag{7-34}$$

where

- Q_{UD} = Deformation-controlled action caused by gravity loads and earthquake forces.
- Q_G = Action caused by gravity loads as defined in Section 7.2.2; and
- Q_E = Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;


<i>с. 1</i>	
$f_{ae}/f_{me} =$	0.000
h/L = steel reinforcing ratio, $\rho_q =$	0.29
	0.004
$ ho_{g}$ *f _{ye} /f _{me} =	0.11
m-factor =	5.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90
masonry shear wall strength, κmφQCE =	1489.5 kip
demand capacity ratio, DCR =	0.01 OK
demand capacity raild, DCR -	0.01
<u>Shear wall B</u>	
Roof seismic load, V =	191.5 kip
diaphragm span, L =	56.67 ft
roof tributary width for seismic, $T_w =$	12 ft
tributary seismic load on shear wall, Q_E =	40.6 kip
wall height, h =	14.63 ft
tributary seismic moment on shear wall, Mu =	593.3 kip*ft
masonry strength, $f'_m =$	1500 psi
shear wall length, d =	26.67 ft
vertitcal shear wall grout spacing =	32 in
horizontal shear wall grout spacing =	48 in
shear wall thickness, t =	7.625 in
A _n =	1128.1 in ²
Φ =	1.0 (assumed per Tier 2)
$\phi V_{\rm m} = \phi \left[\left[4.0 - 1.75 \left(\frac{\rm M}{\rm V}_{\rm d_v} \right) \right] A \right]$	$\sqrt{f_m} + 0.25P_u$
masonry shear wall strength, $\phi QCE_m =$	132.8 kip
horizontal masonry shear wall strength, $\phi QCE_s =$	28.7 kip
combined masonry shear wall strength, ϕ QCE =	161.5 kip
Determining m-factor for wall governed by flexure	10001 7 lbs
roof axial load on wall, P = vertical compressive stress, $f_{ae} = P/(d^*t) =$	10064.7 lbs
	0.7 psi
factor for expected strength, $F_{exp} =$	1.3 (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f'_m = f_{exp} * f'_m = f_{exp} + f_{exp} * f'_m = f_{exp} + f_{$	1950.0 psi
f _{ae} /f _{me} = h/L =	0.000
steel reinforcing ratio, $\rho_g =$	0.55
$\rho_g^* f_{ye}/f_{me} =$	0.004 0.11
Pg 'ye''me -	0.11
m-factor =	5.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
knowledge factor, κ =	0.90
masonry shear wall strength, κmφQCE =	726.7 kip
demand capacity ratio, DCR =	0.06 OK
<u>Shear wall C</u>	
Roof seismic load, V =	191.5 kip
diaphragm span, L =	56.67 ft
roof tributary width for seismic, $T_w =$	24.33 ft
tributary seismic load on shear wall, Q_E =	82.2 kip
wall height, h =	14.63 ft
tributary seismic moment on shear wall, Mu =	1202.8 kip*ft
masonry strength, f' _m =	1500 psi
shear wall length, d =	21.33 ft


vertitcal shear wall grout spacing = horizontal shear wall grout spacing =	32 48	
shear wall thickness, t =	7.625	
A _n =		
Φ =	1.0	(assumed per Tier 2)
$\phi V_{\rm m} = \phi \left[\left[4.0 - 1.75 \left(\frac{\rm M}{\rm V \ d_v} \right) \right] A \right]$	$\int_{m} \sqrt{f_m} + 0.25 P_u$	
masonry shear wall strength, ϕQCE_m =	100.5	kip
horizontal masonry shear wall strength, ϕQCE_s =	28.7	kip
combined masonry shear wall strength, ϕ QCE =	129.2	kip
Determining m-factor for wall governed by flexure roof axial load on wall, P =	19994.8	lbs
vertical compressive stress, $f_{ae} = P/(d^*t) =$	1.6	
factor for expected strength, F_{exp} =		(ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f_m^{*} =$	1950.0	
$f_{ae}/f_{me} =$	0.001	F
h/L =	0.69	
steel reinforcing ratio, ρ_q =	0.004	
$\rho_{\rm q}^* f_{\rm ve}/f_{\rm me} =$	0.11	
rg ye ne		
m-factor = knowledge factor, κ =	0.90	
masonry shear wall strength, κmφQCE =	581.3	kip
demand capacity ratio, DCR =	0.14	ОК
<u>Shear wall D</u>		
Roof seismic load, V =	191.5	kip
diaphragm span, L =	56.67	ft
roof tributary width for seismic, T_w =	16.33	ft
tributary seismic load on shear wall, Q_E =	55.2	kip
	44.00	<i>a</i>
wall height, h =		
tributary seismic moment on shear wall, Mu = masonry strength, f' _m =	807.3 1500	•
shear wall length, d =	38	
vertitcal shear wall grout spacing =	24	
horizontal shear wall grout spacing =	48	
shear wall thickness, t =	7.625	
A _n =		
Φ =	1.0	(assumed per Tier 2)
$\phi V_{m} = \phi \left[\left[4.0 - 1.75 \left(\frac{M}{V d_{v}} \right) \right] A \right]$	$\int_{m} \sqrt{f_m} + 0.25 P_u$	
masonry shear wall strength, $\phi QCE_m =$	220.8	kip
horizontal masonry shear wall strength, $\phi QCE_s =$	28.7	-
combined masonry shear wall strength, $\phi QCE =$	249.5	-
Determining m-factor for wall governed by flexure		
roof axial load on wall, P =	13463.2	
vertical compressive stress, $f_{ae} = P/(d^*t) =$	0.6	
factor for expected strength, F_{exp} =	1.3	(ASCE 41-17 Table 11-1)
expected compressive strength, $f_{me} = F_{exp} * f'_m =$	1950.0	psi
$f_{ae}/f_{me} =$	0.000	
h/L =	0.39	
steel reinforcing ratio, ρ_g =	0.004	

 $\rho_g * f_{ye} / f_{me} = 0.11$

m-factor =	5.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6	3)
knowledge factor, κ =	0.90	
masonry shear wall strength, κmφQCE =	1122.7 kip	

demand capacity ratio, DCR = 0.05 OK

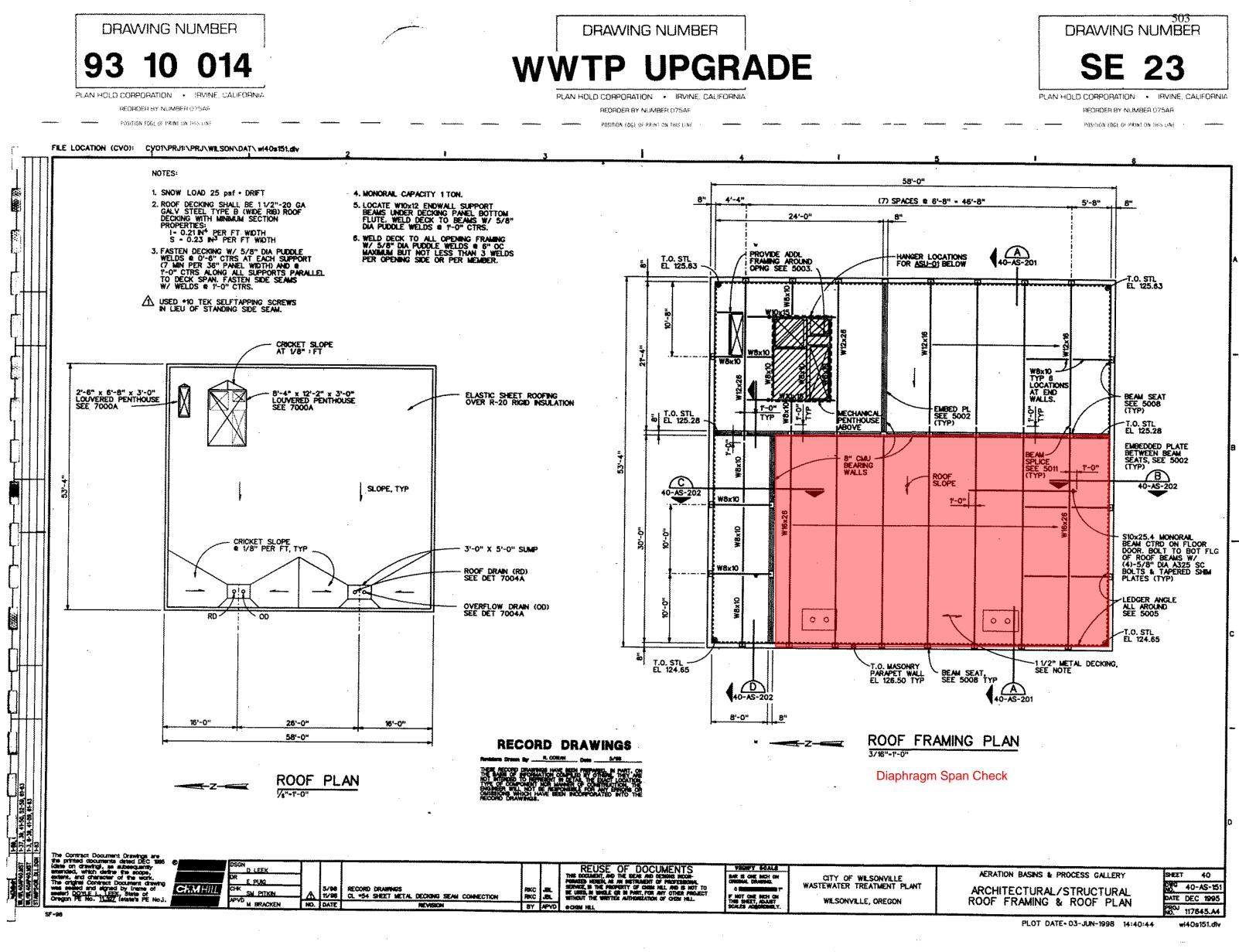
trageneers, vicitizay vicitizati vititi										
BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET				
CHKD BY		DESCRIF	TION		Process Gallery	JOB NO.	11962A.00			
DESIGN TA	SK				ASCE 41-17 - Tier 2 (CSZ)					

BEAM AND COLUMN CHECK SUPPORTING CMU WALL ABOVE (VERTICAL IRREGULARITY TIER 1 FINDING)

5.4.2.3 Vertical Irregularities. An analysis shall be performed in accordance with Section 5.2.4, and the demand-capacity ratio (DCR) shall be determined in accordance with Section 7.3.1.1 for all elements of the seismic-force-resisting system in the noncompliant stories. The adequacy of the elements and connections below the vertical discontinuities shall be evaluated in accordance with Section 5.2.5 as force-controlled elements. The adequacy of struts and diaphragms to transfer loads to adjacent seismic-force-resisting elements as force-controlled elements shall be evaluated.

7.5.2.1.2 Force-Controlled Actions for LSP or LDP. Forcecontrolled actions, Q_{UF} , shall be calculated using one of the following methods:

1. Q_{UF} shall be taken as the maximum action that can be developed in a component based on a limit-state analysis considering the expected strength of the components delivering force to the component under consideration, or the maximum action developed in the component as limited by the nonlinear response of the building.


 Alternatively, Q_{UF} shall be calculated in accordance with Eq. (7-35).

$$Q_{UF} = Q_G \pm \frac{\chi Q_E}{C_1 C_2 J} \tag{7-35}$$

controlled clements shar be evaluated.	$\mathcal{L}_{UF} = \mathcal{L}_{U} + C_1 C_2 J$
Roof seismic load, V =	191.5 kip
diaphragm span, L =	56.67 ft
roof tributary width for seismic, $T_w =$	24.33 ft
wall height, h =	14.63 ft
tributary seismic load on shear wall, V_E =	82.2 kip
seismic overturning on shear wall, M_E =	1202.8 kip*ft
Wall length, $L_w =$	21.33 ft
Factor for adjusting action, $\chi =$	1.3 (interpolated between LS & IO)
$C_1C_2 =$	1.4
Force delivery reduction factor, J =	2
Beam B2 (16"x32") Check	
Roof unit weight, w _{Droof} =	15.3 psf
Wall unit weight, w _{Dwall} =	47.0 lb/ft
Floor unit weight, w _{Dfloor} =	183 psf
Floor unit live load, w _{Lfloor} =	200 psf
Tributary width to beam, T _{wbeam} =	8 ft
supported gravity loads on beam, Q_D =	1633.4 lb/ft
supported live loads on beam, Q_L =	400 lb/ft (assume only 25% of LL)
supported combined loads on beam, Q_{G} =	2236.7 lb/ft
Axial load on beam, Q _{UF} =	38.2 kip
Bending moment demand on beam, Q_{UF} =	127.2 kip*ft
Shear demand on beam, Q_{UF} =	23.9 kip
Beam axial strength, Q _{CL} =	1534.8 kip (From TEDDS calculation)
Beam bending strength, Q _{CL} =	296.6 kip*ft (From TEDDS calculation)
Beam shear strength, Q _{CL} =	58.7 kip (From TEDDS calculation)
knowledge factor, κ =	0.90
Beam axial strength, κ*Q _{CL} =	1381.32 kip
Beam bending strength, κ^*Q_{CL} =	266.94 kip*ft
Beam shear strength, κ^*Q_{CL} =	52.83 kip
Axial DCR =	0.03 OK
Moment DCR =	0.48 OK
Shear DCR =	0.45 <mark>OK</mark>

Column (18"x18") Check

Roof unit weight, w _{Droof} =	15.3	psf	
Wall unit weight, w _{Dwall} =	47.0	lb/ft	
Floor unit weight, w _{Dfloor} =	183	psf	
Floor unit live load, $w_{Lfloor} =$	200	psf	
Tributary area to column, T _{wcolumn} =	213.36	ft∠	
supported gravity loads on column, Q_D =	43.2	kip	
supported live loads on column, Q_L =	10.7	kip	(assume only 25% of LL)
supported combined loads on column, Q_G =	59.2	kip	
supported overturning loads on column, Q_E =	26.2	kip	
Axial compression load on column, Q_{UFcomp} =	85.4		
Axial tension load on column, Q _{UFten} =	12.7	kip	
Bending moment demand on column, Q_{UF} =	42.7	kip*ft	
Shear demand on column, Q_{UF} =	4.1	kip	
	(
Column axial strength, Q_{CL} =	1099.1		(From TEDDS calculation)
Column bending strength, Q_{CL} =		kip*ft	(From TEDDS calculation)
Column shear strength, Q_{CL} =	33.8	•	(From TEDDS calculation)
knowledge factor, κ =	0.90		
Column axial strength, κ*Q _{CL} =	989.19	kin	
Column bending strength, $\kappa Q_{CL} =$		•	
	207.45		
Column shear strength, $\kappa^*Q_{CL} =$	30.42	•	
Axial DCR = Moment DCR =		OK OK	
Shear DCR =	0.21 0.14	OK	
Shear Borr -	0.14	U.N.	

Engineers	Working	Wonders	With	Water **

BY:	BS	DATE	Sep-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	_	Process Gallery	JOB NO.	11962A.00
DESIGN TAS	SK				ASCE 41-17 - Tier 2 (CSZ)		

DIAPHRAGM METAL DECK CHECK

9.10.1.3 Strength of Bare Metal Deck Diaphragms. The strength of bare metal deck diaphragms shall be determined in accordance with Section 9.3.2 and the requirements of this section.

Expected strength, Q_{CE} , for bare metal deck diaphragms shall be taken as 2 times allowable values specified in approved codes and standards, unless a larger value is justified by test data. Alternatively, lower-bound strength shall be taken as nominal strength published in approved codes or standards, except that the strength reduction factor, ϕ , shall be taken as equal to 1.0.

Lower-bound strengths, Q_{CL} , of welded connectors shall be as specified in AWS D1.3, or other approved standard.

Roof seismic load, V = diaphragm span, L = roof unit diaphragm load, v =	191.5 kip 58.00 ft 3.30 kip/ft
Roof span between shear walls, L ₁ = Roof depth, d = diaphragm shear, v ₁ =	48.00 ft 53.33 ft 1.486 kip/ft
diaphragm strength, Q _{allow} = expected diaphragm strength, Q _{CE} =	530lbs/ft1060lbs/ft(expected strength shall be 2x the allowable
m-factor = knowledge factor, κ = diaphragm strength, κmφQ _{CF} =	per ASCE 41-17 Section 9.10.1.3) 1.625 (interpolated between LS & IO. ASCE 41-17 Table 9-6) 0.90 1.550 kip/ft
demand capacity ratio, $DCR =$	1.550 kip/ft 0.96 <mark>OK</mark>

Type HSB®-36-SS

• 36/5 Weld Pattern at Supports

Sidelaps Connected with #10 Screws

Allowable Diaphragm Shear Strength, q (plf) and Flexibility Factors, F ((in./lb)x10⁶)

DECK						S	PAN (ft-in.)			
GAGE	ATTACHMENT		4'-0''	5'-0"	6'-0"	7'-0"	8'-0"	9'-0"	10'-0''	11'-0"	12'-0"
	#10 @ 24"	q	431	378	310	289	249	242	218		
	#10 @ 24"	F	-2.3+190R	0.2+152R	2.9+126R	3.9+108R	5.6+94R	6.1+83R	7.4+75R		
	#10 @ 10"	q	480	417	343	317	298	264	257		
	#10 @ 18"	F	-3.3+190R	-0.7+152R	1.8+126R	3+108R	3.8+95R	5.2+84R	5.7+75R		
	#10 @ 10"	q	527	456	408	373	347	329	316		
~~	#10 @ 12"	F	-4+190R	-1.3+152R	0.5+127R	1.8+109R	2.8+95R	3.5+84R	4.1+76R		
22	#10 @ 0"	q	607	565	506	485	445	438	414		
	#10 @ 8"	F	-4.8+191R	-2.5+153R	-0.6+127R	0.4+109R	1.5+95R	2.1+85R	2.8+76R		
	#10 @ 0"	q	682	627	589	561	539	522	509		
	#10 @ 6"	F	-5.4+191R	-2.9+153R	-1.3+127R	-0.1+109R	0.8+95R	1.5+85R	2+76R		
	" 40 O 4"	q	817	769	736	712	693	678	666		
	#10 @ 4"	F	-6+191R	-3.6+153R	-2+127R	-0.9+109R	0+96R	0.7+85R	1.2+76R		
	#40.00.04	q	601	526	433	403	349	335	301	297	272
	#10 @ 24"	F	0.9+120R	2.5+95R	4.5+79R	5.1+68R	6.5+59R	6.7+52R	7.7+47R	7.8+43R	8.6+39
		q	662	577	476	440	413	363	352	344	315
	#10 @ 18"	F	0+120R	1.7+96R	3.5+79R	4.3+68R	4.8+60R	5.9+53R	6.2+47R	6.4+43R	7.1+39
_	#10 @ 12"	q	716	629	561	513	477	449	430	414	401
		F	-0.6+120R	1.1+96R	2.3+80R	3.2+68R	3.8+60R	4.3+53R	4.8+48R	5.1+43R	5.4+40
20		q	820	760	683	658	606	592	558	554	530
	#10 @ 8"	F	-1.5+121R	0+96R	1.3+80R	2+69R	2.7+60R	3+54R	3.5+48R	3 7+44R	4.1+40
		q	916	841	788	750	720	697	678	662	649
	#10 @ 6"	F	-2+121R	-0.4+97R	0.7+80R	1.4+69R	2+60R	2.5+54R	2.8+48R	3.1+44R	3.4+40
	#10 @ 4"		1089	1024	979	945	920	899	883	869	857
		q F	-2.5+121R	-1+97R	0+81R	0.8+69R	1.3+60R	1.7+54R	2.1+48R	2.4+44R	2.6+40
			1002	885	731	677	588	562	502	491	450
	#10 @ 24"	q F	3.2+58R								
				4+46R	5.4+38R	5.6+33R	6.6+28R	6.6+25R	7.4+22R	7.4+20R	8+18F
	#10 @ 18"	q	1085	956	797	734	687	606	581	563	516
		F	2.4+58R	3.3+46R	4.5+38R	4.9+33R	5.2+29R	6+25R	6.1+23R	6.2+21R	6.7+19
	#10 @ 12"	q	1166	1024	925	847	786	738	700	670	647
18		F	1.9+58R	2.8+47R	3.5+39R	4+33R	4.3+29R	4.6+26R	4.9+23R	5.1+21R	5.2+19
10	#10 @ 8"	q	1321	1219	1094	1049	973	951	898	886	845
		F	1.1+59R	1.9+47R	2.6+39R	2.9+34R	3.3+29R	3.5+26R	3.8+23R	3.9+21R	4.1+19
	#10 @ 6"	q	1465	1340	1253	1189	1139	1100	1068	1042	1020
		F	0.7+59R	1.5+47R	2.1+39R	2.5+34R	2.8+29R	3+26R	3.2+24R	3.3+21R	3.4+20
	#10 @ 4"	q	1721	1615	1540	1484	1441	1407	1379	1356	1337
		F	0.2+59R	1+47R	1.5+39R	1.9+34R	2.1+30R	2.4+26R	2.5+24R	2.7+21R	2.8+20
	#10 @ 24"	q	1277	1139	946	884	768	739	661	647	590
		F	3.8+33R	4.3+26R	5.3+21R	5.4+18R	6.2+16R	6.2+14R	6.9+12R	6.8+11R	7.3+10
	#10 @ 18"	q	1393	1235	1038	963	906	801	771	748	683
		F	3.1+33R	3.7+26R	4.6+22R	4.8+18R	5+16R	5.6+14R	5.7+13R	5.7+12R	6.2+10
	#10 @ 12"	q	1505	1330	1208	1118	1044	985	937	899	867
16	110 @ 12	F	2.6+33R	3.2+26R	3.6+22R	4+19R	4.2+16R	4.4+15R	4.6+13R	4.7+12R	4.8+11
16	#10 @ 8"	q	1717	1597	1440	1389	1292	1268	1200	1188	1138
	#10 W 0	F	2+33R	2.4+27R	2.9+22R	3+19R	3.3+17R	3.4+15R	3.6+13R	3.6+12R	3.8+11
	#10 @ 6"	q	1914	1763	1658	1580	1520	1472	1433	1402	1375
	#10@0	F	1.6+34R	2.1+27R	2.4+22R	2.6+19R	2.8+17R	2.9+15R	3.1+13R	3.2+12R	3.2+11
	#10 @ 4"	q	2258	2132	2043	1977	1926	1886	1853	1825	1802
	#10 @ 4"	F	1.1+34R	1.6+27R	1.9+22R	2.1+19R	2.3+17R	2.4+15R	2.5+13R	2.6+12R	2.6+11

See footnotes on page 28.

Deck Span = 6'-8" q = 530 psf (interpolated)

WORKSHOP - TIER 2 CALCULATIONS

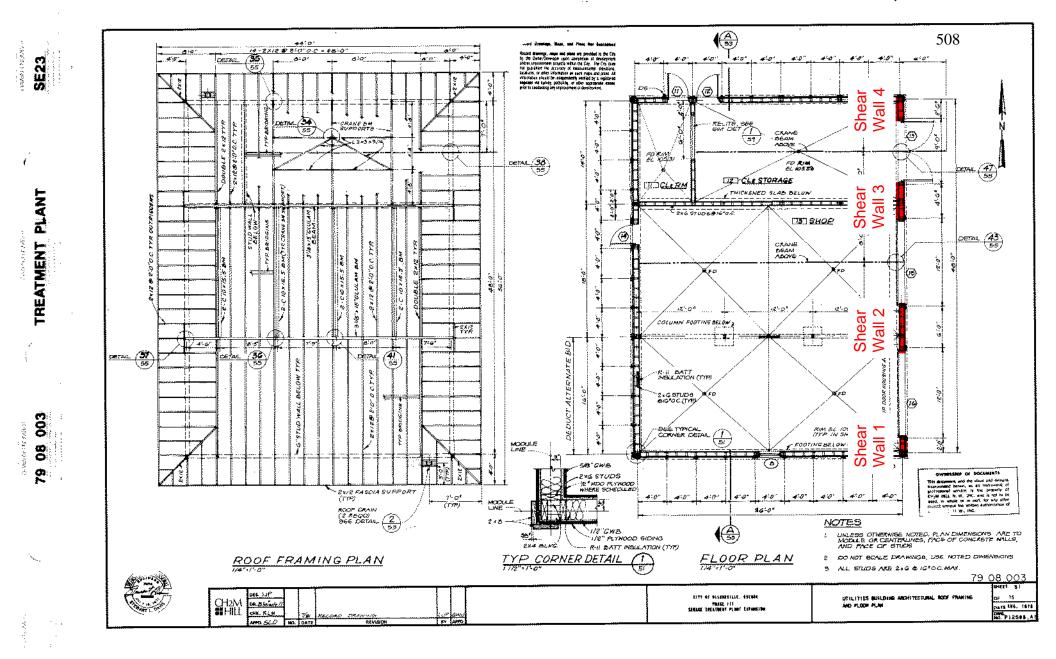
Carollo

BY: B	 DATE		CLIENT	City of Wilsonville	SHEET	
CHKD BY	 DESCRIPT	ION	_	Workshop	JOB NO.	11962A.00
DESIGN TASK				ASCE 41-17 - Tier 2 (BSE-2E)		

SEISMIC BASE SHEAR FOR WORKSHOP

7.4.1.3.1 Pseudo Seismic Force for LSP. The pseudo lateral force in a given horizontal direction of a building shall be determined using Eq. (7-21). This force shall be used to evaluate or retrofit the vertical elements of the seismic-force-resisting system.

$$V = C_1 C_2 C_m S_a W \tag{7-21}$$


Table 7-3. Alternate Values for Modification Factors C_1C_2			Table 7-6. Values for Effective Mass Factor Cm								
Fundamental Period	m _{max} < 2	2 ≤ <i>m</i> _{max} < 6	m _{max} ≥6	No. of Stories	Concrete Moment Frame	Concrete Shear Wall	Concrete Pier-Spandrei	Steel Moment Frame	Steel Concentrically Braced Frame	Steel Eccentrically Braced Frame	Other
T≤0.3	1.1	1.4	1.8	1-2	1.0	1.0	1.0	1.0	1.0	1.0	1.0
0.3 < T≤1.0 T>1.0	1.0	1.1	1.2	3 or more	0.9	0.8	0.8	0.9	0.9	0.9	1.0

Note: C_m shall be taken as 1.0 if the fundamental period. *T*, in the direction of response under consideration is greater than 1.0

spectral response acceleration, S_{xs} =	0.744	g
spectral response acceleration, S_{x1} =	0.405	g
building period, T =	0.149	s
response spectrum acceleration, $S_a =$	0.744	g
effective seismic weight, W =	59.0	kip
$C_1C_2 =$	1.4	
effective mass factor, C_m =	1.0	
seismic lateral force, V =	61.5	kip

(BSE-2E seismic hazard)	ļ
(BSE-2E seismic hazard)	1

(Table 12-3 for wood structural panels, m=4.15)

Carol	
-------	--

Engineers.	Working	Wonders V	With Water "					
BY:	BS	DATE	Sep-21	CLIENT	City of Wilsonville	SHEET		
CHKD BY		DESCRIF	PTION	-	Workshop	JOB NO.	11962A.00	
DESIGN TASK				ASCE 41-17 - Tier 2 (BSE-2E)				
		-						

NARROW SHEAR WALL CHECK ALONG EAST ELEVATION

5.5.3.6.1 Stucco, Gypsum Wallboard, Plaster, or Narrow Shear Walls. The overturning and shear demands for noncompliant walls shall be calculated in accordance with Section 5.2.4, and the adequacy shall be evaluated in accordance with Section 5.2.5.

12.4.3.6.2 Strength of Wood Structural Panel Sheathing or Siding Shear Walls. The expected strength of wood structural panel shear walls shall be taken as mean maximum strengths obtained experimentally. Expected strengths of wood structural panel shear walls shall be permitted to be based on 1.5 times yield strengths. Yield strengths shall be determined using LRFD procedures contained in AWC SDPWS, except that the resistance factor, ϕ , shall be taken as 1.0 and expected material properties shall be determined in accordance with Section 12.2.2.

Approved allowable stress values for fasteners shall be permitted to be converted in accordance with Section 12.2.2.5.1 where the strength of a shear wall is computed using principles of mechanics.

For existing wood structural panel shear walls framed with 2-in. nominal framing at adjoining panel edges where 3-in. nominal framing is required per AWC SDPWS, the expected strength shall not be taken as greater than 0.90 times the expected strength associated with use of 3-in. nominal framing at adjoining panel edges.

7.5.2 Linear Procedures

7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.

7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, Q_{UD} , shall be calculated in accordance with Eq. (7-34):

$$Q_{UD} = Q_G + Q_E \tag{7-34}$$

where

 Q_{UD} = Deformation-controlled action caused by gravity loads and earthquake forces.

- Q_G = Action caused by gravity loads as defined in
- Section 7.2.2; and Q_E = Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or
- Section 7.4.2;

12.4.3.6.3 Acceptance Criteria for Wood Structural Panel Sheathing or Siding Shear Walls. For linear procedures, *m*-factors for use with deformation-controlled actions shall be taken from Table 12-3. For nonlinear procedures, the coordinates of the generalized force-deformation relation, described in Eq. (12-1), and deformation acceptance criteria for primary and secondary components shall be taken from Table 12-4.

12.3.3.1 Wood Construction. Unless otherwise specified in this standard, connections between wood components of a seismic-force-resisting system shall be considered in accordance with this section. Demands on connectors, including nails, screws, lags, bolts, split rings, and shear plates used to link wood components to other wood or metal components shall be considered deformation-controlled actions. Demands on bodies of connections and bodies of connection hardware shall be considered force-controlled actions.

7.5.2.1.2 Force-Controlled Actions for LSP or LDP. Forcecontrolled actions, Q_{UF} , shall be calculated using one of the following methods:

- 1. Q_{UF} shall be taken as the maximum action that can be developed in a component based on a limit-state analysis considering the expected strength of the components delivering force to the component under consideration, or the maximum action developed in the component as limited by the nonlinear response of the building.
- Alternatively, Q_{UF} shall be calculated in accordance with Eq. (7-35).

 O_1

$$y_F = Q_G \pm \frac{\chi Q_E}{C_1 C_2 J} \tag{7-35}$$

Based on the findings from Tier 1, the east elevation wall is considered to have narrow shear walls. These shear walls will be checked to resist the seismic load on structure. From ASCE 41-17 Section 12.4.3.6.2, the shear walls will be considered deformation-controlled actions. The anchor connections for these shear walls will be considered force-controlled.

Roof seismic load, V =	61.5 kip	
diaphragm span, L =	44.00 ft	
roof tributary width for seismic, T_w =	22 ft	
wall length, L _{wall} =	48 ft	
effective shear wall length, L_{sweff} =	10.5 ft	(wall lengths considered to act as shear walls)
unit roof seismic load on shear wall, v_E =	0.64 kip/ft	
unit effective base seismic load on shear wall, v_{Eeff} =	2.93 kip/ft	
Wall Double Top Plate Check for Tension & Compression	1	
Diaphragm bending moment, $M = (V/2)^* L_{wall}/4 =$	369.0 kip*ft	
Tension/ Compression force on top plate, $T_C = M/L =$	8.4 kip	
top plate net area, A _{net} =	8.25 in²	(3-2x6 plates but only one plate effective at joint)
tension/compression stress, f_{t-c} =	1016.5 psi	
Double Top Plate Check for Tension		
design tension value, F _t =	575.0 psi	(assumed Douglas Fir-Larch No. 2)
wet service factor, C_M =	1.0	

temperature factor, C _t =	1.0		
size factor, C _F =	1.0		
incising factor, C _i =	1.0		
format conversion factor for tension, K_F =	2.7		
adjusted tension design stress, F'_t =	1552.5	psi	
knowledge factor, κ =	0.90		
$DCR = f_t / (\kappa^* F'_t) =$	0.73	ΟΚ	
Double Top Plate Check for Compression			
design compression value perpendicular to grain, $\mathrm{F_{c}}$ =	625.0	psi	(assumed Douglas Fir-Larch No. 2)
wet service factor, C_M =	1.0		
temperature factor, C_t =	1.0		
incising factor, C _i =	1.0		
bearing area factor, C _b =	1.0		

bearing area factor, $C_b = 1.0$ format conversion factor for tension, $K_F = 2.4$ adjusted compression design stress, $F'_c = 1500.0$ psi knowledge factor, $\kappa = 0.90$ $DCR = f_c / (\kappa^*F'_c) = 0.75$ OK

There is no detail provided to show how the top plates in wall are spliced together. This connection cannot be checked and as such considered deficient. Mitigation is required to provide chord connection.

Shear wall 1 - Shear Wall Strength Check

wall height, h =	15.5 ft
shear wall length, L =	2 ft
shear wall ratio, h/L =	7.75 > 3.5 (NG)

As noted in ASCE 41-17 Table 12-3 footnote b, since the aspect ratio exceeds the maximum ratio this wall cannot be considered to act as part of the lateral resisting system.

15.5 ft
6 ft
2.58 < 3.5
17.6 kip
272.4 kip*ft
400 lbs/ft (per AWC SDPWS-2008 Table 4.3B)
600 lbs/ft (increased by 1.5 per ASCE 41-17 12.4.3.6.2
4.15 (interpolated between LS & CP. ASCE 41-17 Table 12-3
0.90
13.4 kip
1.31 NG
hor @ 4'-0" spacing)
1.15 (interpolated between LS & CP)
1.4
2
4 ft
4.81 kip (Connection considered force-controlled)
5.49 kip (From Hilti Profis Calculation)
10.91 kip (From Hilti Profis Calculation)
17.84 kip (From Hilti Profis Calculation)
0.90
0.97 OK
0.49 OK
0.30 <mark>OK</mark>
4.81 kip

eference lateral design value for bolt in single shear, Z =	650	D lbs (1/2"Ø bolt in assumed Douglas Fir-Larch)
wet service factor, C_M =	1	1
temperature factor, C_t =	1	1
group action factor, C _g =	1	1
geometry factor, C_{Δ} =	1	1
end grain factor, C _{eg} =	1	1
diaphragm factor, C _{di} =	1	1
toe-nail factor, C _{tn} =	1	1
format conversion factor for tension, K_F =	3.32	2
adjusted bolt design value in shear, Z' =	2158	3 lbs
knowledge factor, κ =	0.90)
$DCR = V_{sill}/(\kappa^*Z') =$	2.48	NG

Drawings do not indicate the use of hold-down hardware to foundation. This is considered a deficiency and will need

Shear wall 3 - Shear Wall Strength Check		
wall height, h =	15.5 ft	
shear wall length, L =	4.5 ft	
shear wall ratio, h/L =	3.44 < 3.5	
tributary effective seismic shear on shear wall, V_{ueff} =	13.2 kip	
tributary effective seismic moment on shear wall, M _{ueff} =	204.3 kip*ft	
	·	
shear wall strength, V_n =	400 lbs/ft	(per AWC SDPWS-2008 Table 4.3B)
expected yield strength, Q_{CE} =	600 lbs/ft	(increased by 1.5 per ASCE 41-17 12.4.3.6.2)
m-factor =		blated between LS & CP. ASCE 41-17 Table 12-3)
knowledge factor, κ =	0.90	
wood shear wall strength, κmφQCE =	10.1 kip	
demand capacity ratio, DCR =	1.31 NG	
Shear wall 3 Base Plate Anchorage (1/2" expansion and		
Factor for adjusting action, χ =		plated between LS & CP)
$C_1 C_2 =$	1.4	
Force delivery reduction factor, J =	2	
anchor spacing =	4 ft	
Seismic shear force on sill bolt, V_{sill} =	4.81 kip	(Connection considered force-controlled)
	E 40 I.i.	
Anchor steel shear strength =	5.49 kip	(From Hilti Profis Calculation)
Anchor pryout strength = Concrete edge failure strength =	10.91 kip 17.84 kip	(From Hilti Profis Calculation) (From Hilti Profis Calculation)
knowledge factor, κ =	0.90	
steel strength DCR =	0.97 OK	
pullout strength DCR =	0.49 OK	
concrete breakout strength DCR =	0.30 OK	
Ŭ		
2x6 Sill Plate check for Shear		
Seismic shear force on sill bolt, V_{sill} =	4.81 kip	
eference lateral design value for bolt in single shear, Z =	650 lbs	(1/2"Ø bolt in assumed Douglas Fir-Larch)
wet service factor, C_M =	1	
temperature factor, C_t =	1	
group action factor, C _g =	1	
geometry factor, C_{Δ} =	1	
end grain factor, C _{eg} =	1	
diaphragm factor, C _{di} =	1	
toe-nail factor, C _{tn} =	1	
format conversion factor for tension, K_{F} =	3.32	
adjusted bolt design value in shear, Z' =	2158 lbs	
knowledge factor, κ =	0.90	
$DCR = V_{sill} / (\kappa^* Z') =$	2.48 NG	

Drawings do not indicate the use of hold-down hardware to foundation. This is considered a deficiency and will need

Shear wall 4 - Shear Wall Strength Check

wall height, h =	15.5 f	ft
shear wall length, L =	2.5 f	ft
shear wall ratio, h/L =	6.20	> 3.5 (NG)

As noted in ASCE 41-17 Table 12-3 footnote b, since the aspect ratio exceeds the maximum ratio this wall cannot be considered to act as part of the lateral resisting system.

Table 4.3B Nominal Unit Shear Capacities for Wood-Frame Shear Walls1,2,5,6

	W	ood Struct	ural Panels Appli	ed over	1/2	" or 5	5/8" (Sypsi	im Wa	allbo	ard or	Gype	sum S	Sheat	hing l	Board			
	Minimum	Minimum Fastator					_	Den el F	SB	A SMIC	ala a dia					Panel	l Wi Edge Fa	ND	pecing
Sheathing Material	Nominal Penet Thickness (in.) Penetration in Framing Member or Blocking (in.)	Ponetration in Framing Member or	Fastener Type & Size	-	6			A	ge rass	anor Spa	cing (in	,		,	_	6		3	2
			v. (pit)		a, s/in.)	v. (pit)		a, s/in.)	v. (pit)		i. vin.)	¥. (pit)	(kips		¥ (pit)	v. (pH)	¥	¥ (pit)	
Vood Structural			Nall (common or galvanized box)		058	PLY		058	PLY		058	PLY		058	PLY				
ands -	5/16	1-1/4	8d	400	13	10	600	18	13	780	23	16	1020	35	22	500	840	1090	1430
buctural I ^{1.4}	3/8, 7/16, 15/32	1-38	10d	560	14	11	860	18	14	1100	24	17	1400	37	23	785	1205	1540	2045
Vood Structural	5/16 3/8	1-1/4	8d	360 400	18	9.5	540 600	18	12	700	24 20	14	900 1020	37	18	505 500	755	560 1090	1200
heathing ^{3,4}	3/8, 7/16, 15/32	1-3/8	10d	520	18	10	760	19	13	560	25	15	1280	39	20	730	1065	1370	1790
lywood Siding	5/16 3/8	1-1/4	Nall (galvanized casing) 6d (2-1/2" x0.113") 10d (2100 128")	280		13 16	420		16	550 620		17	720		21	300 450	590 670	770	1010

 Nominal unit shear capacities shall be adjusted in accordance with 4.3.3 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4.3.6. For specific requirements, see 4.3.7.1 for wood structural panel shear walls. See Appendix A for common and box nail dimensions.

 For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 12.3.3 A). The Specific Gravity Adjustment Factor shall not be greater than 1.

Apparent shear stiffness values, G₄, are based on nail slip in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for shear walls constructed with either OSB or 3 ply plywood panels. When 4-ply or 5-ply plywood panels or composite panels are used, G₄ values for plywood shall be permitted to be multiplied by 1.2.

4. Where moisture content of the framing is greater than 19% at time of fabrication, G, values shall be multiplied by 0.5.

5. Where panels are applied on both faces of a shear wall and nail spacing is less than 6° on center on either side, panel joints shall be offset to fall on different framing members. Alternatively, the width of the nailed face of framing members shall be 3° nominal or greater at adjoining panel edges and nails at all panel edges shall be staggered.

6. Galvanized nails shall be hot-dipped or tumbled.

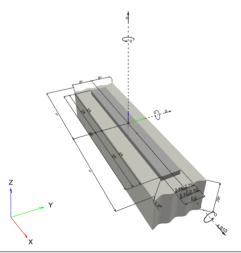
8

www.hilti.com

Company: Address: Phone I Fax:	Carollo Engineers	Page: Specifier: E-Mail:	B. Stuetzel
Design: Fastening point:	Workshop - Sill plate anchorage check	Date:	9/17/2021

Specifier's comments: City of Wilsonville - Workshop - Shear Wall Sill Plate Anchorage into Concrete Foundation

1 Input data


Anchor type and diameter:	Kwik Bolt TZ - CS 1/2 (3 1/4)
Item number:	not available
Effective embedment depth:	h _{ef,act} = 3.250 in., h _{nom} = 3.625 in.
Material:	Carbon Steel
Evaluation Service Report:	ESR-1917
Issued I Valid:	1/1/2020 5/1/2021
Proof:	Design Method ACI 318-14 / Mech
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 1.500 in.
Anchor plate ^R :	$l_x \ge l_y \ge t = 48.000$ in. x 5.500 in. x 1.500 in.; (Recommended plate thickness: not calculated)
Profile:	no profile
Base material:	cracked concrete, 3000, $f_c' = 3,000 \text{ psi}$; $h = 28.000 \text{ in}$.
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
Seismic loads (cat. C, D, E, or F)	edge reinforcement: none or < No. 4 bar Tension load: yes (17.2.3.4.3 (d))
	Shear load: yes (17.2.3.5.3 (c))

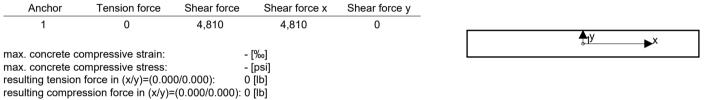
Note: the Kwik Bolt TZ - CS anchor is in the process of phase-out.

Application also possible with Kwik Bolt TZ2 - CS under the selected boundary conditions.

^R - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

www.hilti.com


Company:	Carollo Engineers	Page:	2
Address:	-	Specifier:	B. Stuetzel
Phone I Fax:		E-Mail:	
Design:	Workshop - Sill plate anchorage check	Date:	9/17/2021
Fastening point:			
1.1 Design results			

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0; V_x = 4,810; V_y = 0;$	yes	135
		$M_x = 0; M_y = 0; M_z = 0;$		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ¢ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company:	Carollo Engineers	Page:	3
Address:		Specifier:	B. Stuetzel
Phone I Fax:		E-Mail:	
Design: Fastening point:	Workshop - Sill plate anchorage check	Date:	9/17/2021

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_v = V_{ua} / \Phi V_n$	Status
Steel Strength*	4,810	5,495	88	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	4,810	10,911	44	OK
Concrete edge failure in direction y+**	4,810	17,840	27	OK

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V _{sa} [lb]	$\alpha_{\rm V,seis}$	φ	φ V _{sa} [lb]	V _{ua} [lb]
5,495	1.000	1.000	5,495	4,810

4.2 Pryout Strength

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	c _{a,min} [in.]	κ _{cp}	c _{ac} [in.]	$\psi_{\text{ c,N}}$	
95.06	95.06	8.000	2	6.000	1.000	
e _{c1,V} [in.]	$\Psi_{\text{ec1,V}}$	e _{c2,V} [in.]	$\Psi_{\text{ec2,V}}$	$\psi_{\text{ed},\text{N}}$	$\Psi_{\text{cp},\text{N}}$	k _{cr}
0.000	1.000	0.000	1.000	1.000	1.000	17
λ_{a}	N _b [lb]	φ	$\phi_{seismic}$	φV _{cpg} [lb]	V _{ua} [lb]	
1.000	5,455	1.000	1.000	10,911	4,810	

4.3 Concrete edge failure in direction y+

l _e [in.]	d _a [in.]	c _{a1} [in.]	A _{Vc} [in. ²]	A _{Vc0} [in. ²]	
3.250	0.500	8.000	288.00	288.00	
$\psi_{\text{ed},\text{V}}$	$\Psi_{\text{parallel},V}$	e _{c,V} [in.]	$\Psi_{\text{ec,V}}$	$\Psi_{c,V}$	$\Psi_{h,V}$
1.000	2.000	0.000	1.000	1.000	1.000
λ _a	V _b [lb]	φ	$\phi_{seismic}$	∳ V _{cbg} [lb]	V _{ua} [lb]
1.000	8,920	1.000	1.000	17,840	4,810

www.hilti.com

Company:	Carollo Engineers	Page:	4
Address:	-	Specifier:	B. Stuetzel
Phone I Fax:		E-Mail:	
Design:	Workshop - Sill plate anchorage check	Date:	9/17/2021
Fastening point:			

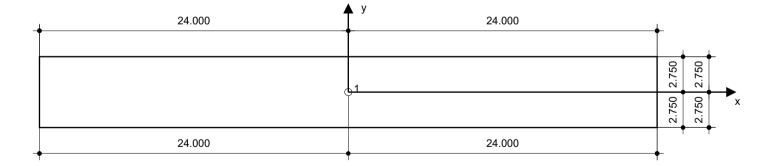
5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2018, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-14, Chapter 17, Section 17.2.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.2.3.4.3 (b), Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.2.3.5.3 (a), Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c).
- Section 17.2.3.4.3 (b) / Section 17.2.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.2.3.4.3 (d) / Section 17.2.3.5.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-14, Section 17.8.1.

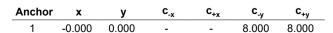
Fastening meets the design criteria!

www.hilti.com

Company:	Carollo Engineers	Page:	5
Address:		Specifier:	B. Stuetzel
Phone I Fax:		E-Mail:	
Design: Fastening point:	Workshop - Sill plate anchorage check	Date:	9/17/2021


6 Installation data

	Anchor type and diameter: Kwik Bolt TZ - CS 1/2 (3 1/4)
Profile: no profile	Item number: not available
Hole diameter in the fixture: $d_f = 0.562$ in.	Maximum installation torque: 480 in.lb
Plate thickness (input): 1.500 in.	Hole diameter in the base material: 0.500 in.
Recommended plate thickness: not calculated	Hole depth in the base material: 4.000 in.
Drilling method: Hammer drilled Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.	Minimum thickness of the base material: 8.000 in.


Hilti KB-TZ stud anchor with 3.625 in embedment, 1/2 (3 1/4), Carbon steel, installation per ESR-1917

6.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary HammerProperly sized drill bit	Manual blow-out pump	 Torque controlled cordless impact tool Torque wrench Hammer

Coordinates Anchor [in.]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company:	Carollo Engineers	Page:	6
Address:	-	Specifier:	B. Stuetzel
Phone I Fax:		E-Mail:	
Design:	Workshop - Sill plate anchorage check	Date:	9/17/2021
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

@carollo

BY: BS	DATE		CLIENT	City of Wilsonville	SHEET	
CHKD BY	DESCRIF	TION		Workshop	JOB NO.	11962A.00
DESIGN TASK				ASCE 41-17 - Tier 2 (CSZ)		

SEISMIC BASE SHEAR FOR WORKSHOP

7.4.1.3.1 Pseudo Seismic Force for LSP. The pseudo lateral force in a given horizontal direction of a building shall be determined using Eq. (7-21). This force shall be used to evaluate or retrofit the vertical elements of the seismic-force-resisting system.

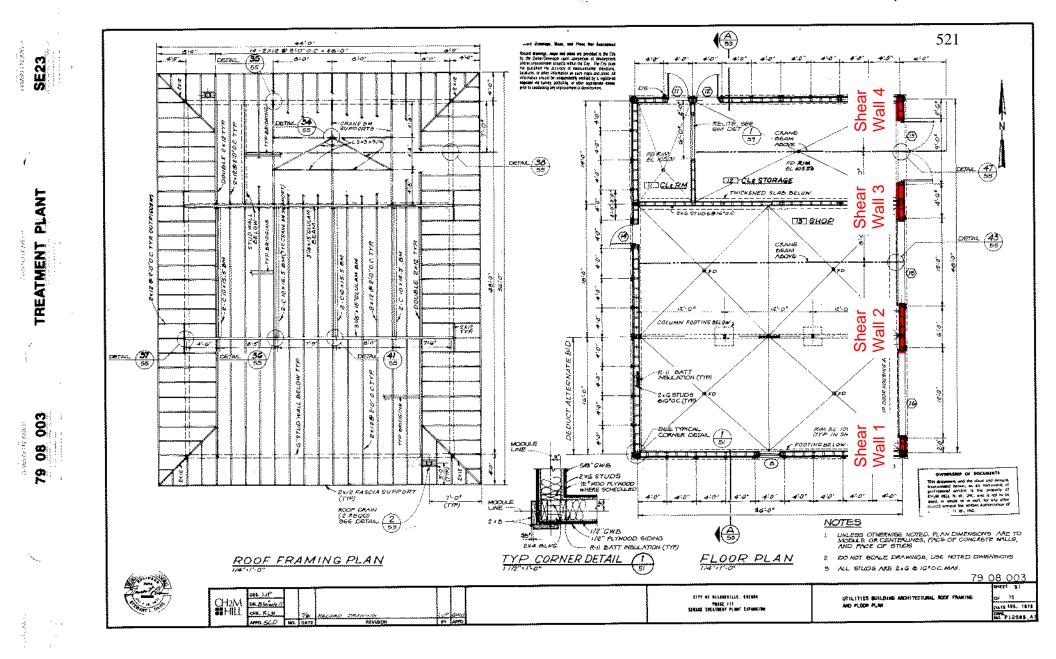

$$V = C_1 C_2 C_m S_a W \tag{7-21}$$

Table 7-3. Alter	7-3. Alternate Values for Modification Factors C_1C_2			ctors C1C2 Table 7-6. Values for Effective Mass Factor Cm							
Fundamental Period	m _{max} < 2	$2 \le m_{max} < 6$	m _{max} ≥6	No. of Stories	Concrete Moment Frame	Concrete Shear Wall	Concrete Pier-Spandret	Steel Moment Frame	Steel Concentrically Braced Frame	Steel Eccentrically Braced Frame	Other
T≤0.3 0.3 < T≤1.0	1.1	1.4	1.8 1.2	1-2	1.0	1.0	1.0	1.0	1.0	1.0	1.0
T>1.0	1.0	1.0	1.1	3 or more	0.9 d be taken as 1.0 if #	0.8	0.8	0.9	0.9	0.9	1.0

g	0.446	spectral response acceleration, S_{xs} =
g	0.332	spectral response acceleration, S_{x1} =
s	0.149	building period, T =
g	0.446	response spectrum acceleration, $S_a =$
kip	59	effective seismic weight, W =
	1.4	$C_1C_2 =$
	1.0	effective mass factor, C_m =
kip	36.8	seismic lateral force, V =

(CSZ seismic hazard) (CSZ seismic hazard)

(Table 12-3 for wood structural panels, m=2.75)

	carollo
Engineere	Marking Mandara With Mater

BY:	BS	DATE	Sep-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRI	PTION		Workshop	JOB NO.	11962A.00
DESIGN TA	SK				ASCE 41-17 - Tier 2 (CSZ)		

NARROW SHEAR WALL CHECK ALONG EAST ELEVATION

5.5.3.6.1 Stucco, Gypsum Wallboard, Plaster, or Narrow Shear Walls. The overturning and shear demands for noncompliant walls shall be calculated in accordance with Section 5.2.4, and the adequacy shall be evaluated in accordance with Section 5.2.5.

12.4.3.6.2 Strength of Wood Structural Panel Sheathing or Siding Shear Walls. The expected strength of wood structural panel shear walls shall be taken as mean maximum strengths obtained experimentally. Expected strengths of wood structural panel shear walls shall be permitted to be based on 1.5 times yield strengths. Yield strengths shall be determined using LRFD procedures contained in AWC SDPWS, except that the resistance factor, ϕ , shall be taken as 1.0 and expected material properties shall be determined in accordance with Section 12.2.2.

Approved allowable stress values for fasteners shall be permitted to be converted in accordance with Section 12.2.2.5.1 where the strength of a shear wall is computed using principles of mechanics.

For existing wood structural panel shear walls framed with 2-in. nominal framing at adjoining panel edges where 3-in. nominal framing is required per AWC SDPWS, the expected strength shall not be taken as greater than 0.90 times the expected strength associated with use of 3-in. nominal framing at adjoining panel edges.

7.5.2 Linear Procedures

7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.

7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, Q_{UD} , shall be calculated in accordance with Eq. (7-34):

$$Q_{UD} = Q_G + Q_E \tag{7-34}$$

where

 Q_{UD} = Deformation-controlled action caused by gravity loads and earthquake forces.

- Q_G = Action caused by gravity loads as defined in
- Section 7.2.2; and Q_E = Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or

Section 7.4.2;

12.4.3.6.3 Acceptance Criteria for Wood Structural Panel Sheathing or Siding Shear Walls. For linear procedures, *m*-factors for use with deformation-controlled actions shall be taken from Table 12-3. For nonlinear procedures, the coordinates of the generalized force-deformation relation, described in Eq. (12-1), and deformation acceptance criteria for primary and secondary components shall be taken from Table 12-4.

12.3.3.1 Wood Construction. Unless otherwise specified in this standard, connections between wood components of a seismic-force-resisting system shall be considered in accordance with this section. Demands on connectors, including nails, screws, lags, bolts, split rings, and shear plates used to link wood components to other wood or metal components shall be considered deformation-controlled actions. Demands on bodies of connections and bodies of connection hardware shall be considered force-controlled actions.

7.5.2.1.2 Force-Controlled Actions for LSP or LDP. Forcecontrolled actions, Q_{UF} , shall be calculated using one of the following methods:

- 1. Q_{UF} shall be taken as the maximum action that can be developed in a component based on a limit-state analysis considering the expected strength of the components delivering force to the component under consideration, or the maximum action developed in the component as limited by the nonlinear response of the building.
- Alternatively, Q_{UF} shall be calculated in accordance with Eq. (7-35).

 O_1

$$y_F = Q_G \pm \frac{\chi Q_E}{C_1 C_2 J} \tag{7-35}$$

Based on the findings from Tier 1, the east elevation wall is considered to have narrow shear walls. These shear walls will be checked to resist the seismic load on structure. From ASCE 41-17 Section 12.4.3.6.2, the shear walls will be considered deformation-controlled actions. The anchor connections for these shear walls will be considered force-controlled.

Roof seismic load, V =	36.8 kip	
diaphragm span, L =	44.00 ft	
roof tributary width for seismic, T_w =	22 ft	
wall length, L _{wall} =	48 ft	
effective shear wall length, L_{sweff} =	10.5 ft	(wall lengths considered to act as shear walls)
unit roof seismic load on shear wall, v_E =	0.38 kip/ft	
unit effective base seismic load on shear wall, v_{Eeff} =	1.75 kip/ft	
Wall Double Top Plate Check for Tension & Compressio	n	
Diaphragm bending moment, M = (V/2)*L _{wall} /4 =	220.8 kip*ft	
Tension/ Compression force on top plate, $T_C = M/L =$	5.0 kip	
top plate net area, A _{net} =	8.25 in ²	(3-2x6 plates but only one plate effective at joint)
tension/compression stress, f_{t-c} =	608.3 psi	
Double Top Plate Check for Tension		
design tension value, F _t =	575.0 psi	(assumed Douglas Fir-Larch No. 2)
wet service factor, C_M =	1.0	

temperature factor, C_t =	1.0		
size factor, C _F =	1.0		
incising factor, C _i =	1.0		
format conversion factor for tension, K_F =	2.7		
adjusted tension design stress, F'_t =	1552.5	psi	
knowledge factor, κ =	0.90		
$DCR = f_t/(\kappa^*F'_t) =$	0.44	ΟΚ	
Double Top Plate Check for Compression			
design compression value perpendicular to grain, ${\rm F_c}$ =	625.0	psi	(assumed Douglas Fir-Larch No. 2)
wet service factor, C_M =	1.0		
temperature factor, C_t =	1.0		
incising factor, C _i =	1.0		
bearing area factor, C_b =	1.0		

format conversion factor for tension, $K_F = 2.4$ adjusted compression design stress, $F'_c = 1500.0$ psi knowledge factor, $\kappa = 0.90$ $DCR = f_c / (\kappa^* F'_c) = 0.45$ OK

There is no detail provided to show how the top plates in wall are spliced together. This connection cannot be checked and as such considered deficient. Mitigation is required to provide chord connection.

Shear wall 1 - Shear Wall Strength Check

15.5 ft
2 ft
7.75 > 3.5 (NG)

As noted in ASCE 41-17 Table 12-3 footnote b, since the aspect ratio exceeds the maximum ratio this wall cannot be considered to act as part of the lateral resisting system.

Shear wall 2 - Shear Wall Strength Check

wall height, h =	15.5 ft	
shear wall length, L =	6 ft	
shear wall ratio, h/L =	2.58 < 3.5	
tributary seismic shear on shear wall, Vu =	10.5 kip	
tributary seismic moment on shear wall, Mu =	163.0 kip*ft	
shear wall strength, V _n =	400 lbs/ft	(per AWC SDPWS-2008 Table 4.3B)
expected yield strength, Q_{CE} =	600 lbs/ft	(increased by 1.5 per ASCE 41-17 12.4.3.6.2
m-factor =	2.75 (interp	polated between LS & IO. ASCE 41-17 Table 12-3)
knowledge factor, κ =	0.90	
wood shear wall strength, κmφQCE =	8.9 kip	
demand capacity ratio, DCR =	1.18 NO	G
Shear wall 2 Base Plate Anchorage (1/2" expansion ancl		
Factor for adjusting action, χ =	1.3 (interp	polated between LS & IO)
$C_1C_2 =$	1.4	
Force delivery reduction factor, J =	2	
anchor spacing =	4 ft	
Seismic shear force on sill bolt, V_{sill} =	3.25 kip	(Connection considered force-controlled)
Anchor steel shear strength =	5.49 kip	(From Hilti Profis Calculation)
Anchor pryout strength =	10.91 kip	(From Hilti Profis Calculation)
Concrete edge failure strength =	17.84 kip	(From Hilti Profis Calculation)
knowledge factor, κ =	0.90	
steel strength DCR =	0.66 0	K
pullout strength DCR =	0.33 OI	K
concrete breakout strength DCR =	0.20 OI	K
2x6 Sill Base Plate check for Shear		
Seismic shear force on sill bolt, V _{sill} =	3.25 kip	

eference lateral design value for bolt in single shear, Z =	650	lbs	(1/2"Ø bolt in assumed Douglas Fir-Larch)
wet service factor, C_M =	1		
temperature factor, C_t =	1		
group action factor, C _g =	1		
geometry factor, C_{Δ} =	1		
end grain factor, C_{eg} =	1		
diaphragm factor, C _{di} =	1		
toe-nail factor, C _{tn} =	1		
format conversion factor for tension, K_F =	3.32		
adjusted bolt design value in shear, Z' =	2158	lbs	
knowledge factor, κ =	0.90		
$DCR = V_{sill}/(\kappa^*Z') =$	1.68	NG	

Drawings do not indicate the use of hold-down hardware to foundation. This is considered a deficiency and will need

Shear wall 3 - Shear Wall Strength Check		
wall height, h =	15.5 ft	
shear wall length, L =	4.5 ft	
shear wall ratio, h/L =	3.44 < 3.5	
tributary seismic shear on shear wall, Vu =	7.9 kip	
tributary seismic moment on shear wall, Mu =	122.2 kip*ft	
,		
shear wall strength, V_n =	400 lbs/ft	(per AWC SDPWS-2008 Table 4.3B)
expected yield strength, Q_{CE} =	600 lbs/ft	(increased by 1.5 per ASCE 41-17 12.4.3.6.2
m-factor =	2.75 (interpol	ated between LS & IO. ASCE 41-17 Table 12-3)
knowledge factor, κ =	0.90	,
wood shear wall strength, κmφQCE =	6.7 kip	
demand capacity ratio, DCR =	1.18 NG	
Shear wall 3 Base Plate Anchorage (1/2" expansion ancl		
Factor for adjusting action, χ =	1.3 (interpol	ated between LS & IO)
$C_1C_2 =$	1.4	
Force delivery reduction factor, J =	2	
anchor spacing =	4 ft	
Seismic shear force on sill bolt, V _{sill} =	3.25 kip	(Connection considered force-controlled)
	-	
Anchor steel shear strength =	5.49 kip	(From Hilti Profis Calculation)
Anchor pryout strength =	10.91 kip	(From Hilti Profis Calculation)
Concrete edge failure strength =	17.84 kip	(From Hilti Profis Calculation)
knowledge factor, κ =	0.90	
steel strength DCR =	0.66 OK	
pullout strength DCR =	0.33 OK	
concrete breakout strength DCR =	0.20 OK	
2x6 Sill Plate check for Shear		
Seismic shear force on sill bolt, V_{sill} =	3.25 kip	
eference lateral design value for bolt in single shear, Z =	650 lbs	(1/2"Ø bolt in assumed Douglas Fir-Larch)
wet service factor, C_M =	1	
temperature factor, C _t =	1	
group action factor, C _g =	1	
geometry factor, C_{Δ} =	1	
end grain factor, C _{eq} =	1	
diaphragm factor, C _{di} =	1	
toe-nail factor, C _{tn} =	1	
format conversion factor for tension, K_{F} =	3.32	
adjusted bolt design value in shear, Z' =	2158 lbs	
knowledge factor, $\kappa =$	0.90	
$DCR = V_{sill}/(\kappa^*Z') =$	1.68 NG	
$DO(X - V_{Sill})(K Z) -$	1.00 140	

Drawings do not indicate the use of hold-down hardware to foundation. This is considered a deficiency and will need

Shear wall 4 - Shear Wall Strength Check

wall height, h =	15.5 f	ft
shear wall length, L =	2.5 f	ft
shear wall ratio, h/L =	6.20	> 3.5 (NG)

As noted in ASCE 41-17 Table 12-3 footnote b, since the aspect ratio exceeds the maximum ratio this wall cannot be considered to act as part of the lateral resisting system.

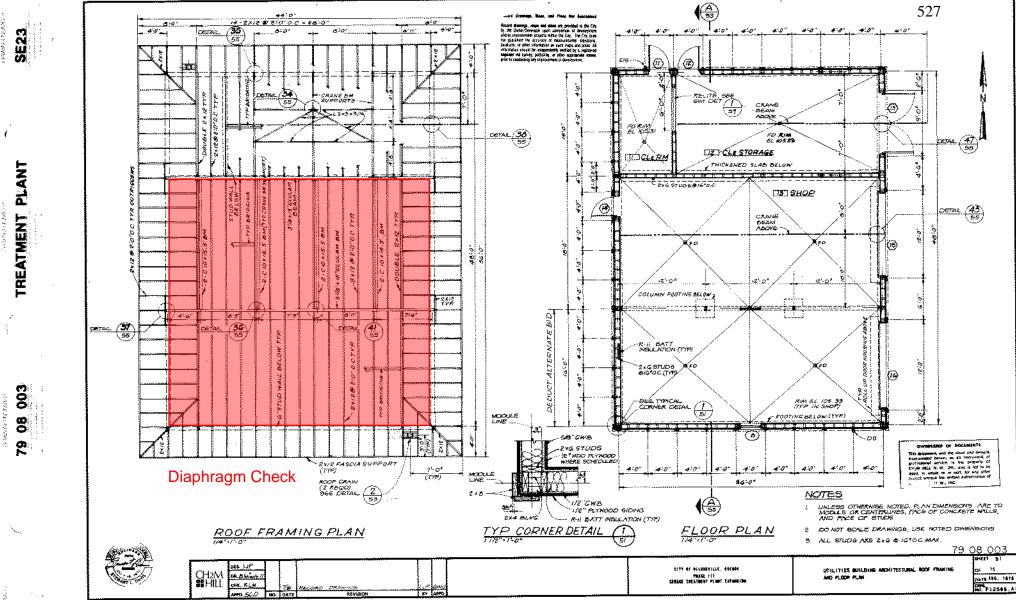
Table 4.3B Nominal Unit Shear Capacities for Wood-Frame Shear Walls^{1,2,5,6}

	100	ood Struct	ural Panels Applie	aove	1/2	ora	/8 0	ypsu	in wa	andoa	ira o	Gype	sum a	snear	ning i	soard			
		Minimum							SB	A SMIC								B ND	
Charthing	Nominal	Fastanor		Panel Edge Fastener Spacing (in.)							Panel Edge Fastener Spacing (in.)								
Sheathing Material	Panel	Eramino			6			4			3			2		6	4	3	2
	(in.) Member or Blocking (in.)		v. (pit)		a, s/in.)	V. (pit)), s/in.)	V. (plf)), s/in.)	v. (pit)	(kips	in.)	V. V. (pit) (pit)	¥	(en)	¥	
Nood Structural			Nall (common or galvanized box)		058	PLY		058	PLY		058	PLY		058	PLY				
Panels -	5/16	1-1/4	8d	400	13	10	600	18	13	780	23	16	1020	35	22	500	840	1090	1430
Structural I ¹⁴	3/8, 7/16, 15/32	1-38	10d	560	14	11	860	18	14	1100	24	17	1400	37	23	785	1205	1540	2045
Wood Structural Panels -	5/16 3/8	1-1/4	bő	360 400	13	9.5 8.5	540 600	18 15	12	700	24 20	14	900 1020	37 32	18	505 500	755	560 1090	1280
Sheathing ^{5,6}	3/8, 7/16, 15/32	1-3/8	10.0	520	13	10	760	19	13	960	25	15	1280	39	20	730	1065	1370	1790
Plywood Siding	5/16 3/8	1-1/4	Nall (galvanized casing) 66 (2-1/2" x0.153") 106 (2100 128")	280		13 16	420		16	550 620		17	720		21	300	590 670	770	1010

 Nominal unit shear capacities shall be adjusted in accordance with 4.3.3 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4.3.6. For specific requirements, see 4.3.7.1 for wood structural panel shear walls. See Appendix A for common and box nail dimensions.

 For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 12.3.3 A). The Specific Gravity Adjustment Factor shall not be greater than 1.

Apparent shear stiffness values, G₄, are based on nail slip in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for shear walls constructed with either OSB or 3 ply plywood panels. When 4-ply or 5-ply plywood panels or composite panels are used, G₄ values for plywood shall be permitted to be multiplied by 1.2.


4. Where moisture content of the framing is greater than 19% at time of fabrication, G₄ values shall be multiplied by 0.5.

5. Where panels are applied on both faces of a shear wall and nail spacing is less than 6° on center on either side, panel joints shall be offset to fall on different framing members. Alternatively, the width of the nailed face of framing members shall be 3° nominal or greater at adjoining panel edges and nails at all panel edges shall be staggered.

6. Galvanized nails shall be hot-dipped or tumbled.

8

LATERAL FORCE-RESISTING SYSTEMS

i kovobi i hojtali. SE23

> PLANT TREATMENT

(). Wester (Ar #Alfvid

6	car	
· · · · · · · · · · · · · · · · · · ·		

Engineers, Working Wondors With Water 11

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESCRIP	TION	_	Workshop	JOB NO.	11962A.00
DESIGN TAS	κ				ASCE 41-17 - Tier 2 (CSZ)		

WOOD DIAPHRAGM CHECK

12.5.3.6.2 Strength of Wood Structural Panel Sheathing Diaphragms. The expected strength of wood structural panel diaphragms shall be taken as mean maximum strengths obtained experimentally. Expected strengths shall be permitted to be based on 1.5 times yield strengths of wood structural panel diaphragms. Yield strengths shall be determined using LRFD procedures contained in AWC SDPWS, except that the resistance factor, ϕ , shall be taken as 1.0 and expected material properties shall be determined in accordance with Section 12.2.2.

For existing wood structural panel diaphragms framed with 2-in. nominal framing at adjoining panel edges where 3-in. nominal framing is required per AWC SDPWS, the expected strength shall not be taken as greater than 0.80 times the expected strength associated with use of 3-in. nominal framing at adjoining panel edges.

Approved allowable stress values for fasteners shall be permitted to be converted in accordance with Section 12.2.2.5.1 where the strength of a diaphragm is computed using principles of mechanics.

The expected shear capacity of unchorded diaphragms shall be calculated by multiplying the values given for chorded diaphragms by 0.60. **5.6.2 Procedures for Wood Diaphragms.** For wood diaphragms with noncompliant spans or aspect ratios, an analysis of the diaphragm shall be performed in accordance with Section 5.2.4, and the adequacy of the diaphragm system shall be evaluated in accordance with Section 5.2.5. The diaphragm deflection shall be calculated, and the adequacy of the vertical-load-carrying elements at the maximum deflection, including P-delta effects, shall be evaluated.

From Tier 1, the roof diaphragm exceeds the 30ft span between lateral resisting members. The diaphragm will be considered unblocked as there is no indication if blocking is used between members. Nailing pattern is assumed 8d@6"oc for 1/2" plywood. Diaphragm is assumed to be deformation-controlled.

Diaphragm is assumed to be deformat	ion-controlle	ea.	
Roof seismic load, V =	38.6	kip	
diaphragm span, L =	56.00	ft	
roof unit diaphragm load, v =	0.69	kip/ft	
Roof span between shear walls, $L_1 =$	34.00	ft	
Roof depth, d =	36.00	ft	
diaphragm shear, v ₁ =	0.325	kip/ft	
diaphragm strength, V_N =	360	lbs/ft	(per AWC SDPWS-2008 Table 4.2C)
expected diaphragm strength, Q_{CE} =	540	lbs/ft	(expected strength shall be 1.5x the allowable)
m-factor =	2	(interp	olated between LS & IO. ASCE 41-17 Table 12-3)
knowledge factor, κ =	0.90		
diaphragm strength, κmφQ _{CE} =	0.972	kip/ft	

ΟΚ

demand capacity ratio, DCR =

Checking diaphragm deflection in E-W direction. Deflection will be calculated per ASCE 41-17 Eq. 12-3.

$$\Delta_y = 5v_y L^3/(8EAb) + v_y L/(4G_d) + \Sigma(\Delta_y X)/(2b)$$
 (12-3)

roof unit diaphragm load, v =	689.3	3 lb/ft
diaphragm span, L =	56.00	0 ft
modulus of elasticity, E =	1700000	0 psi
area of diaphragm chord, A =	34.5	5 in2
diaphragm width, b =	44	4 ft
diaphragm shear stiffness, G_d =	8000	0 lb/in
sum of individual chord splice slip values, $\Sigma(\Delta cX) =$	1.375	5 in*ft (assumed one splice at midspan of wall)
diaphragm deflection, $\Delta y =$	1.25	5 in

0.33

Checking wall adequacy to resist P-delta effects due to deflection calculated. 2x6 stud will be checked.

wall stud spacing =	16	in	
unit vertical load on single stud, P_u =	133.6	lbs	
diaphragm deflection, $\Delta y =$	1.25	in	
moment due to P-delta effect, $P_u^*\Delta y =$	167.2	lbs*in	
stud area, A =	8.25	in2	
stud wall height, I_e =	15.5	ft	
stud depth, d =	5.5	in	
l _e /d =	33.8		
modulus of elasticity, E _{min} =	510000	psi	
wet service factor, CM =	1		
temperature factor, Ct =	1		
incising factor, Ci =	1		
adjusted modulus of elasticity, E' _{min} =	510000	psi	
$FcE = 0.822E'_{min}/(I_e/d)^2 =$	366.6	psi	
design value, Fc =	850		(assumed Douglas Fir-Larch)
design value, Fbn =	700	, psi	(assumed Douglas Fir-Larch)
format conversion factor for compression, KD =	2.4		, , , ,
format conversion factor for bending, KD =	2.54		
size factor, CF =	1		
adjusted F"c =	2040	psi	
adjusted F'bn =	1778	psi	
с =	0.8		
FcE/F"c =	0.180		
(1+FcE/F"c)/(2c) =	0.737		
column stability factor, CP =	0.172		
adjusted F'c =	351.9	•	
axial strength, P _n =	2903.1		
section modulus, S =	7.6		
bending strength, Mn = F'bn*S =	13446.1		
knowledge factor, κ =	0.90		
$DCR = P_u/(\kappa^*P_n) =$	0.05	ΟΚ	
$DCR = M_u / (\kappa^* M_n) =$	0.01	ΟΚ	
Combined DCR =	0.06	ΟΚ	

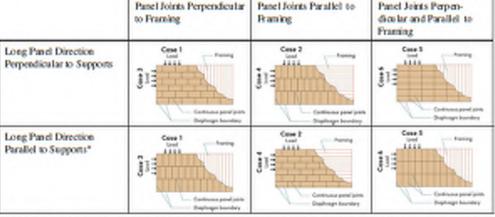
Table 4.2C Nominal Unit Shear Capacities for Wood-Frame Diaphragms

Unblocked Wood Structural Panel Diaphragms^{1,2,3,4,5}

	Common	Minimum Fastener	Minimum Nominal	Minimum Nominal Width of Nalled Face at	6 in	Nail Spa and s
Sheathing Grade	Nail Size	Penetration in Framing	Panel Thickness	Supported Edges and	ł	Case 1
		(in.)	(in.)	Boundaries (in.)	(pir)	G, (kips/
	6d	1-1/4	5/16	2	330 370	0SB 9.0 7.0
Structural I	8d	1-3/8	3/8	3 2 3	480	8.5 7.5
	10d	1-1/2	15/32	23	570 640	14
	6d	1-1/4	5/16	23	300 340	9.0 7.0
	60	1-1/4	3/8	2	330 370	7.5
			3/8	2 3 2	430 480	9.0 7.5
Sheathing and Single-Floor	8d	1-3/8	7/16	2 3 2	460 510	8.5 7.0
			15/32	2 3 2	480 530	7.5
	10d	1.1/2	15/32	2	510 580	15
	100	1-1/2	19/32	2	570 640	13

1. Nominal unit shear capacities shall be adjusted in accordance w termine ASD allowable unit shear capacity and LRFD factored u	
For general construction requirements see 4.2.6. For specific	requirements,
see 4.2.7.1 for wood structural panel diaphragms. See Appendix. nail dimensions.	Aforcommon

Copyright @ American Wood Council, Downloaded/printed sursuitation biopress Agreement, No reproduction or transfer


authorized

- 2. For species and grades of framing other than Douglas-Fir-Larch or Southern Fine, reduced nominal unit shear capacities shall be determined by multiplying. the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 12.3.3A). The Specific Gravity Adjustment Factor shall not be greater than L.
- 3. Apparent shear stiffness values, Ga, are based on nail slip in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for diaphragms constructed with either OSB or 3-ply plywood panels. When 4-phy or 5-phy phywood panels or composite panels are used, G, values shall be permitted to be multiplied by 1.2.
- 4. Where moisture content of the framing is greater than 19% at time of fabrication, G, values shall be multiplied by 0.5.
- 5. Diaphragm resistance depends on the direction of continuous panel joints with respect to the loading direction and direction of framing members, and is independent of the panel orientation.

6 in		Se Spacing at nd suppor				diap	6 in. Nail bhragm t	/IND Spacing at coundaries and panel edges
	Case	1	G	ases 2	,3,4,5,6	Ca	ise 1	Cases 2,3,4,5,6
(pit)	Øk	G, ips/in.)	(plf)		G, kips/in.)		v.	(p10)
	OSE			OSE	PLY			
330	9.0	7.0	250	6.0	4.5	4	160	350
370	7.0	6.0	280	4.5	4.0	6	520	390
480	8.5	7.0	350	6.0	4.5	6	570	505
530	7.5	6.0	400	5.0	4.0	1	740	580
570	14	10	430	9.5	7.0	1	00	600
640	12	9.0	480	8.0	6.0	1	95	670
300	9.0	6.5	220	6.0	4.0		120	310
340	7.0	5.5	250	5.0	3.5		175	350
330	7.5	5.5	250	5.0	4.0	4	460	350
370	6.0	4.5	280	4.0	3.0		20	390
430	9.0	6.5	320	6.0	4.5		00	450
480	7.5	5.5	350	5.0			570	505
460	8.5	6.0	340	5.5			45	475
510	7.0	5.5	380	4.5	3.5		715	530
480	7.5	5.5	360	5.0		6	570	505
530	6.5	5.0	400	4.0	3.5	1	740	580
510	15	9.0	380	10	6.0		/15	530
580	12	8.0	430	8.0	5.5	8	10	600
570	13	8.5	430	8.5			00	600
640	10	7.5	480	7.0	5.0		95	670
		Cases 1&3 Panel Joint to Framing			Cases 2&4: Cor Panel Joints Par Braming		Panel J	5866: Cominuous eints Perpen- and Parallel to

А

......

(a) Pasel span rating for out-of-plase loads may be lower than the span rating with the long pasel direction perpendicular to supports (See Section 3.2.2 and Section 3.2.3)

LATERAL FORCE-RESISTING SYSTEMS

23

B

.....

Appendix C SEISMIC RETROFIT COST ESTIMATE

Project Name:	Operations Building
Project Number:	11962A.00
Project Construction Duration:	

				MATERIALS			INSTAL	LATION	TOTAL	TOTAL	7
		QTY.	Unit	Unit Cost		Amount	per UM	Amount	Direct Cost	Direct Cost	Reference
General Conditions	Mitigation										
	Temporary trailers for staffing	6	MO				\$ 24,000	\$ 144,000	5 144,000		
										\$ 144,000	
Deficiency No. S1/S2	Mitigation										
	Add new steel beam	80	FT	\$ 7	9\$	6,320	\$7	\$ 566 \$	6,886		RS Means. Assumed W18x50.
No diaphragm ties in the N-S direction to	Add new beam anchorage	8	EA				\$ 500	\$ 4,000	4,000		\$500/connection. Estimate
transfer diaphragm forces into the lateral	Add new steel plate	30	FT	\$5	1\$	6,150	\$8	\$ 225 \$	6,375		RS Means. 25 lbs/ft Gal Steel.
	Epoxy anchors at 6" OC	64	EA	\$ 7	1\$	4,544	\$ 38	\$ 2,432	6,976		RS Means
resisting system.	Field welding of steel plate to beam	4	EA				\$ 2,400	\$ 9,600	9,600		Estimate
	Construction difficulty, operations and work restrictions	1	LS						33,837		100% of other costs
										\$ 67,673	
Deficiency No. NS1	Mitigation										
The ceiling edges don't provide adequate gap	Demo and restoration of interior ceiling system	155	SF				\$ 75	\$ 11,625	5 11,625		\$75/SF.
clearance to wall for movement.	Construction difficulty, operations and work restrictions	1	LS						5,813		50% of other costs
										\$ 17,438	
Deficiency No. NS2	Mitigation										
Lens covers over lights lack safety devices.	Add security latches	48	EA	\$ 1	0 \$	480		\$ - \$	480		RS Means. Increased cost by 259
Letis covers over lights lack safety devices.	Construction difficulty, operations and work restrictions	1	LS						5 240		50% of other costs
										\$ 720	
Deficiency No. NS3	Mitigation										
Windows above entrance appear to lack	Demo existing window	1	LS						3,000		Estimate
proper restraint in frame if cracked or	New window frame and glazing	154	SF	\$ 7	2 \$	44,044	\$8	\$ 1,271	45,315		RS Means
	Construction difficulty, operations and work restrictions	1	LS						5 24,157		50% of other costs
damaged.											
										\$ 72,472	
Deficiency No. NS4	Mitigation										
Storage racks lack restraint to structure. The	Add epoxy anchors	6	EA	\$ 7	1\$	426	\$ 38	\$ 228	654		RS Means
laboratory refridgerator lacks restraint if	Construction difficulty, operations and work restrictions	1	LS					9	327		50% of other costs
wheels are in locked position.											
										\$ 981	

Date Prepared:	6/3/2022
Prepared By:	B. Stuetzel
Date Accepted:	
Accepted By:	

Deficiency No. NS5	Mitigation									
	Add diagonal bracing	4	EA			\$ 500) \$ 2,000 \$	2,000		\$500/brace. Estimate
determined if adequate lateral bracing is	Add welded connection	4	FT	\$ 7	\$ 27		2 \$ 409 \$	436		RS Means
attached back to structure. The air handling	Construction difficulty, operations and work restrictions	1	LS				\$	2,436		100% of other costs
unit lacks anchorage to support structure.										
									\$ 4,872	
							Sub-total		\$ 308,156	
						ENR Index Facto				
							Sub-total		\$ 378,085.39	
NOTES:					Project	: Level Allowance	30%		\$ 113,425.62	
							Sub-total		\$ 491,511	
						GR / G(15%		\$ 73,726.65	
							Sub-total		\$ 565,238	
					C	ontractor's Profi	t 10%		\$ 56,524	
							Sub-total		\$ 621,761	
						Bond	l 2%		\$ 12,435	
							Sub-total		\$ 634,197	
						Insurance	2%		\$ 12,684	
							GRAND TOTAL		\$ 646,881	

CONSTRUCTION COST ONLY

Project Name:	Process Gallery
Project Number:	11962A.00
Project Construction Duration:	

				MATE	ERIALS	INSTALLA	TION	TOTAL	TOTAL	
		QTY.	Unit	Unit Cost	Amount	per UM	Amount	Direct Cost	Direct Cost	Reference
Deficiency No. S1	Mitigation									
Roof beam aligned with interior shear wall	Add new steel plate	10	FT		\$ 2,050	\$ 8\$.5	RS Means
lacks ability to transfer seismic loads into the	Epoxy anchors at 6" OC	21	FT	\$ 71	\$ 1,491	\$ 38 \$	798	\$ 2,28	9	RS Means
lateral resisting system.	Field welding of steel rod to existing joist	1	EA			\$ 2,400 \$	2,400	\$ 2,40	0	
lateral resisting system.	Construction difficulty, operations and work restrictions	1	LS					\$ 6,81		100% of other costs
									\$ 13,628	8
eficiency No. NS1	Mitigation									
Air handling unit lacks anchorage along	Add epoxy anchors	2	EA			\$ 38 \$	76			RS Means
channel support. The aeration blower pumps	Provide nuts for threaded rod anchorage	12	EA	\$ 2	\$ 24			\$2	4	RS Means
in basement lack proper anchorage back to	Construction difficulty, operations and work restrictions	1	LS					\$ 12	1	50% of other costs
structure (missing nuts).										
									\$ 363	3
Deficiency No. NS2	Mitigation			· .	·	·		Γ.		
Multiple pipes lack restraint to Unistrut	Install pipe straps to unistrut	20	EA	\$ 25						
supports. The compression struts for RAS	Add diagonal bracing	6	EA			\$ 500 \$	3,000			\$500/brace. Estimate
piping lack diagonal bracing back to structure.	Construction difficulty, operations and work restrictions	1	LS					\$ 3,67		100% of other costs
									\$ 7,350)
							Cub total		\$ 21 341	-
					-		Sub-total 1.23		\$ 21,341	
					E	NR Index Factor	Sub-total		\$ 26,183.91	-
NOTES:					Drojoct	Level Allowance	30%		\$ 7,855.17	
NUILJ.					Project		Sub-total		\$ 7,855.17	
						GR / GC	15%		\$ 5,105.86	
							Sub-total		\$ 39,145	
					Co	ontractor's Profit	10%		\$ 3,914	
							Sub-total		\$ 43,059	
						Bond	2%		\$ 861	
						Doniu	Sub-total		\$ 43,921	
						Insurance	2%		\$ 43,921	
							RAND TOTAL			
						Gr	AND IUIAL		\$ 44,799	

Date Prepared:	6/3/2022
Prepared By:	B. Stuetzel
Date Accepted:	
Accepted By:	

CONSTRUCTION COST ONLY

Project Name:	Workshop
Project Number:	11962A.00
Project Construction Duration:	

			MATERIALS INSTALLAT		TION	TOTAL	TOTAL				
		QTY.	Unit	Unit Cost	Amour	nt per	UM	Amount	Direct Cost	Direct Cos	t Reference
	Mitigation										
Hold-down anchors within east elevation wall		330	SF			\$	75 \$				\$75/SF. Estimate
lack strength to resist overturning forces due	Add additional epoxy anchors	4	EA	\$ 71	\$	284 \$	38 \$	152	\$ 4	36	RS Means
to seismic.	Construction difficulty, operations and work restrictions	1	LS						\$ 25,1		100% of other costs
										\$ 50,	372
	Mitigation										
	Install new plywood overlay for shear walls	165	SF			157 \$	3 \$			65	RS Means
		10	FT	\$ 24	\$	240 \$	6 \$			00	RS Means. 13 lbs/ft steel
the in-plane seismic loads.	Construction difficulty, operations and work restrictions	1	LS						\$ 9	65	100% of other costs
										\$ 1,	930
	Mitigation										
	Add epoxy anchors	4	EA	\$ 71	\$	284 \$	38 \$			36	RS Means
	Construction difficulty, operations and work restrictions	1	LS						\$ 4	36	100% of other costs
resisting the in-plane seismic loads.											
										\$	872
	Mitigation										
	Add epoxy anchors	8	EA	\$ 71	\$	568 \$	38 \$	304	\$ 8	72	RS Means
back to structure. Shelving unit along south	Construction difficulty, operations and work restrictions	1	LS						\$ 4	36	50% of other costs
elevation lacks anchorage across entire length.											
										\$ 1,	308
								Sub-total		\$ 54,	482
						ENR Index	< Factor	1.23			
								Sub-total		\$ 66,84	
NOTES:						Project Level All	owance	30%		\$ 20,05	
							/	Sub-total		. ,	899
						(GR / GC	15%		\$ 13,03	1.87
										4	
						_		Sub-total			934
						Contractor	's Profit	10%		\$ 9,	993
						Contractor		10% Sub-total		\$ 9, \$ 109,	993 927
						Contractor	's Profit Bond	10% Sub-total 2%		\$ 9, \$ 109, \$ 2,	993 927 199
						Contractor		10% Sub-total 2% Sub-total		\$ 9, \$ 109, \$ 2, \$ 112,	993 927 199 126
								10% Sub-total 2%		\$ 9, \$ 109, \$ 2, \$ 112,	993 927 199

Date Prepared:	6/3/2022
Prepared By:	B. Stuetzel
Date Accepted:	
Accepted By:	

CONSTRUCTION COST ONLY

Project Name: Wastewater Treatment Plant (Overall Site Structures)

Project Number:	11962A.00
Project Construction Duration:	

				MATERIALS INSTALL			LATION TOTAL		TOTAL		
		QTY.	Unit	Unit Cost		Amount	per UM	Amount	Direct Cost	Direct Cost	Reference
Deficiency No. NS1	Mitigation										
Storage racks within the Headworks building	Add epoxy anchors	4	EA	\$ 71	\$	284 \$	38	\$ 152	\$ 436		RS Means
lack anchorage back to structure	Construction difficulty, operations and work restrictions	1	LS						\$ 218		50% of other costs
										\$ 65	64
Deficiency No. NS2	Mitigation				-						
Recirculation pump at Disk Filters lacks	Add weighted sand bags to prevent overturning	4	EA	\$ 10	\$	40			\$ 40		RS Means
restraint against overturning	Construction difficulty, operations and work restrictions	1	LS						\$ 20		50% of other costs
										\$ 6	50
Deficiency No. NS3	Mitigation		1 1		-1						
ACCU units near Aeration Basins lack	Add epoxy anchors	8	EA	\$ 71	\$	568 \$	38	\$ 304			RS Means
anchorage to structural pads	Construction difficulty, operations and work restrictions	1	LS						\$ 436		50% of other costs
										\$ 1,30	08
								Sub-total		\$ 2,02	2
						ENR	Index Factor	1.23			
								Sub-total		\$ 2,480.8	
NOTES:						Project Leve	el Allowance			\$ 744.2	
								Sub-total		\$ 3,22	
							GR / GC			\$ 483.7	
								Sub-total		\$ 3,70	
						Contra	actor's Profit	10%		\$ 37	
								Sub-total		\$ 4,08	
							Bond	2%		- ·	32
								Sub-total		\$ 4,16	
							Insurance	2%			33
								GRAND TOTAL		\$ 4,24	5
										CONSTRUCTION	COST ONLY

Date Prepared:	6/3/2022
Prepared By:	B. Stuetzel
Date Accepted:	
Accepted By:	