Appendix D SEISMIC EVALUATION

City of Wilsonville
Wastewater Treatment Plant Master Plan
Technical Memorandum 1
SEISMIC EVALUATION

FINAL | July 2022

City of Wilsonville
Wastewater Treatment Plant Master Plan

Technical Memorandum 1 SEISMIC EVALUATION

FINAL | July 2022

Contents

Technical Memorandum 1 - Seismic Evaluation
1.1 Introduction 1-1
1.2 Background Information 1-2
1.3 Seismic Evaluation Criteria 1-4
1.3.1 Performance Objective 1-4
1.3.2 Performance Level 1-5
1.3.3 Seismic Hazard Level 1-6
1.3.4 Selection of Performance Objectives 1-8
1.4 Seismic Evaluation and Analysis 1-8
1.4.1 Data Collection and Review 1-9
1.4.2 Site Visit 1-9
1.4.3 Analysis Procedures 1-10
1.4.4 Acceptance Criteria 1-10
1.5 Evaluation Findings 1-10
1.6 Recommendations for Mitigation 1-12
1.6.1 Load Path / Transfer to Shear Walls 1-12
1.6.2 Narrow Wood Shear Walls 1-14
1.7 Cost Estimates 1-14
1.8 Conclusion 1-15
1.9 References 1-15
1.9.1 Standards 1-15
1.9.2 Reports 1-15
Appendices

Appendix A Site Visit Photographs
Appendix B ASCE 41-17 Tier 1 Checklists and Calculations / Tier 2 Calculations
Appendix C Seismic Retrofit Cost Estimate
Appendix D Geotechnical Memorandum

Tables

Table 1.1 List of Structures Evaluated 1-1
Table 1.2 Detailed Structural Information for Structures Evaluated 1-3
Table 1.3 BSE-1E Seismic Parameters 1-7
Table 1.4 BSE-2E Seismic Parameters 1-7
Table 1.5 CSZ Seismic Parameters 1-8
Table 1.6 Material Properties 1-9
Table 1.7 Load Intensities and Material Unit Weights 1-10
$\begin{array}{lll}\text { Table } 1.8 & \text { List of Deficiencies 1-11 }\end{array}$
$\begin{array}{ll}\text { Table } 1.9 \text { Summary of Retrofit Cost Estimate } & \text { 1-15 }\end{array}$
Figures
Figure 1.1 Aerial View of the Structures Evaluated1-2

Figure 1.2 Operations Building - Collector Beam Locations and Anchorage Deficiencies

Figure 1.3 Process Gallery - Collector Beam Location and Anchorage Deficiency \quad 1-13

Abbreviations	
AACEI	Association for the Advancement of Cost Engineering
ACI	American Concrete Institute
ACCU	Air Cooled Condensing Unit
AISC	American Institute of Steel Construction
ASCE	American Society of Civil Engineers
ASCE 41-17	ASCE Standard Seismic Evaluation and Retrofit of Existing Buildings
ASTM	American Society for Testing and Materials
BPOE	Basic Performance Objective for Existing Buildings
BSE-1E	Basic Safety Earthquake-1 for use with existing buildings
BSE-2E	Basic Safety Earthquake-2 for use with existing buildings
C	Soil Site Class Type
Carollo	Carollo Engineers, Inc.
CMU	Concrete Masonry Wall
CSZ	Cascadia Subduction Zone
D	Soil Site Class Type
DCR	Demand to Capacity Ratio
E	East
$\mathrm{f}^{\prime} \mathrm{c}$	Concrete Compressive Strength
F_{a}	Factor to Adjust Spectral Acceleration in the short period range for Site Class
F_{v}	Factor to Adjust Spectral Acceleration at 1 Second for Site Class
fy_{y}	Yield Strength of Rebar
F_{y}	Yield Strength of Steel
g	acceleration due to Gravity
M9.0	Magnitude 9.0
N	North
OSSC	Oregon Structural Specialty Code
pcf	pounds per cubic foot
Plant	Wilsonville Wastewater Treatment Plant
psf	pounds per square foot
psi	pounds per square inch
RAS	Return Activated Sludge
S	South
S_{1}	Spectral Response Acceleration Parameter at a 1 Second Period for any Seismic Hazard Level and any Damping, Adjusted for Site Class
$\mathrm{S}_{1,550}$	Spectral Response Acceleration Parameter at a 1 Second Period for any Seismic Hazard Level and any Damping, Adjusted for Site Class

$\mathrm{S}_{1,20 / 50}$	Spectral Response Acceleration Parameter at a 1 Second Period for any Seismic Hazard Level and any Damping, Adjusted for Site Class
$\mathrm{S}_{\text {S }}$	Spectral Response Acceleration Parameter at Short Periods for CSZ Seismic Hazard Level and any Damping, Adjusted for Site Class
$\mathrm{S}_{\mathrm{s}, 5 / 50}$	Spectral Response Acceleration Parameter at Short Periods for BSE-1E Seismic Hazard Level and any Damping, Adjusted for Site Class
$S_{s, 20150}$	Spectral Response Acceleration Parameter at Short Periods for any Seismic Hazard Level and any Damping, Adjusted for Site Class
$\mathrm{S}_{\text {X1, BSE-1E }}$	Spectral Response Acceleration Parameter at a 1 Second Period for BSE-1E Seismic Hazard Level and any Damping, Adjusted for Site Class
$\mathrm{SXX}_{\text {1, BSE-2E }}$	Spectral Response Acceleration Parameter at a 1 Second Period for BSE-2E Seismic Hazard Level and any Damping, Adjusted for Site Class
$S_{x 1, \mathrm{csz}}$	Spectral Response Acceleration Parameter at a 1 Second Period for CSZ Seismic Hazard Level and any Damping, Adjusted for Site Class
$S_{\text {XS, BSE-1E }}$	Spectral Response Acceleration Parameter at Short Periods for BSE-1E Seismic Hazard Level and any Damping, Adjusted for Site Class
$S_{\text {XS, BSE-2E }}$	Spectral Response Acceleration Parameter at Short Periods for BSE-2E Seismic Hazard Level and any Damping, Adjusted for Site Class
Sxs, csz	Spectral Response Acceleration Parameter at Short Periods for CSZ Seismic Hazard Level and any Damping, Adjusted for Site Class
USGS	United States Geological Survey
W	West

Technical Memorandum 1

SEISMIC EVALUATION

1.1 Introduction

The City of Wilsonville retained Carollo Engineers, Inc. (Carollo) to perform a seismic evaluation of five of their existing structures located at the Wastewater Treatment Plant (Plant) in Wilsonville, Oregon.

The Plant is comprised of several buildings and process structures that include water-bearing basins, channels, and clarifiers. The scope of work, however, is limited to the evaluation of five structures. Much of the Plant was recently upgraded and expanded in 2014 and included new buildings such as the Headworks and Solids Drying Building. These newer facilities were designed in accordance with the 2010 Oregon Structural Specialty Code (OSSC) and should meet modern seismic design and detailing. These newer structures were also designed to a higher performance level than typical commercial facilities. Therefore, these structures were not included in the scope of work and should have a relatively low risk of poor seismic performance.

The Plant does have some older structures that were considered for inclusion in this evaluation, but by the nature of their design are considered to be inherently resilient. After a review of the record drawings for the various facilities and a site visit to the Plant, five existing structures were selected for inclusion in this seismic evaluation. The list of existing structures evaluated in this study are shown in Table 1.1. An aerial view of these structures is shown on Figure 1.1.

Table 1.1 List of Structures Evaluated

Structure Name	Type	Approximate Date Built
Operations Building	Building	1995
Process Gallery	Building	1995
Workshop	Building	1979
Aeration Basins and Stabilization Basins	Water-bearing Basin	1993
Sludge Storage Basins and Biofilter	Water-bearing Basin	1979

The purpose of the evaluation was to identify seismic vulnerabilities and deficiencies to consider for enhancement of plant resiliency. The seismic evaluation was performed using the procedures established by American Society of Civil Engineers (ASCE) Standard: Seismic Evaluation and Retrofit of Existing Buildings 41-17 (ASCE 41-17). The standard prescribes a three-tiered approach for the seismic evaluation: Tier 1 - Screening, Tier 2 - Deficiency-based evaluation and retrofit and Tier 3 - Systematic evaluation and retrofit. For this evaluation, analysis procedures were limited to the Tier 1 level and Tier 2 level as required. The balance of this report presents background information, a description of seismic evaluation criteria and procedures used, findings, mitigation recommendations, including conceptual level mitigation cost estimates.

Geo-seismic site hazards were assessed as part of this study and findings are summarized in a technical memorandum prepared by Northwest Geotech, Inc. that is presented in Appendix D. Non-structural components were also evaluated in accordance with the Tier 1 procedures set forth in ASCE 41-17 for each of the five structures as well as the overall plant as part of this study.

Figure 1.1 Aerial View of the Structures Evaluated

1.2 Background Information

The required information for this evaluation was obtained by reviewing the existing record drawings and by performing a site visit. The typical structures are one-story tall except for the process gallery, which has a below grade basement. The structural systems consisted of reinforced concrete masonry (CMU) shear walls, cast-in-place concrete shear walls, or wood framed shear walls with wood or metal deck roof diaphragms. Table 1.2 provides detailed information about the structural systems for the structures that were evaluated.

Table 1.2 Detailed Structural Information for Structures Evaluated

Detailed Structural Information for Structures Evaluated	
Operations Building	
No. of Stories	One-Story
Vertical Seismic System	Reinforced CMU Shear Walls
Vertical Gravity System	Reinforced CMU Walls and Tube Steel Columns
Roof Gravity System	Steel Open-Web Joists and Steel Beams
Roof Diaphragm	Steel Roof Decking
Foundation System	Shallow Spread and Wall Footings
Process Gallery	
No. of Stories	One-story above grade + basement
Vertical Seismic System	Reinforced CMU Shear Walls + Cast-in-Place Concrete Shear Walls
Vertical Gravity System	Reinforced CMU Walls, Concrete Walls, and Concrete Columns
Gravity System	Steel Beams at Roof, concrete slab and concrete beams at grade level
Roof Diaphragm	Steel Roof Decking
Foundation System	Mat Slab
Workshop	
No. of Stories	One-Story
Vertical Seismic System	Wood Framed Shear Walls
Vertical Gravity System	Wood Framed Walls and Tube Steel Columns
Gravity System	Wood Joists and Glulam Beams
Roof Diaphragm	Plywood Sheathing
Foundation System	Shallow Spread and Wall Footings
Aeration and Stabilization Basins	
No. of Stories	One-Story (partially buried)
Vertical Seismic System	Cantilevered Concrete Walls
Vertical Gravity System	Concrete Walls
Roof Gravity System	N/A
Roof Diaphragm	N/A
Foundation System	Mat Slab
Solids Storage and Biofilter Basins	
No. of Stories	One- Story (mostly buried)
Vertical Seismic System	Cantilevered Concrete Walls
Vertical Gravity System	Concrete Walls
Roof Gravity System	N/A
Diaphragms	N/A
Foundation System	Mat Slab
Notes: Abbreviations: No. - number; N/A - not applicable.	

Modifications were made to some of the structures after their original construction. The aeration basins were modified in 2014 by adding a third basin to the east of basin No. 1 as well as two stabilization basins to the west of basin No. 2 and a blower canopy. The sludge storage and biofilter basins were modified in 2014 to include a concrete wall within the biofilter.

1.3 Seismic Evaluation Criteria

Seismic evaluation of the buildings was performed using the ASCE 41-17 prescribed Tier 1 screening evaluation. The purpose of Tier 1 screening is to efficiently identify potential deficiencies or identify the need for additional investigation. Tier 1 screening is performed using checklists and quick procedure calculations. The Tier 1 evaluation requires selection of a Performance Objective using the Structural Performance Levels and Seismic Hazard Levels defined within ASCE 41-17.

The results obtained from the above two-stage analysis for the performance objective selected is presented in this report. After Tier 1 evaluation, there are two additional evaluations: Tier 2 - Deficiency based and Tier 3 - Systematic Evaluation. In the Tier 2 evaluation, the deficiencies observed in Tier 1 can be further evaluated by performing more detailed analysis and calculations, while the Tier 3 evaluation involves performing detailed linear and non-linear finite element mathematical models for the buildings. The Tier 2 evaluation was performed for items deemed deficient from Tier 1 while Tier 3 evaluation was not considered as part of this study.

Since a portion of the structures included in the scope of work are non-building structures with structural systems and load paths that are not similar to buildings, for the seismic evaluation we chose to apply the relevant design standard, which is American Concrete Institute (ACI) 350.3-06, "Seismic Design of Liquid-Containing Concrete Structures and Commentary," recognizing that no relevant seismic evaluation guides or standards are available for existing concrete tanks.

1.3.1 Performance Objective

The performance objective is typically a two-fold objective that establishes building performance levels for different seismic hazards. For example, a typical performance objective for a non-essential building might be meeting the life safety performance level when subjected to an earthquake having a return period of 225 years and meeting the collapse prevention performance level when subjected to an earthquake having a return period of 975 years.

Structures that are considered to have an elevated or essential function to society are expected to have relatively higher structural performance levels. To address this need, the 2019 OSSC classifies structures into Risk Categories. Essential facilities, such as fire stations, emergency response centers, reservoirs, pump stations and intake structures are typically classified as Risk Category IV structures and are evaluated with stringent performance objectives, since an interruption in the operation of these facilities can result in a significant and immediate hazard to the general public. Risk Category III structures are generally considered to serve an important role, but their structural performance requirements after a major seismic event are less stringent than that of a Risk Category IV structure but higher than that of a Risk Category II structure.

The structures evaluated in this study were classified as Risk Category III based on the functionality. As prescribed by ASCE 41-17 a performance objective of Basic Performance Objective for Existing Buildings (BPOE) was selected for these Risk Category III structures. The concrete tanks were also considered to be Risk Category III structures and an importance factor of 1.25 was used in the evaluation.

1.3.2 Performance Level

Building performance levels include both structural and non-structural performance levels. The structural performance levels defined in ASCE 41-17 are as follows:

- S-1: Immediate Occupancy.
- S-2: Damage Control.
- S-3: Life Safety.
- S-4: Limited Safety.
- S-5: Collapse Prevention.
- S-6: Not Considered.

Non-structural performance levels defined in ASCE 41-17 are as follows:

- N-A: Operational.
- N-B: Position Retention.
- N-C: Life Safety.

The performance level of a structure can be described in terms of:

1. Safety of the building occupants during and after a seismic event.
2. Cost of restoring the building to its pre-event condition.
3. Length of time the building is removed from service, i.e., not occupiable.

To help provide some perspective, the definitions of the S-1 and S-3 structural performance levels are as follows:

S-1: Immediate Occupancy: "Immediate Occupancy" refers to the post-earthquake damage state in which only very limited structural damage has occurred. The basic vertical- and lateral-force resisting systems of the building retain almost all their pre-earthquake strength and stiffness. The risk of life-threatening injury from structural damage is very low, and although some minor structural repairs might be appropriate, these repairs would generally not be required before re-occupancy. Continued use of the building is not limited by its structural condition but might be limited by damage or disruption to nonstructural elements of the building, furnishings, or equipment and availability of external utility services.

S-3: Life Safety: "Life Safety" refers to the post-earthquake damage state in which significant damage to the structure has occurred but some margin against either partial or total structural collapse remains. Some structural elements and components are severely damaged, but this damage has not resulted in large falling debris hazards, either inside or outside the building. Injuries might occur during the earthquake, however, the overall risk of life-threatening injury as a result of structural damage is expected to be low. It should be possible to repair the structure, however, for economic reasons, this repair might not be practical. Although the damaged structure is not an imminent collapse risk, it would be prudent to implement structural repairs or install temporary bracing before re-occupancy.

The tanks do not have an associated structural performance level but are expected to sustain similar damage levels as those described for buildings.

1.3.3 Seismic Hazard Level

The seismic hazard level quantifies the magnitudes of spectral response accelerations the structures will experience in an earthquake. Per ASCE 41-17 two levels of seismic hazards should be considered when using the BPOE performance objective defined above for existing buildings. These are Basic Safety Earthquake-1 for use with existing buildings (BSE-1E) and Basic Safety Earthquake-2 for use with existing buildings (BSE-2E). These seismic hazards quantify the probabilistic magnitude of ground shaking that might occur at the project site. The BSE-1E and BSE-2E are defined as follows:

- BSE-1E: Taken as a seismic hazard with a 20 percent probability of exceedance in 50 years. This ground motion has an approximate return period of 225 years.
- BSE-2E: Taken as a seismic hazard with a 5 percent probability of exceedance in 50 years. This ground motion has an approximate return period of 975 years.

The BSE-1E and BSE-2E seismic hazards result in smaller forces in the structures than those compared to the forces obtained when designing a new building per the ASCE 7-16 load criteria. The reduced seismic hazard used in this evaluation is justified for existing buildings because the remaining service life for the existing building is less than that for new buildings and thus the magnitude of earthquakes experienced by existing buildings are likely to be smaller, given the reduced exposure period.

This evaluation also considered a single seismic hazard associated with a magnitude 9.0 (M9.0) scenario earthquake originating on the Cascadia Subduction Zone (CSZ). A geotechnical memorandum was prepared (Northwest Geotech, Inc., 2021) that provided estimates of the spectral acceleration and geologic hazards associated with the M9.0 CSZ scenario earthquake. Refer to Appendix D for the geotechnical memorandum.

The ASCE 41-17 BSE-1E and the BSE-2E seismic hazards used in this seismic evaluation are summarized in Tables 1.3 and 1.4. The ground motion is based upon the seismic data obtained from the United States Geological Survey (USGS). The CSZ seismic hazard used in the seismic evaluation is summarized in Table 1.5.

Table 1.3 BSE-1E Seismic Parameters

Parameter	Value
Latitude	45.29 N
Longitude	122.77 W
$\mathrm{~S}_{\mathrm{S}, 20 / 50}$	0.223 g
$\mathrm{~S}_{1,20 / 50}$	0.082 g
Site Class	C
F_{a}	1.3
$\mathrm{~F}_{\mathrm{V}}$	1.5
$\mathrm{~S}_{\mathrm{XS}, \mathrm{BSE}-1 \mathrm{E}}$	0.291 g
$\mathrm{~S}_{\mathrm{X} 1, \mathrm{BSE}-1 \mathrm{E}}$	0.123 g

Notes:

Abbreviations: N - north; W - west; g - acceleration due to Gravity; C - Soil Site Class Type; $\mathrm{S}_{\mathrm{s}, 20 / 50}$ - Spectral Response Acceleration Parameter at Short Periods for any Seismic Hazard Level and any Damping, Adjusted for Site Class; $\mathrm{S}_{1,20 / 50}$ - Spectral Response Acceleration Parameter at a 1 Second Period for any Seismic Hazard Level and any Damping, Adjusted for Site Class;
F_{a} - Factor to Adjust Spectral Acceleration in the short period range for Site Class;
F_{v} - Factor to Adjust Spectral Acceleration at 1 Second for Site Class;
SXS, BEE-1E - Spectral Response Acceleration Parameter at Short Periods for BSE-1E Seismic Hazard Level and any Damping, Adjusted for Site Class;
$\mathrm{S}_{\mathrm{X} 1, \mathrm{BEE}-1 \mathrm{E}}$ - Spectral Response Acceleration Parameter at a 1 Second Period for BSE-1E Seismic Hazard Level and any Damping, Adjusted for Site Class.

Table 1.4 BSE-2E Seismic Parameters

Parameter	Value
Latitude	45.29 N
Longitude	122.77 W
$\mathrm{~S}_{\mathrm{S}, 5 / 50}$	0.598 g
$\mathrm{~S}_{1,5 / 50}$	0.27 g
Site Class	C
F_{a}	1.265
$\mathrm{~F}_{\mathrm{V}}$	1.5
$\mathrm{~S}_{\mathrm{XS}, \mathrm{BSE}-2 \mathrm{E}}$	0.744 g
$\mathrm{~S}_{\mathrm{X}, \mathrm{BSE}-2 \mathrm{E}}$	0.405 g

Notes:

Abbreviations: $\mathrm{S}_{\mathrm{S}, 5 / 50}$ - Spectral Response Acceleration Parameter at Short Periods for any Seismic Hazard Level and any Damping, Adjusted for Site Class;
$\mathrm{S}_{1,5 / 50}$ - Spectral Response Acceleration Parameter at a 1 Second Period for any Seismic Hazard Level and any Damping, Adjusted for Site Class;
SXS, BSE-2E - Spectral Response Acceleration Parameter at Short Periods for BSE-2E Seismic Hazard Level and any Damping, Adjusted for Site Class;
S $_{\text {X1, BSE-2E }}$ - Spectral Response Acceleration Parameter at a 1 Second Period for BSE-2E Seismic Hazard Level and any Damping, Adjusted for Site Class.

Table 1.5 CSZ Seismic Parameters

Parameter	Value
Latitude	45.29 N
Longitude	122.77 W
$\mathrm{~S}_{\mathrm{s}}$	0.343 g
$\mathrm{~S}_{1}$	0.221 g
Site Class	C
F_{a}	1.3
$\mathrm{~F}_{\mathrm{v}}$	1.5
$\mathrm{~S} x \mathrm{ss,csz}$	0.446 g
$\mathrm{Sx}_{\mathrm{x}, \mathrm{csz}}$	0.332 g

Notes:
Abbreviations: Ss - Spectral Response Acceleration Parameter at Short Periods for any Seismic Hazard Level and any Damping, Adjusted for Site Class;
S_{1} - Spectral Response Acceleration Parameter at a 1 Second Period for any Seismic Hazard Level and any Damping, Adjusted for Site Class;
Sxs, csz - Spectral Response Acceleration Parameter at Short Periods for CSZ Seismic Hazard Level and any Damping, Adjusted for Site Class;
Sx1, csz - Spectral Response Acceleration Parameter at a 1 Second Period for CSZ Seismic Hazard Level and any Damping, Adjusted for Site Class.

1.3.4 Selection of Performance Objectives

Taking into account the performance levels and seismic hazards described above, per ASCE 41-17 Risk Category III existing structures were evaluated for Damage Control (S-2) at the BSE-1E seismic hazard level and Limited Safety ($\mathrm{S}-4$) at the BSE-2E seismic hazard level. From Table 1.5 above, the CSZ seismic hazard is greater than those for the BSE-1E seismic hazard level. Our analysis replaced the BSE-1E seismic hazard for the higher seismic ground motions associated with the CSZ seismic hazard. For Tier 1 analyses the performance objectives are deemed to be satisfied if the analysis is performed for BSE-2E using Limited Safety Structural Performance parameters and Position Retention Non-Structural Performance parameters provided in ASCE 41-17. However, because the CSZ hazard exceeds that of the BSE-2E, the Tier 1 checks were explicitly evaluated at the CSZ hazard level.

1.4 Seismic Evaluation and Analysis

The buildings were evaluated using the Tier 1 and Tier 2 procedures set forth in ASCE 41-17. The seismic evaluation and analysis comprised of data collection and review, a site visit, completion of Tier 1 checklists and calculations, and Tier 2 calculations based on the deficiencies found in the Tier 1 evaluation.

Similarly, the basins were evaluated using $\mathrm{ACI} 350-06$ and $\mathrm{ACI} 350.3-06$ with the same seismic hazard levels as the buildings, but the following adjustments were made to adapt the use of ACI 350-06 and ACl 350.3-06 for seismic evaluation, rather than design:

- Importance factor $=1.25$.
- Load factors were limited to 1.0 for load combinations.
- Capacity-reduction factors were set equal to 1.0.

1.4.1 Data Collection and Review

To obtain data and information necessary for performing the seismic evaluation, the following construction documents and reports were reviewed:

- City of Wilsonville, Oregon Sewage Treatment Plant Phase III Expansion, prepared by CH2M Hill, dated August 1979.
- City of Wilsonville Wastewater Treatment Plant, prepared by CH2M Hill, dated December 1995.
- City of Wilsonville Wastewater Treatment Plant Improvements DBO, prepared by CH2M Hill, dated June 2012.
- Technical Memorandum, prepared by Northwest Geotech, Inc., dated June 2021.

The material properties used in this evaluation are listed in Table 1.6. These properties were determined based on information shown in the record drawings. For the properties that could not be obtained from the record drawings, the values were obtained from the default historical material properties prescribed in ASCE 41-17, Chapter 4.

Table 1.6 Material Properties

Material and Mechanical Property	Value
Concrete Compressive Strength	$\mathrm{f}^{\prime}=4,000 \mathrm{psi}$
Reinforcing Steel (ASTM A615 G60) Yield Strength	$\mathrm{f}_{\mathrm{y}}=60,000 \mathrm{psi}$
Steel Framing (ASTM A36) Yield Strength	$\mathrm{F}_{\mathrm{y}}=36,000 \mathrm{psi}$
Corrugated Steel Roof Deck (ASTM A446) Yield Strength	$\mathrm{F}_{\mathrm{y}}=50,000 \mathrm{psi}$

Notes:
Abbreviations: ASTM - ASTM International; f^{\prime} - Concrete Compressive Strength; f_{y} - Yield Strength of Rebar; $\mathrm{F}_{\mathrm{y}}-$ Yield
Strength of Steel; psi - pounds per square inch.

1.4.2 Site Visit

A site visit was conducted by James Doering, S.E., and Brian Stuetzel, E.I.T., of Carollo on June 16 and 17, 2021. The site visit included review of both interior and exterior spaces with access gained to the basement and ground floor levels. Access to the roof levels was not available. The buildings were in full operation at the time of the site visit.

The site visit objectives included:

- Verification that the structures are generally configured and constructed in accordance with the record drawings.
- Completion of Tier 1 checklist items that required visual verification.
- Identification of additional loads that are to be included in the seismic analysis, such as equipment, piping, and ceilings.
- Structural condition assessment of visual portions of the structures.
- Non-Structural items within the structures and around the plant.

Observations made during the site visits were collected using an Apple iPhone and a digital camera. Photographs collected during the site visit are included in Appendix A for reference.

1.4.3 Analysis Procedures

Analysis procedures followed those set forth in ASCE 41-17, ACI 350-06, and ACI 350.3-06. For the most part, the structures did not have any significant irregularities.

The analysis included the structure above grade and those portions of the structure below grade that are within the seismic load path for lateral load resistance. Loads applied to the structure include dead loads, live loads, inertial seismic loads, and hydrodynamic loads where applicable. Load combinations analyzed were limited to those that include seismic loads. Load intensities and material unit weights assumed for the evaluation are presented in Table 1.7.

Refer to Appendix B for the Tier 1 checklists and calculations.
Table 1.7 Load Intensities and Material Unit Weights

Load/Material	Value
Unit Weight of Concrete	150 pcf
Unit Weight of Steel	490 pcf
Roof Live Load	20 psf
Roof Snow Load	25 psf
Floor Live Load	250 psf

Notes:
Abbreviations: pcf - pounds per cubic foot; psf - pounds per square foot.

1.4.4 Acceptance Criteria

The analysis involves the estimation of seismic load and deformation demands placed upon structural members. These demands are compared against their estimated capacity, which is a function of the member proportions, material properties, and desired performance level. The metric used in this evaluation to quantify the degree of distress of an existing member or connection is referred to as the demand to capacity ratio (DCR):

$$
D C R=\frac{\text { Load Demand }}{\text { Available Capacity }}
$$

DCR values that exceed 1.0 are typically considered to have exceeded their capacity for the evaluated performance level and are considered deficient.

The estimated capacity is a function of the material properties. For this evaluation, the material properties have been obtained from the record construction documents. For Tier 2 investigations and beyond, ASCE 41-17 requires that a knowledge factor be applied to the material property depending on which type of construction documents served as the source for the material information. Since the information for materials is provided on the construction documents, the knowledge factor has been assumed to be 0.90.

1.5 Evaluation Findings

The results from review of the record drawings, site visit and structural calculations are presented in this section. The structural members and connection capacities were checked against the demands imposed by the prescribed seismic loads as described in previous sections to obtain corresponding DCRs. DCR values that exceed 1.0 indicate a deficiency with respect to the evaluated performance level. The members and connections that were found to be deficient for each building are listed in Table 1.8.

Table 1.8 List of Deficiencies

No.	Deficiency	Description
Operations Building		
S1	Load path / Transfer to Shear Walls	No drag connections to transfer diaphragm forces into shear walls where those walls are discontinuous within the plan of the building.
S2	Plan Irregularities	No diaphragm ties in the N-S direction to transfer diaphragm forces into shear walls.
NS1	Edge Clearance	The ceiling edges do not have a sufficient gap between the enclosing walls and this could cause damage due to restraint.
NS2	Lens Covers	Lens covers over lights lack safety device.
NS3	Overhead Glazing	Windows above entrance appear to lack proper restraint in frame if cracked or damaged.
NS4	Tall Narrow Contents	Storage racks lack restraint to structure. Also, the refrigerator in laboratory appears to lack restraint if wheels are locked.
NS5	Fall-Prone Contents / Suspended Equipment	The laboratory hoods could not be determined if adequate lateral bracing is attached back to structure. In addition, the air handler unit lacks anchorage to support structure.
Process Gallery		
S1	Load path / transfer to shear walls	The roof beam aligned with interior shear wall lacks ability to transfer seismic loads into the shear wall.
NS1	In-line Equipment	Air handling unit lacks anchorage along channel support. Also, the aeration blower pumps in basement lack proper anchorage back to structure.
NS2	Fluid and Gas Piping	Multiple pipes lack restraint to Unistrut support below. In addition, the compression struts for RAS piping lack diagonal bracing back to structure.
Workshop		
S1	Narrow Wood Shear Walls	The shear wall segments along the east elevation cannot develop the overturning forces due to a lack of holdowns at the ends of each shear wall segment.
S2	Narrow Wood Shear Walls	The shear wall segments along the east elevation do not have sufficient shear capacity to resisting the in-plane seismic loads.
S3	Narrow Wood Shear Walls	The shear wall segments along the east elevation do not have adequate sill bolt anchorage for resisting the in-plane seismic loads.
NS1	Tall Narrow Contents	The storage racks within building lack restraint back to the structure. In addition, the shelving unit along south elevation lacks anchorage across entire length.

No.	Deficiency	Description
Stabilization Basins	The longitudinal sloshing direction results in a freeboard	
S1	Freeboard	deficit of about 1.2 feet. The aluminum covers can be damaged by sloshing water.
Sludge Storage Basins	The longitudinal sloshing direction results in a freeboard deficit of about 1.6 feet. The membrane covers can be damaged by sloshing water.	
S1	Freeboard	Storage racks within the Headworks building lack anchorage back to structure.
Overall Plant Structures	Recirculation pump at Disk Filters lacks restraint against overturning.	
NS1	Tall Narrow Contents	ACCU units near the aeration basins lack anchorage to structural pads.
NS2	In-Line Equipment	Heavy Equipment

Based on the observed deficiencies, mitigation methods are outlined in the following section along with a planning level cost estimates to mitigate these deficiencies.

1.6 Recommendations for Mitigation

In this section mitigation measures to address the structural deficiencies are presented. The observed structural deficiencies can be mitigated by performing reasonable retrofit and strengthening of the existing buildings. Following is a detailed discussion for each of the observed structural deficiencies and potential mitigation strategies.

1.6.1 Load Path / Transfer to Shear Walls

There needs to be a direct load path for the seismic forces to be transferred from the roof level down to the foundation level. The loads will eventually need to be transferred into the shear walls, and one way to ensure transfer into the shear wall system is through collector beams. To mitigate this issue, adding collector beams and associated connections to the shear walls will allow for the seismic loads to transfer into the lateral load resisting system.

Figure 1.2 Operations Building - Collector Beam Locations and Anchorage Deficiencies

Figure 1.3 Process Gallery - Collector Beam Location and Anchorage Deficiency

1.6.2 Narrow Wood Shear Walls

Narrow wood shear walls tend to have reduced shear strength and overturning capacity to resist lateral forces. Since the wall height tends to be significantly larger than the wall length, the overturning forces on the wall can cause damage at the wall base and render it less effective at resisting shear forces. A Tier 2 evaluation for the east shear wall segments was performed and the overturning capacity, shear capacity, and shear anchorage to the foundation were found to be deficient. The following mitigation is recommended for the east wall of the workshop:

- Provide holdown anchorage for each end of the middle (2) shear wall segments. Holdown anchorage is typically comprised of a prefabricated metal connector with a post-installed anchor into the building foundation/footing.
- Enhance the shear strength of the middle (2) shear wall segments by providing a plywood overlay at the interior side of the wall.
- Enhance the shear anchorage capacity at the sill plate connection to the foundation/footing by providing additional sill plate anchors to reduce the overall spacing of sill bolts to no more than 24 inches. Sill plate anchorage should be comprised of a post-installed anchor into the foundation/footing and associated plate washer on top of the sill plate.
- Provide top plate straps where splices occur in the stud wall top plates. Because only the middle (2) shear wall segments are considered to be effective in resisting in-plane seismic loads, the top plates will be required to transmit diaphragm loads to the middle (2) shear walls and the configuration of the top plates may require supplemental ties to ensure seismic loads can be effectively transmitted to the middle (2) shear walls.

1.7 Cost Estimates

To assist the City of Wilsonville with their planning efforts to improve reliability of these buildings, we have developed a rough order of magnitude of cost associated with mitigating the seismic deficiencies identified. The construction cost estimate includes direct and indirect costs. Direct costs include materials, labor, and construction equipment required for the retrofit. This cost also includes removal and re-installation of the interior finishes to allow access to perform recommended mitigation. Various indirect cost and non-construction cost factors that have been included in the total estimated project cost are identified in Appendix C.

Cost estimates provided in this evaluation/study are considered to be a Class 5 estimate as defined in "Recommended Practice 18R-97 Cost Estimate Classification System for the Process Industries," published by the Association for the Advancement of Cost Engineering (AACEI). These costs are anticipated to have an accuracy range of +50 percent to -30 percent and are intended for planning purposes. The unit costs in Appendix C are derived from RS Means and Carollo's cost estimate database.

A summary of the cost estimate is provided in Table 1.9. The detailed breakdown of the cost estimate is provided in Appendix C. The total estimated cost for mitigating all the seismic deficiencies identified is $\$ 810,400$.

Table 1.9 Summary of Retrofit Cost Estimate

Structure	Cost Estimate	
Operations Building	$\$ 646,900$	
Process Gallery	$\$ 44,800$	
Workshop	$\$ 114,400$	
Overall Plant (Non-Structural)	$\$ 4,300$	
	TOTAL	$\$ 810,400$

1.8 Conclusion

The goal of the seismic evaluation was to identify specific seismic vulnerabilities and deficient structural conditions for the purpose of improving the overall reliability of the subject buildings. Our findings presented in this report identify numerous seismic vulnerabilities and deficient conditions that warrant retrofit. Mitigation strategies for retrofit were developed and presented in this report along with cost estimates.

1.9 References

1.9.1 Standards

American Society of Civil Engineers (ASCE). (2017). "Seismic Evaluation and Retrofit of Existing Buildings." ASCE/SEI 41-17.

American Society of Civil Engineers (ASCE). (2016). "Minimum Design Loads for Buildings and other Structures, " ASCE/SEI 7-16.

American Concrete Institute (ACI). (2014), "Building Code Requirements for Structural Concrete." ACl 318-14, Farmington Hills, MI.

AISC (2005), "Specification for Structural Steel Buildings." American Institute of Steel Construction, Inc., Chicago, IL.

American Forest \& Paper Association/American Wood Council (2018), ANSI/AF\&PA National Design Specification for Wood Construction.

2019 Oregon Structural Specialty Code.
2018 International Building Code.

1.9.2 Reports

Technical Memorandum, prepared by Northwest Geotech, Inc., dated June 25, 2021.

Appendix A
SITE VISIT PHOTOGRAPHS

Figure 1 Operations Building - East Elevation View

Figure 2 Operations Building - Roof Joist Framing

Figure 3 Operations Building - Roof Steel Framing

Figure 4 Operations Building - Drag Connection Deficiency Locations

Figure 5 Operations Building - Diaphragm Span Location Exceeding 40 feet Deficiency

Figure 6 Operations Building - Ceiling Clearance to Wall

Figure $7 \quad$ Operations Building - Lens Cover Lacks Safety Device

Figure 8 Operations Building - Window Above Entrance Appears to Lack Special Treatment to Limit Damage

Figure 9 Operations Building - Collector Beam Connection to CMU Wall

Figure 10 Process Gallery - South Elevation

Figure 11 Process Gallery - Wall Anchorage

Figure 12 Process Gallery - Beam Anchorage

Figure 13 Process Gallery - Basement Interior View

Figure 14 Process Gallery - Air Handling Unit Lacking Anchorage

Figure 15 Process Gallery - Blower Equipment with Missing Nuts

Figure 16 Process Gallery - Piping Lacks Connection Back to Supports Below

Figure 17 Process Gallery - RAS Piping Lacks Lateral Bracing Along Length at Compression Struts

Figure 18 Workshop - North Elevation

Figure 19 Workshop - Interior View

Figure 20 Workshop - Storage Room Interior View

Figure 21 Workshop - East Elevation Shear Walls are Considered Narrow and Could Limit Strength

Figure 22 Workshop - Storage Shelving Lacks Restraint to Structure

Figure 23 Workshop - Storage Shelves on South Wall Missing Anchorage

Figure 24 Aeration Basin - Top View

Figure 25 Stabilization Basin - Top View

Figure 26 Stabilization Basin - Walkway with Piping and Support

Figure 27 Sludge Storage and Biofilter Basins - Top View

Figure 28 Sludge Storage and Biofilter Basins - Pump Equipment

Figure 29 Headworks Building - Shelving Lacks Anchorage to Structure

Figure 30 Disk Filters - Recirculation Pump Lacking Resistance to Overturning

Figure 31 Aeration Basins Canopy - ACCU Units Lacking Anchorage To Concrete Pad

Appendix B
 ASCE 41-17 TIER 1 CHECKLISTS AND CALCULATIONS / TIER 2 CALCULATIONS

City of Wilsonville Wastewater Treatment Plant Structural Checklists \& Calculations

Table of Contents

Operations Building - Tier $1 \quad$ pg. 01
Process Gallery - Tier 1
pg. 89
Workshop - Tier 1
Aeration and Stabilization Basins - Tier 1
pg. 180
Sludge Storage and Biofilter Basins - Tier 1
pg. 245
Overall Plant Non-Structural Checklist - Tier 1
pg. 334
Tier 2 Calculations
pg. 408

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Operations Building
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962 A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$07 / 01 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Table 17-2. Collapse Prevention Basic Configuration Checklist

Very Low Seismicity Structural Components					
RATING				DESCRIPTION	COMMENTS
C \square	NC \square	N/A \square	U \square	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There are no diaphragm ties in the N-S direction where perimeter CMU shear walls stop. The diaphragm at these locations will lack the ability to transfer diaphragm forces into the shear walls.
C x	NC \square	N/A \square	U \square	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	Roof joist bearing anchorage $\mathrm{DCR}=0.23$ (OK) $\mathrm{E}-\mathrm{W}$ beam bearing anchorage $\mathrm{DCR}=0.55$ (OK) N -S beam bearing anchorage $\mathrm{DCR}=0.24$ (OK)

Low Seismicity

Building System
General

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & \text { c } \\ & \square \end{aligned}$	$\begin{gathered} N C \\ x \end{gathered}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There are no diaphragm ties in the N-S direction where perimeter CMU shear walls stop. The diaphragm at these locations will lack the ability to transfer diaphragm forces into the shear walls.
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement need not apply for the following building types: $\mathrm{W} 1, \mathrm{~W} 1 \mathrm{~A}$, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)	
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \text { U } \\ & \square \end{aligned}$	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)	

Building Configuration

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{array}{\|c\|} \hline \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1)	Building is a one-story structure.
$\begin{aligned} & \mathrm{c} \\ & \square \end{aligned}$	NC	$\begin{array}{\|c\|} \hline \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{array}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	SOFT STORY: The stiffness of the seismic-forceresisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)	Building is a one-story structure.
$\begin{aligned} & \mathrm{C} \\ & \mathrm{x} \end{aligned}$	NC	N/A \square	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)	
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{u} \\ & \square \end{aligned}$	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-forceresisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)	Building is a one-story structure.

C	NC	N/A	U	MASS: There is no change in effective mass more than 50\% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	Building is a one-story structure.
\square	\square	\boldsymbol{x}	\square		
C	NC	N / A	U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20\% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	Torsion check applies for structures with rigid diaphragms, not for flexible diaphragms.
\square	\square	\boldsymbol{x}	\square		

Moderate Seismicity
Geologic Site Hazards

RATING				DESCRIPTION	COMMENTS
C \qquad x	NC \square	N/A \square	U \square	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.
$\begin{aligned} & \mathrm{C} \\ & \boldsymbol{x} \end{aligned}$	NC	N/A \square	U \square	SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)	Slope failure has been determined to not be an issue per NGI technical memorandum.

| C | NC | N/A | U | SURFACE FAULT RUPTURE: Surface fault rupture
 and surface displacement at the building site are | Surface fault rupture has been determined to
 not be an issue per NGI technical
 memorandum.
 not anticipated. (Commentary: Sec. A.6.1.3. Tier 2:
 m.4.3.1) | \square |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\square \square$

High Seismicity
Foundation Configuration

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U \square	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/ height) is greater than $0.6 \mathrm{~S}_{\mathrm{a}}$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	$\begin{aligned} & \text { Height }=10.25 \mathrm{ft} \\ & \text { Base }=58 \mathrm{ft} \\ & \text { Sa }=0.744 \\ & \\ & \mathrm{~B} / \mathrm{H}=58 \mathrm{ft} / 10.25 \mathrm{ft}=5.66 \\ & 0.6^{*} \mathrm{Sa}=0.6^{*} 0.744=0.45 \\ & \\ & 5.66>0.45(\mathrm{OK}) \end{aligned}$
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U \square	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)	

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Operations Building
SEISMICITY LEVEL:	High
PROJECT NUMBER:	$11962 A .00$
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$07 / 01 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Table 17-33. Collapse Prevention Structural Checklist for Building Types RM1

 and RM2| Low and Moderate Seismicity Seismic-Force-Resisting System | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RATING | | | | DESCRIPTION | COMMENTS |
| C x | NC
 \square | $\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$ | U \square | REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1) | |
| C
 x | NC
 \square | $\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$ | U \square \square | SHEAR STRESS CHECK: The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than $70 \mathrm{lb} / \mathrm{in} .^{2}$. (Commentary: Sec. A.3.2.4.1. Tier 2: Sec. 5.5.3.1.1) | West wall line DCR $=0.06$ (OK)
 East wall line DCR $=0.08$ (OK)
 North wall line DCR $=0.46$ (OK)
 South wall line $D C R=0.45$ (OK) |
| C \square | $\begin{gathered} \text { NC } \\ x \end{gathered}$ | $\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$ | U \square | REINFORCING STEEL: The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in., and all vertical bars extend to the top of the walls. (Commentary: Sec. A.3.2.4.2. Tier 2: Sec. 5.5.3.1.3) | Horiz steel = \#5@48"
 Vert steel = \#6@32"
 Horiz ratio $=0.31 /\left(7.625^{*} 48\right)=0.0008>$ 0.0007 (OK)
 Vert ratio $=0.44 /\left(7.625^{*} 32\right)=0.0018>0.0007$
 (OK)
 Combined $=0.0018+0.0008=0.0026>0.002$
 (OK)
 Horizontal reinforcing is spaced at 48in, and this is not less than 48 in spacing so NC. |

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & \text { с } \\ & \square \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	U \square	TOPPING SLAB: Precast concrete diaphragm elements are interconnected by a continuous reinforced concrete topping slab. (Commentary: Sec. A.4.5.1. Tier 2: Sec. 5.6.4)	
Connections					
RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & \text { C } \\ & \boldsymbol{x} \end{aligned}$	NC \square	$\begin{array}{c\|} \hline \mathrm{N} / \mathrm{A} \\ \square \end{array}$	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	Roof joist bearing anchorage $\mathrm{DCR}=0.23$ (OK) $E-W$ beam bearing anchorage $D C R=0.55$ (OK) $\mathrm{N}-\mathrm{S}$ beam bearing anchorage $\mathrm{DCR}=0.24$ (OK)
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	U \square	WOOD LEDGERS: The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Commentary: Sec. A.5.1.2. Tier 2: Sec. 5.7.1.3)	
$\begin{gathered} \mathrm{c} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{NC} \\ & \boldsymbol{x} \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \text { U } \\ & \square \end{aligned}$	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of seismic forces to the shear walls. (Commentary: Sec. A.5.2.1. Tier 2: Sec. 5.7.2)	There are no diaphragm ties in the N-S direction where perimeter CMU shear walls stop. The diaphragm at these locations will lack the ability to transfer diaphragm forces into the shear walls.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

High Seismicity

Stiff Diaphragms

RATING	DESCRIPTION				
C	NC	N/A	U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25\% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3)	
\square	\square	\boxed{x}	\square		

| C | NC | N/A | U | OPENINGS AT EXTERIOR MASONRY SHEAR WALLS:
 Diaphragm openings immediately adjacent to
 exterior masonry shear walls are not greater than
 8ft long. (Commentary: Sec. A.4.1.6. Tier 2: Sec.
 5.6.1.3) |
| :--- | :--- | :---: | :---: | :--- | :--- |
| \square | \square | \boldsymbol{x} | \square | |

Flexible Diaphragms

RATING				DESCRIPTION	COMMENTS
$\begin{gathered} \text { C } \\ \boldsymbol{x} \end{gathered}$	NC \square	N/A \square	$\begin{gathered} \mathrm{u} \\ \square \end{gathered}$	CROSS TIES: There are continuous cross ties between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2)	
$\begin{aligned} & \text { с } \\ & \square \end{aligned}$	NC \qquad	$\begin{array}{\|c\|} \hline N / A \\ \boldsymbol{x} \end{array}$	$\begin{gathered} \mathrm{u} \\ \square \end{gathered}$	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{gathered} \mathrm{u} \\ \square \end{gathered}$	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft long. (Commentary: Sec. A.4.1.6. Tier 2: Sec. 5.6.1.3)	

C	NC	N/A	U	STRAIGHT SHEATHING: All straight sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2)		
\square	\square	\boldsymbol{x}				

Connections

RATING		DESCRIPTION			COMMENTS
C	NC	N/A	U	STIFFNESS OF WALL ANCHORS: Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. before engagement of the anchors. (Commentary: Sec. A.5.1.4. Tier 2: Sec. 5.7.1.2)	
\square	\square	\boldsymbol{x}	\square		

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Administration and Operations Building
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962 A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$07 / 01 / 2021$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Table 17-38. Nonstructural Checklist

The Performance Level is designated LS for Life Safety or PR for Position Retention. The level of seismicity is designated as "not required" or by L, M, or H, for Low, Moderate, and High.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-MH; PR-MH. SPRINKLER CEILING CLEARANCE: Penetrations trough panelized ceilings for fire suppression devices provide clearances in accordance with	
\square	\square	X	\square		NFPA-13. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.4)
C	NC	N / A	U	LS-not required; PR-LMH. EMERGENCY LIGHTING: Emergency and egress lighting equipment is anchored or braced. (Commentary: Sec. A.7.3.1. Tier 2: Sec. 13.7.9)	
\square	\square	X	\square		

Hazardous Materials

RATING				DESCRIPTION	COMMENTS
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. HAZARDOUS MATERIAL EQUIPMENT: Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Commentary: Sec. A.7.12.2. Tier 2: 13.7.1)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. HAZARDOUS MATERIAL STORAGE: Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Commentary: Sec. A.7.15.1. Tier 2: Sec. 13.8.4)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { C } & \text { NC } & \text { N/A } & \text { U } & \begin{array}{l}\text { LS-MH; PR-MH. } \\ \text { HAZARDOUS MATERIAL DISTRIBUTION: Piping or } \\ \text { ductwork conveying hazardous materials is }\end{array} \\ \text { braced or otherwise protected from damage that } \\ \text { would allow hazardous material release. } \\ \text { (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and } \\ \text { 13.7.5) }\end{array}\right]$

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Partitions

RATING				DESCRIPTION	COMMENTS
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square	LS-LMH; PR-LMH. UNREINFORCED MASONRY: Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft in Low or Moderate Seismicity, or at most 6 ft in High Seismicity. (Commentary: Sec. A.7.1.1. Tier 2: Sec. 13.6.2)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. HEAVY PARTITIONS SUPPORTED BY CEILINGS: The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-MH; PR-MH. DRIFT: Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Commentary A.7.1.2 Tier 2: Sec. 13.6.2)	
$\begin{aligned} & \mathrm{C} \\ & \mathrm{X} \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	LS-not required; PR-MH. LIGHT PARTITIONS SUPPORTED BY CEILINGS: The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-not required; PR-MH. STRUCTURAL SEPARATIONS: Partitions that cross structural separations have seismic or control joints. (Commentary: Sec. A.7.1.3. Tier 2. Sec. 13.6.2)	
\square	\square	\boxed{X}	\square		
C	NC	N/A	U	LS-not required; PR-MH. TOPS: The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft. (Commentary: Sec. A.7.1.4. Tier 2. Sec. 13.6.2)	attached to bottom chord of truss members.
\square	\square	\square	\square		

Ceilings

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C X	NC	N/A \square	U \square	LS-not required; PR-MH. INTEGRATED CEILINGS: Integrated suspended ceilings with continuous areas greater than 144 ft^{2}, and ceilings of smaller areas that are not surrounded by restraining partitions, are laterally restrained at a spacing no greater than 12 ft with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Commentary: Sec. A.7.2.2. Tier 2: Sec. 13.6.4)	
C \square	$\begin{aligned} & \mathrm{NC} \\ & X \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	LS-not required; PR-MH. EDGE CLEARANCE: The free edges of integrated suspended ceilings with continuous areas greater than $144 \mathrm{ft}^{2}$ have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in.; in High Seismicity, 3/4 in. (Commentary: Sec. A.7.2.4. Tier 2: Sec. 13.6.4)	Ceiling edges are placed next to partitions and exterior framing. No gap is provided between.
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-MH. CONTINUITY ACROSS STRUCTURE JOINTS: The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Commentary: Sec. A.7.2.5. Tier 2: Sec. 13.6.4)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-H. EDGE SUPPORT: The free edges of integrated suspended ceilings with continuous areas greater than $144 \mathrm{ft}^{2}$ are supported by closure angles or channels not less than 2 in. wide. (Commentary: Sec. A.7.2.6. Tier 2: Sec. 13.6.4)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Ceiling supported off wall. There is no gap between ceiling channel edge and wall.

C	NC	N/A	U	LS-not required; PR-H. SEISMIC JOINTS: Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2500 ft² and has a ratio of long-to-short dimension no more than 4-to-1. (Commentary: Sec. A.7.2.7. Tier 2: 13.6.4)	\square
\square	\boxed{X}	\square			

Light Fixtures

RATING				DESCRIPTION	COMMENTS
C χ	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	LS-MH; PR-MH. INDEPENDENT SUPPORT: Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Commentary: Sec. A.7.3.2. Tier 2: Sec. 13.6.4 and 13.7.9)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U	LS-not required; PR-H PENDANT SUPPORTS: Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft . Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigid supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Commentary: Sec. A.7.3.3. Tier 2: Sec. 13.7.9)	
C \square	NC \qquad	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	LS-not required; PR-H. LENS COVERS: Lens covers on light fixtures are attached with safety devices. (Commentary: Sec. A.7.3.4. Tier 2: Sec. 13.7.9)	There appears to be a lack of safety devices on lights.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Lens covers within building lack safety devices. The covers currently can swing open without a latch.

Cladding and Glazing

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square	LS-MH; PR-MH. CLADDING ANCHORS: Cladding components weighing more than $10 \mathrm{lb} / \mathrm{ft}^{2}$ are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft ; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft . (Commentary: Sec. A.7.4.1. Tier 2: Sec. 13.6.1)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-MH; PR-MH CLADDING ISOLATION: For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02 , and the rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.3. Tier 2: Sec. 13.6.1)	
C \square	NC \square	$\begin{array}{r} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{array}$	U \square	LS-MH; PR-MH MULTI-STORY PANELS: For multi-story panels attahed at more than one floor level panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02 , and the rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.4. Tier 2: Sec. 13.6.1)	
C \square	NC \square	N/A \square x	U \square	LS-MH; PR-MH THREADED RODS: Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and for Position Retention in any seismicity. (Commentary: Sec. A.7.4.9. Tier 2: Sec. 13.6.1)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-MH; PR-MH. PANEL CONNECTIONS: Cladding panels are anchored out-of-plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Commentary: Sec. A.7.4.5. Tier 2: Sec. 13.6.1.4)	\square
\boldsymbol{x}	$\boxed{\square}$				

C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-MH; PR-MH. BEARING CONNECTIONS: Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Commentary: Sec. A.7.4.6. Tier 2: Sec. 13.6.1.4)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-MH; PR-MH. INSERTS: Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Commentary: Sec. A.7.4.7. Tier 2: Sec. 13.6.1.4)	
C	NC Х	N/A \square	U \square	LS-MH; PR-MH. OVERHEAD GLAZING: Glazing panes of any size in curtain walls and individual interior or exterior panes over $16 \mathrm{ft}^{2}$ in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Commentary: Sec. A.7.4.8: Tier 2: Sec. 13.6.1.5)	Windows are assumed to lack proper restraint in frame if cracked or damaged.

Masonry Veneer

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. TIES: Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every $2-2 / 3 \mathrm{ft}^{2}$, and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in.; for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in . (Commentary: Sec. A.7.5.1. Tier 2: Sec. 13.6.1.2)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Exterior windows do not appear to meet requirements of heat laminated or have restraint to remain within frame if cracked.

Parapets, Cornices, Ornamentation, and Appendages

RATING		DESCRIPTION			
C	NC	N/A	U	LS-LMH; PR-LMH. URM PARAPETS OR CORNICES: Laterally unsupported unreinforced masonry parapets or cornices have height-to-thickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any	
\square	\square	\boxed{X}	\square		
seismicity, 1.5. (Commentary: Sec. A.7.8.1. Tier 2:					
Sec. 13.6.5)					

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boxtimes \end{gathered}$	$\begin{aligned} & \mathrm{u} \\ & \square \end{aligned}$	LS-LMH; PR-LMH. CANOPIES: Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft ; for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft . (Commentary: Sec. A.7.8.2. Tier 2: Sec. 13.6.6)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boxtimes \end{gathered}$	U \square	LS-MH; PR-LMH. CONCRETE PARAPETS: Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Commentary: Sec. A.7.8.3. Tier 2: Sec. 13.6.5)	
$\begin{gathered} c \\ \boxtimes \end{gathered}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-MH; PR-LMH. APPENDAGES: Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft . This checklist item does not apply to parapets or cornices covered by other checklist items. (Commentary: Sec. A.7.8.4. Tier 2: Sec. 13.6.6)	Vent stact for the laboratory hoods on roof is restrained with (3) cables.
Masonry Chimneys					
RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boxtimes \end{gathered}$	$\begin{aligned} & \text { U } \\ & \square \end{aligned}$	LS-LMH; PR-LMH. URM CHIMNEYS: Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Commentary: Sec. A.7.9.1. Tier 2: 13.6.7)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Contents and Furnishings

RATING
C NC N/A U LS-MH; PR-MH. INDUSTRIAL STORAGE RACKS: Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/MH 16.1 as modified by ASCE 7 Chapter 15. (Commentary: Sec. A.7.11.1. Tier 2: Sec. 13.8.1) \square \square \boxed{X} \square

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C \qquad	NC Х	N / A \square	U \square	LS-H; PR-MH. TALL NARROW CONTENTS: Contents more than 6 ft high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Commentary: Sec. A.7.11.2. Tier 2: Sec. 13.8.2)	Storage racks lack restraint to structure in storage room. Refrigerators in laboratory are on rollers which can be locked in place. If set in locked position, there is potential for it to overturn.
C \square	$\begin{aligned} & \mathrm{NC} \\ & X \end{aligned}$	N/A \square	U \square	LS-H; PR-H. FALL-PRONE CONTENTS: Equipment, stored items, or other contents weighing more than 20 lb whose center of mass is more than 4 ft above the adjacent floor level are braced or otherwise restrained. (Commentary: Sec. A.7.11.3. Tier 2: Sec. 13.8.2)	We could not determine/identify whether the laboratory hoods are laterally braced to structure. The equipment is suspended from the roof framing above the ceiling. Our assumption is there is no lateral bracing to support these equipment.
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square	LS-not required; PR-MH. ACCESS FLOORS: Access floors more than 9 in. high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.8.3)	
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-MH. EQUIPMENT ON ACCESS FLOORS: Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Commentary: Sec. A.7.11.5. Tier 2: Sec. 13.7.7 and 13.8.3)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Storage racks in storage room don't appear to be restrained laterally.

Refrigerator doesn't appear to be restrained laterally. There are rollers, but if set in lock position, there is potential for overturning.

The laboratory hood equipment is assumed to be seismically unbraced.

C	NC	N/A	U	LS-not required; PR-H. SUSPENDED CONTENTS: Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Commentary. A.7.11.6. Tier 2: Sec. 13.8.2)	\boxed{Z}

Mechanical and Electrical Equipment

RATING				DESCRIPTION	COMMENTS
C \square	NC X	N/A \square	U \square	LS-H; PR-H. FALL-PRONE EQUIPMENT: Equipment weighing more than 20 lb whose center of mass is more than 4 ft above the adjacent floor level, and which is not in-line equipment, is braced. (Commentary: A.7.12.4. Tier 2: 13.7.1 and 13.7.7)	We could not determine/identify whether the laboratory hoods are laterally braced to structure. The equipment is suspended from the roof framing above the ceiling. Our assumption is there is no lateral bracing to support these equipment. In addition, the air handlers in mechanical room lack anchorage to the support structure below.
$\begin{aligned} & \mathrm{C} \\ & X \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	LS-H; PR-H. IN-LINE EQUIPMENT: Equipment installed in-line with a duct or piping system, with an operating weight more than 75 lb , is supported and laterally braced independent of the duct or piping system. (Commentary: Sec. A.7.12.5. Tier 2: Sec. 13.7.1)	
C \square	NC \boxed{x}	N/A \square	U \square	LS-H; PR-MH. TALL NARROW EQUIPMENT: Equipment more than 6 ft high with a height-to-depth or height-towidth ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Commentary: Sec. A.7.12.6. Tier 2: Sec. 13.7.1 and 13.7.7)	The air handlers in mechanical room lack anchorage to the support structure below.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

The HVAC equipment in Mechanical Room doesn't appear to be anchored to supporting structure framing below.

C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-MH. MECHANICAL DOORS: Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Commentary: Sec. A.7.12.7. Tier 2: Sec. 13.6.9)	
C \square	$\begin{gathered} \mathrm{NC} \\ X \end{gathered}$	N/A \square	U \square	LS-not required; PR-H. SUSPENDED EQUIPMENT: Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Commentary: Sec. A.7.12.8. Tier 2: Sec. 13.7.1 and 13.7.7)	We could not determine/identify whether the laboratory hoods are laterally braced to structure. The equipment is suspended from the roof framing above the ceiling. Our assumption is there is no lateral bracing to support these equipment.
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U	LS-not required; PR-H. VIBRATION ISOLATORS: Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Commentary: Sec. A.7.12.9. Tier 2: Sec. 13.7.1)	
C \square	$\begin{aligned} & \mathrm{NC} \\ & \boxtimes \end{aligned}$	N/A \square	U \square	LS-not required; PR-H. HEAVY EQUIPMENT: Floor-supported or platformsupported equipment weighing more than 400 lb is anchored to the structure. (Commentary: Sec. A.7.12.10. Tier 2: 13.7.1 and 13.7.7)	The air handling unit within mechanical room lacks connection to the supporting frame structure it is located on.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Piping

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & \mathrm{C} \\ & \square \end{aligned}$	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-not required; PR-H. FLEXIBLE COUPLINGS: Fluid and gas piping has flexible couplings. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.3 and 13.7.5)	
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-not required; PR-H. FLUID AND GAS PIPING: Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and 13.7.5)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-not required; PR-H. C-CLAMPS: One-sided C-clamps that support	
\square	\square	\boxed{X}	\square	liping larger than 2.5 in. in diameter are restrained. (Commentary: Sec. A.7.13.5. Tier 2: Sec. 13.7.3 and 13.7.5)	
C NC	N/A	U	LS-not required; PR-H. PIPING CROSSING SEISMIC JOINTS: Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A7.13.6. Tier 2: Sec.13.7.3 and Sec. 13.7.5)		
\square	\square	X	\square		

Ducts

RATING				DESCRIPTION	COMMENTS
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-H. DUCT BRACING: Rectangular ductwork larger than $6 \mathrm{ft}^{2}$ in cross-sectional area and round ducts larger than 28 in. in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft . The maximum spacing of longitudinal bracing does not exceed 60 ft . (Commentary: Sec. A.7.14.2. Tier 2: Sec. 13.7.6)	
C Х	NC	N / A	U \square	LS-not required; PR-H. DUCT SUPPORT: Ducts are not supported by piping or electrical conduit. (Commentary: Sec. A.7.14.3. Tier 2: Sec. 13.7.6)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-not required; PR-H. DUCTS CROSSING SEISMIC JOINTS: Ducts that cross seismic joints or isolation planes or are connected to independent structures have	
\square	\square	\boxed{X}	\square	locher couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A.7.14.5. Tier 2: Sec. 13.7.6)	

Elevators

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown
$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { C } & \text { NC } & \text { N/A } & \text { U } & \begin{array}{l}\text { LS-not required; PR-H. } \\ \text { SEISMIC SWITCH: Elevators capable of operating } \\ \text { at speeds of 150 ft/min or faster are equipped } \\ \text { with seismic switches that meet the requirements } \\ \text { of ASME A17.1 or have trigger levels set to 20\% of }\end{array} \\ \text { the acceleration of gravity at the base of the } \\ \text { structure and 50\% of the acceleration of gravity in } \\ \text { other locations. (Commentary: Sec. A.7.16.4. Tier } \\ \text { 2: 13.8.6) }\end{array}\right]$

City of Wilsonville

Operations Building Tier 1 Structural Calculations

ASCE 41-17 Seismic Parameterspg. 1Building Weight pg. 3
Seismic Base Shear pg. 5
Wall Shear Stress Check pg. 6
Wall Anchorage Check pg. 7

Latitude, Longitude: 45.294444, -122.77167

Type	Description	Value
Hazard Level		BSE-2N
S_{S}	spectral response (0.2 s)	0.813
S_{1}	spectral response (1.0 s)	0.381
$S_{\text {XS }}$	site-modified spectral response (0.2 s)	0.976
$\mathrm{S}_{\mathrm{X} 1}$	site-modified spectral response (1.0 s)	0.571
F_{a}	site amplification factor (0.2 s)	1.2
F_{v}	site amplification factor (1.0 s)	1.5
ssuh	max direction uniform hazard (0.2 s)	0.92
crs	coefficient of risk (0.2 s)	0.884
ssit	risk-targeted hazard (0.2 s)	0.813
ssd	deterministic hazard (0.2 s)	1.5
s1uh	max direction uniform hazard (1.0 s)	0.441
cr1	coefficient of risk (1.0 s)	0.863
s1rt	risk-targeted hazard (1.0 s)	0.381
s1d	deterministic hazard (1.0 s)	0.6

Type	Description	Value
Hazard Level		BSE-1N
$S_{X S}$	site-modified spectral response $(0.2 \mathrm{~s})$	0.651
$\mathrm{~S}_{\mathrm{X} 1}$	site-modified spectral response $(1.0 \mathrm{~s})$	0.381

Type	Description	Value
Hazard Level		BSE-2E
S_{S}	spectral response $(0.2 \mathrm{~s})$	0.589
S_{1}	spectral response $(1.0 \mathrm{~s})$	0.27
$S_{X S}$	site-modified spectral response $(0.2 \mathrm{~s})$	0.744
$S_{X 1}$	site-modified spectral response $(1.0 \mathrm{~s})$	0.405
f_{a}	site amplification factor $(0.2 \mathrm{~s})$	1.265
f_{v}	site amplification factor $(1.0 \mathrm{~s})$	1.5

Type	Description	Value
Hazard Level		BSE-1E
S_{S}	spectral response (0.2 s)	0.223
S_{1}	spectral response (1.0 s)	0.082
$S_{\text {Xs }}$	site-modified spectral response (0.2 s)	0.291
$\mathrm{S}_{\mathrm{X} 1}$	site-modified spectral response (1.0 s)	0.123
F_{a}	site amplification factor (0.2 s)	1.3
F_{v}	site amplification factor (1.0 s)	1.5
Type	Description	Value
Hazard Level		TL Data
T-Sub-L	Long-period transition period in seconds	16

DISCLAIMER

While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

BY: \quad BS	DATE Jul-21	CLIENT City of Wilsonville	SHEET
CHKD BY	DESCRIPTION \quad Operations Building	JOB NO. 11962A.00	
DESIGN TASK	Operations Building Seismic Weight		

Roof Loads

Roof EL 125.63

Description

1-1/2"x20ga metal deck
Rigid insulation w/ metal sheet roofing
Steel beam
Steel truss
Suspended accoustical ceiling
Miscellaneous

Dead Load for Gravity Design
Roof Live Load
Snow Load

Load
2.5 psf
4.5
1.8
2.5
3.5
5.0
19.8 psf
20.0 psf (Assumed)
25.0 psf

Notes

1. The roof deck is set at a slope of $5 / 12$, so the deck and truss members will have the unit weight increased by a factor of 1.08 to account for a projected unit horizontal weight.

Wall Loads

Wall Loads

Description

8" CMU wall (partial grouted @ 24")
5/8" GWB w/ insulation
5/8" GWB w/ insulation double sided
3-5/8"x20ga studs @ 16"
Plastic veneer finish

8" CMU Wall w/ GWB 1-side for Seismic Load
8" CMU Wall w/ GWB 2-sides for Seismic Load
8" CMU Wall w/ metal studs for Seismic Load

Load

47.0 psf
3.7
7.4
4.0
7.5
54.4 psf
62.2 psf
Roof Area $\quad 4888.0 \mathrm{ft}^{2}$
Roof Seismic Weight 96.8 kip

Wall Weight

Wall Height to Roof	10.17 ft
8" CMU Wall w/ GWB 1-side Length	254.67 ft
8" CMU Wall w/ GWB 2-sides Length	25.33 ft
8" CMU Wall w/ metal studs Length	37.00 ft
Roof Wall Seismic Weight	$\mathbf{9 4 . 1}$ kip

Total Seismic Weight
190.9 kip

Notes

1. Wall seismic weight assumes half of the wall height associated with each level.
2. Per Section 4.5.2.1, the effective seismic weight includes the total dead load, 25% of the live load when area is used as storage, and 20% of the roof snow live load if greater than 30 psf (otherwise assume zero).

BY: BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY	DESCRIPTION			Operations Building		11962A. 00
DESIGN TASK				7 - Tier 1 Screening (

SEISMIC BASE SHEAR

4.4.2.1 Pseudo Seismic Force. The pseudo seismic force, in a given horizontal direction of a building, shall be calculated in accordance with Eq. (4-1).

$$
\begin{equation*}
V=C S_{d} W \tag{4-1}
\end{equation*}
$$

where
$V=$ Pseudo seismic force;
$C=$ Modification factor to relate expected maximum inelastic displacements to displacements calculated for linear elastic response; C shall be taken from Table 4-7;
$S_{o}=$ Response spectral acceleration at the fundamental period of the building in the direetion under consideration. The value of S_{a} shall be calculated in accordance with the procedures in Section 4.4.2.3; and
W = Effective seismic weight of the building, including the total dead load and applicable portions of oher gravity loads listed below:

Table 4-7. Modification Factor, C

Buiding type ${ }^{3}$	Number of Stories			
	1	2	3	≥ 4
Wood and cold-formed stepel shear wall (W1. W1a, W2, CFSA1	3.3	t. 3	5.0	1.0
Moment frame (S7: S3, C1, PC2a)				
Shear wall (S4, S5, C2, C3, 	3.4	1.2	3.1	1.0
Graced trame (S2)				
Cold-tormed steel strap-brace watl (CFS2)				
Unreinforced masonry (UAM)	1.0	1.0	3.0	1.0
Flexlife diaphragris (Sia. S2a, S5a, C2a, ©3a, +401, AM1)				

Process Gallery

Modification Factor, $\mathrm{C}=$	1.0
$\mathrm{~S}_{\mathrm{X} 1}=$	$0.405($ BSE-2E seismic hazard $)$
$\mathrm{T}=$	0.114 s
$\mathrm{~S}_{\mathrm{xs}}=$	0.744 (BSE-2E seismic hazard)
Spectral Acceleration, $\mathrm{S}_{\mathrm{a}}=$	0.744
Seismic Weight, $\mathrm{W}=$	190.9 kip
Seismic Force, $\mathrm{V}=$	

BY：BS	DATE Aug－21	CLIENT	City of Wilsonville	$\begin{aligned} & \text { SHEET } \\ & \text { JOB NO. } \end{aligned}$	
CHKD BY	DESCRIPTION		ions Building		11962A． 00
DESIGN TASK		ASCE 41－17－Tier 1 Screening（BSE－2E Level）			
WALL SHEAR STRESS CHECK					

4．4．3．3 Shear Stress in Shear Walls．The average shear stress in shear walls，$v_{j}^{\text {mos }}$ ，shall be calculated in accordance with $\mathrm{Eq} .(4-8)$ ．

$$
\begin{equation*}
v_{j}^{\text {vg }}=\frac{1}{M_{s}}\left(\frac{V_{j}}{A_{s}}\right) \tag{4-8}
\end{equation*}
$$

where
$V_{j}=$ Story shear at level j compeuted in accordance with Section 4．4．2．2；
$A_{w}=$ Summation of the horizontal cross－sectional area of all shear walls in the direction of loading．Openings shall be taken into consideration where computing $A_{\alpha^{*}}$ For mason－ ry walls，the net area shall be used．For wood－framed walls，the length shall be used rather than the area；and
$M_{s}=$ System modification factor，M_{x} shall be taken from Table 4－8．

$$
\begin{array}{rr}
\text { CMU wall thickness, } \mathrm{t}= & 7.625 \mathrm{in} \\
\text { Roof Story Base Shear, } \mathrm{V}_{\text {roof }}= & 142.0 \mathrm{kips} \\
\text { System Modification Factor, } \mathrm{M}_{\mathrm{s}}= & 3.75
\end{array}
$$

${ }^{a} \mathrm{CP}=$ Collapse Prevention，LS $=$ Life Safety， $10=$ Immediate Occupancy．
(Interpolated between LS \& CP)

Roof Level

Shear Wall in N－S Direction
West Elevation Wall Line

$$
\begin{array}{rr}
\text { Total length of exterior 8" CMU walls }= & 84.00 \mathrm{ft} \\
\text { Grout spacing }= & 32 \mathrm{in} \\
\text { total net area of shear walls }= & 4611.6 \mathrm{in}^{2} \\
\text { average shear stress, } v_{\text {avg }, \mathrm{NS}}= & 4.1 \mathrm{psi}
\end{array}
$$

East Elevation Wall Line

Total length of exterior 8＂CMU walls＝$\quad 60.67 \mathrm{ft}$
Grout spacing $=\quad 32$ in
total net area of shear walls $=\quad 3330.8 \mathrm{in}^{2}$
average shear stress，$v_{\text {avg，Ns }}=$
5.7 psi
＜ 70.0
Shear Stress OK
$D C R=0.08$
Shear Stress OK
$D C R=0.06$
＜ 70.0
位

Shear Wall in E－W Direction

North Elevation Wall Line

Total length of exterior 8＂CMU walls＝$\quad 21.33 \mathrm{ft}$
Grout spacing＝ 32 in
total net area of shear walls $=\quad 1171.0 \mathrm{in}^{2}$
average shear stress，$v_{\text {avg，NS }}=\quad 32.3 \mathrm{psi}$

$<$	
$D 0.0$	
$D C R=$	Shear Stress OK
0.46	

South Elevation Wall Line
Total length of exterior 8＂CMU walls $=\quad 22.00 \mathrm{ft}$
Grout spacing $=\quad 32$ in
total net area of shear walls $=\quad 1207.8 \mathrm{in}^{2}$ average shear stress，$v_{\text {avg，Ns }}=\quad 31.4 \mathrm{psi}$

$$
<\quad 70.0
$$

Shear Stress OK

$$
D C R=0.45
$$

ROOF JOIST BEARING CONNECTION TO CMU WALL

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY	DESCRIPTION		Operations Building	JOB NO.	11962A. 00
DESIGN TASK			1-17 - Tier 1 Screening (B	Level)	

WALL ANCHORAGE FORCE

Operations Building: Roof Joist Bearing Anchorage into 8" CMU Wall along East and West Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, T_{σ} shall be calculated in accordance with Eq. (4-12).

$$
T_{c}=\psi S_{X S} w_{y} A_{p}
$$

where
$w_{p}=$ Unit weight of the wall:
$A_{p}=$ Area of wall tributary to the connection:
$\psi=1.0$ for Collapse Prevention Performance Level, 1.3 for
Life Safety Performance Level, and 1.8 for Immediate
Occupancy Performance Level; and
$S_{\mathrm{XS}}=$ Value specified in Section 4.4.2.3.
wall height to diaphragm, $\mathrm{h}_{\mathrm{w}}=10.17 \mathrm{ft}$
unit weight of wall, w_{p}
$\mathrm{w}_{\mathrm{p}}=$
$\Psi=$
$S_{x s}=$
wall out-of-plane load =
roof joist spacing =
wall anchorage force, $\mathrm{T}_{\mathrm{c}}=$
10.17 ft
58.20 psf (partial grout for wall)
1.15
0.744 g
$253.2 \mathrm{lbs} / \mathrm{ft}$
6.33 ft
1602.8 lbs
(Interpolated between LS \& CP)

Masonry \& Steel Strength

group masonry breakout shear strength group masonry crushing shear strength group anchor pryout shear strength group steel yielding strength

Masonry breakout strength $D C R=0.23$ OK
Anchor pryout $D C R=0.03 \quad$ OK

BEAM SEAT DETALL 5008

BEAM BEARING CONNECTION TO CMU WALL

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO	
CHKD BY	DESCRIPTION		Operations Building		11962A. 00
DESIGN TASK			41-17 - Tier 1 Screening		

WALL ANCHORAGE FORCE

Operations Building: Beam Anchorage into 8" CMU Wall along East and West Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, T_{c} shall be calculated in accordance with Eq. (4-12).

$$
T_{c}=\psi S_{X S} w_{p} A_{p}
$$

where
$w_{p}=$ Unit weight of the wall:
$A_{p}=$ Area of wall tributary to the connection:
$\psi=1.0$ for Collapse Prevention Performance Level, 1.3 for
Life Safety Performance Level, and 1.8 for Immediate
Occupancy Performance Level; and
$S_{\mathrm{XS}}=$ Value specified in Section 4.4.2.3.

wall height to diaphragm, $\mathrm{h}_{\mathrm{w}}=$	18.36 ft
unit weight of wall, $\mathrm{w}_{\mathrm{p}}=$	58.20 psf
$\Psi=$	1.15 g
$\mathrm{~S}_{\mathrm{Xs}}=$	0.744 g
wall out-of-plane load $=$	$457.1 \mathrm{lbs} / \mathrm{ft}$
beam spacing $=$	8.33 ft
wall anchorage force, $\mathrm{T}_{\mathrm{c}}=$	3807.9 lbs

Masonry \& Steel Strength

group masonry breakout shear strength group masonry crushing shear strength group anchor pryout shear strength group steel yielding strength

$\frac{\text { BEAM }}{11 / 2^{*-10 " 1}}$ SEAT DETALL $\underset{\substack{95-5-201 \\ 95-5-151}}{7}$

SLOPED BEAM BEARING CONNECTION TO CMU WALLS

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO	
CHKD BY	DESCRIPTION		Operations Building		11962A. 00
DESIGN TASK			41-17 - Tier 1 Screening		

WALL ANCHORAGE FORCE

Operations Building: Beam Anchorage into 8" CMU Wall along North and South Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, T_{c} shall be calculated in accordance with Eq. (4-12).

$$
T_{c}=\psi S_{X S} w_{p} A_{p}
$$

where
$w_{p}=$ Unit weight of the wall:
$A_{p}=$ Area of wall tributary to the connection:
$\psi=1.0$ for Collapse Prevention Performance Level, 1.3 for
Life Safety Performance Level, and 1.8 for Immediate
Occupancy Performance Level; and
$S_{\mathrm{XS}}=$ Value specified in Section 4.4.2.3.

wall height to diaphragm, $\mathrm{h}_{\mathrm{w}}=$	10.17 ft
unit weight of wall, $\mathrm{w}_{\mathrm{p}}=$	58.20 psf
$\Psi=$	1.15
$\mathrm{~S}_{\mathrm{XS}}=$	0.744 g
wall out-of-plane load $=$	$253.2 \mathrm{lbs} / \mathrm{ft}$
beam spacing $=$	6.67 ft
wall anchorage force, $\mathrm{T}_{\mathrm{c}}=$	1688.9 lbs

Masonry \& Steel Strength

group masonry breakout shear strength
group masonry crushing shear strength
group anchor pryout shear strength group steel yielding strength
(partial grout for exterior walls [CMU + venee (Interpolated between LS \& CP)

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Operations Building
SEISMICITY LEVEL:	High
PROJECT NUMBER:	$11962 A .00$
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$07 / 01 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Table 17-3. Immediate Occupancy Basic Configuration Checklist

Very Low Seismicity Structural Components					
RATING				DESCRIPTION	COMMENTS
C \square	NC x	N/A \square	U \square	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There are no diaphragm ties in the N-S direction where perimeter CMU shear walls stop. The diaphragm at these locations will lack the ability to transfer diaphragm forces into the shear walls.
C x	NC \square	N/A \square	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	Roof joist bearing anchorage $\mathrm{DCR}=0.18$ (OK) $\mathrm{E}-\mathrm{W}$ beam bearing anchorage $\mathrm{DCR}=0.44$ (OK) N -S beam bearing anchorage $\mathrm{DCR}=0.20(\mathrm{OK})$

Very Low Seismicity

Building System

General

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & \mathrm{C} \\ & \square \end{aligned}$	NC x	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There are no diaphragm ties in the N-S direction where perimeter CMU shear walls stop. The diaphragm at these locations will lack the ability to transfer diaphragm forces into the shear walls.
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ x \end{gathered}$	U \square	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement need not apply for the following building types: W1, W1A, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	U \square	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)	

Building Configuration

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction shall not be less than 80% of the strength in the adjacent story above. (Commentary: Sec. A.2.2.2. Tier 2: Sec. 5.4.2.1)	Building is a one-story structure.
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	SOFT STORY: The stiffness of the seismic-forceresisting system in any story shall not be less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)	Building is a one-story structure.
$\begin{aligned} & \mathrm{C} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \square \end{aligned}$	N/A \square	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)	
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-forceresisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)	Building is a one-story structure.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C \square	NC \square	N/A \square	U \square	MASS: There is no change in effective mass more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	Building is a one-story structure.
C	NC \square	$\begin{array}{\|c\|} \hline \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{array}$	U \square	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	Torsion check applies for structures with rigid diaphragms, not for flexible diaphragms.

Low Seismicity

Geologic Site Hazards

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U \square	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U \square	SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)	Slope failure has been determined to not be an issue per NGI technical memorandum.
C x	NC \square	N / A	U \square	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)	Surface fault rupture has been determined to not be an issue per NGI technical memorandum.

Moderate and High Seismicity

Foundation Configuration

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/ height) is greater than $0.6 \mathrm{~S}_{\mathrm{a}}$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	$\begin{aligned} & \text { Height }=10.25 \mathrm{ft} \\ & \text { Base }=58 \mathrm{ft} \\ & \mathrm{Sa}=0.446 \\ & \\ & \mathrm{~B} / \mathrm{H}=58 \mathrm{ft} / 10.25 \mathrm{ft}=5.66 \\ & 0.6^{*} \mathrm{Sa}=0.6^{*} 0.446=0.27 \\ & 5.66>0.27(\mathrm{OK}) \end{aligned}$

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)	
\square	\square	\square	\square		

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Operations Building
SEISMICITY LEVEL:	High
PROJECT NUMBER:	$11962 A .00$
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$07 / 01 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Table 17-35. Immediate Occupancy Structural Checklist for Building Types RM1 and RM2

Very Low Seismicity					
Seismic-Force-Resisting System					
RATING				DESCRIPTION	COMMENTS
$\begin{gathered} \text { C } \\ \boldsymbol{x} \end{gathered}$	NC \square	N / A \square	U \square	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1)	
$\begin{aligned} & C \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \square \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \text { U } \\ & \square \end{aligned}$	SHEAR STRESS CHECK: The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than $70 \mathrm{lb} / \mathrm{in}^{2}$. (Commentary: Sec. A.3.2.4.1. Tier 2: Sec. 5.5.3.1.1)	West wall line $\mathrm{DCR}=0.06$ (OK) East wall line DCR $=0.08$ (OK) North wall line DCR $=0.46$ (OK) South wall line DCR $=0.45$ (OK)
C \square	$\begin{gathered} N C \\ \boldsymbol{x} \end{gathered}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \text { U } \\ & \square \end{aligned}$	REINFORCING STEEL: The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in., and all vertical bars extend to the top of the walls. (Commentary: Sec. A.3.2.4.2. Tier 2: Sec. 5.5.3.1.3)	Horiz steel = \#5@48" Vert steel = \#6@32" Horiz ratio $=0.31 /\left(7.625^{*} 48\right)=0.0008>$ 0.0007 (OK) Vert ratio $=0.44 /\left(7.625^{*} 32\right)=0.0018>0.0007$ (OK) Combined $=0.0018+0.0008=0.0026>0.002$ (OK) Horizontal reinforcing is spaced at 48in, but this is not less than 48in spacing, so NC.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Connections

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	WOOD LEDGERS: The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Commentary: Sec. A.5.1.2. Tier 2: Sec. 5.7.1.3)	
$\begin{aligned} & \mathrm{C} \\ & \boldsymbol{x} \end{aligned}$	NC \square	N/A \square	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of seismic forces to the shear walls, and the connections are able to develop the lesser of the shear strength of the walls or diaphragms. (Commentary: Sec. A.5.2.1. Tier 2: Sec. 5.7.2)	Anchorage to CMU connection DCR $=0.48$ (OK) Puddle weld connection DCR $=0.84(\mathrm{OK})$
$\begin{aligned} & C \\ & x \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \square \end{aligned}$	N/A \square	$\begin{gathered} \mathrm{u} \\ \square \end{gathered}$	FOUNDATION DOWELS: Wall reinforcement is doweled into the foundation, and the dowels are able to develop the lesser of the strength of the walls or the uplift capacity of the foundation. (Commentary: Sec. A.5.3.5. Tier 2: Sec. 5.7.3.4)	
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	$\begin{aligned} & \text { U } \\ & \square \end{aligned}$	GIRDER-COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2: Sec. 5.7.4.1)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	WALL ANCHORAGEE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps tat are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	\square
\square	\square	Roof joist bearing anchorage DCR $=0.18$ (OK) E-W beam bearing anchorage DCR $=0.44$ (OK) N-S beam bearing anchorage DCR $=0.20$ (OK)			

Stiff Diaphragms

RATING					
C	NC	N/A	U	TOPPCRING SLAB: Precast concrete diaphragm elements are interconnected by a continuous reinforced concrete topping slab. (Commentary: Sec. A.4.5.1. Tier 2: Sec. 5.6.4)	
\square	\square	\boldsymbol{x}	\square		
C	NC	N/A	U	TOPPING SLAB TO WALLS OR FRAMES: Reinforced concrete topping slabs that interconnect the precast concrete diaphragm elements are doweled for transfer of forces into the shear wall or frame elements. (Commentary: Sec. A.5.2.3. Tier 2: Sec. 5.7.2)	
\square	\square	\boldsymbol{x}	\square		

Foundation System

RATING		DESCRIPTION		COMMENTS	
C	NC	N/A	U	DEEP FOUNDATIONS: Piles and piers are capable of transferring the seismic forces between the structure and the soil. (Commentary: Sec. A.6.2.3.)	No deep foundations present.
\square	\square	\boldsymbol{x}	\square	(

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	SLOPING SITES: The difference in foundation embedment depth from one side of the building	
\boldsymbol{x}	\square	\square	\square	to another does not exceed one story high. (Commentary: Sec. A.6.2.4)	

Low, Moderate, and High Seismicity
Seismic-Force-Resisting System

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{u} \\ & \square \end{aligned}$	REINFORCING AT WALL OPENINGS: All wall openings that interrupt rebar have trim reinforcing on all sides. (Commentary: Sec. A.3.2.4.3. Tier 2: Sec. 5.5.3.1.5)	
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	PROPORTIONS: The height-to-thickness ratio of the shear walls at each story is less than 30 . (Commentary: Sec. A.3.2.4.4. Tier 2: Sec. 5.5.3.1.2)	Height $=10.17 \mathrm{ft}$ Thickness $=7.625$ in $\mathrm{H} / \mathrm{t}=10.17^{*} 12 / 7.625=16.0<30(\mathrm{OK})$

Diaphragms (Flexible or Stiff)

RATING		DESCRIPTION							COMMENTS
C	NC	N/A	U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 15\% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3)					
\square	\square	\boldsymbol{x}	\square						

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Flexible Diaphragms

RATING		DESCRIPTION						COMMENTS
\boldsymbol{X}	\square	\square	\square	\square	CROSS TIES: There are continuous cross ties between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2)			

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

$\begin{aligned} & \mathrm{c} \\ & \square \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	STRAIGHT SHEATHING: All straight sheathed diaphragms have aspect ratios less than 1 -to- 1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2)	
C \square	NC \qquad	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \text { U } \\ & \square \end{aligned}$	SPANS: All wood diaphragms with spans greater than 12 ft consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2)	
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 30 ft and aspect ratios less than or equal to 3-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)	
C	$\begin{gathered} \mathrm{NC} \\ \boldsymbol{x} \end{gathered}$	N/A \square	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	NONCONCRETE FILLED DIAPHRAGMS: Untopped metal deck diaphragms or metal deck diaphragms with fill other than concrete consist of horizontal spans of less than 40 ft and have aspect ratios less than 4-to-1. (Commentary: Sec. A.4.3.1. Tier 2: Sec. 5.6.3)	Span $1=40 \mathrm{ft} \times 58 \mathrm{ft}$ Span $2=50 \mathrm{ft} \times 36 \mathrm{ft}$ Span 1 ratio $=58 / 40=1.45<4$ (OK) Span 2 ratio $=50 / 36=1.39<4$ (OK) The aspect ratio is less than the 4-to-1 requirement, but the diaphragm spans between shear walls is greater than 40ft.

C	NC	N/A	U	OTHER DIAPHRAGMS: The diaphragm does not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)	
\boldsymbol{x}	\square	\square	\square		

Connections

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square	STIFFNESS OF WALL ANCHORS: Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than $1 / 8$ in. before engagement of the anchors. (Commentary: Sec. A.5.1.4. Tier 2: Sec. 5.7.1.2)	

City of Wilsonville

Operations Building Tier 1 Structural Calculations

CSZ Seismic Parameters pg. 1Building Weightpg. 3Seismic Base Shearpg. 5
Wall Shear Stress Check pg. 6
Transfer to Shear Wall Check pg. 7
Foundation Dowels pg. 10
Wall Anchorage Check pg. 11

GENERALIZED SITE SPECIFIC SPECTRA CASCADIA SUBDUCTION ZONE FULL RUPTURE
$\rightarrow 400 \mathrm{~m} / \mathrm{s}$ Spectra $-500 \mathrm{~m} / \mathrm{s}$ Spectra $-600 \mathrm{~m} / \mathrm{s}$ Spectra

Figure No. 3

Northwest Geotech, Inc.

BY: \quad BS	DATE Jul-21	CLIENT City of Wilsonville	SHEET
CHKD BY	DESCRIPTION \quad Operations Building	JOB NO. 11962A.00	
DESIGN TASK	Operations Building Seismic Weight		

Roof Loads

Roof EL 125.63

Description

1-1/2"x20ga metal deck
Rigid insulation w/ metal sheet roofing
Steel beam
Steel truss
Suspended accoustical ceiling
Miscellaneous

Dead Load for Gravity Design
Roof Live Load
Snow Load

Load
2.5 psf
4.5
1.8
2.5
3.5
5.0
19.8 psf
20.0 psf (Assumed)
25.0 psf

Notes

1. The roof deck is set at a slope of $5 / 12$, so the deck and truss members will have the unit weight increased by a factor of 1.08 to account for a projected unit horizontal weight.

Wall Loads

Wall Loads

Description

8" CMU wall (partial grouted @ 24")
5/8" GWB w/ insulation
5/8" GWB w/ insulation double sided
3-5/8"x20ga studs @ 16"
Plastic veneer finish

8" CMU Wall w/ GWB 1-side for Seismic Load
8" CMU Wall w/ GWB 2-sides for Seismic Load
8" CMU Wall w/ metal studs for Seismic Load

Load

47.0 psf
3.7
7.4
4.0
7.5
58.2 psf
54.4 psf
62.2 psf
Roof Area $\quad 4888.0 \mathrm{ft}^{2}$
Roof Seismic Weight 96.8 kip

Wall Weight

Wall Height to Roof	10.17 ft
8" CMU Wall w/ GWB 1-side Length	254.67 ft
8" CMU Wall w/ GWB 2-sides Length	25.33 ft
8" CMU Wall w/ metal studs Length	37.00 ft
Roof Wall Seismic Weight	$\mathbf{9 4 . 1}$ kip

Total Seismic Weight
190.9 kip

Notes

1. Wall seismic weight assumes half of the wall height associated with each level.
2. Per Section 4.5.2.1, the effective seismic weight includes the total dead load, 25% of the live load when area is used as storage, and 20% of the roof snow live load if greater than 30 psf (otherwise assume zero).

BY: BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY	DESCRIPTION			Operations Building		11962A. 00
DESIGN TASK			AS	- Tier 1 Screening (CS		

SEISMIC BASE SHEAR

4.4.2.1 Pseudo Seismic Force. The pseudo seismic force, in a given horizontal direction of a building, shall be calculated in accordance with Eq. (4-1).

$$
\begin{equation*}
V=C S_{d} W \tag{4-1}
\end{equation*}
$$

where

$$
V=\text { Pseudo seismic force; }
$$

$C=$ Modification factor to relate expected maximum inelastic displacements to displacements calculated for linear elastic response: C shall be taken from Table 4-7;
$S_{o}=$ Response spectral acceleration at the fundamental period of the building in the direetion under consideration. The value of S_{a} shall be calculated in accordance with the procedures in Section 4.4.2.3; and
W = Effective seismic weight of the building, including the total dead load and applicable portions of oher gravity loads listed below:

Table 4-7. Modification Factor, C

Buiding type ${ }^{3}$	Number of Stories			
	1	2	3	≥ 4
Wood and cold-formed stepel shear wall (W1. W1a, W2, CFSA1	3.3	t. 3	5.0	1.0
Moment frame (S7: S3, C1, PC2a)				
Shear wall (S4, S5, C2, C3, 	3.4	1.2	3.1	1.0
Graced trame (S2)				
Cold-tormed steel strap-brace watl (CFS2)				
Unreinforced masonry (UAM)	1.0	1.0	3.0	1.0
Flexlife diaphragris (Sia. S2a, S5a, C2a, ©3a, +401, AM1)				

Process Gallery

$$
\begin{aligned}
\text { Modification Factor, } \mathrm{C}= & 1.0 \\
\mathrm{~S}_{\mathrm{s}}= & 0.343(\text { CSZ spectral response }) \\
\mathrm{S}_{1}= & 0.221(\text { CSZ spectral response }) \\
\mathrm{F}_{\mathrm{a}}= & 1.3 \text { (Site amplication factor per ASCE 7-16) } \\
\mathrm{F}_{\mathrm{v}}= & 1.5 \text { (Site amplication factor per ASCE 7-16) } \\
\mathrm{S}_{\mathrm{X} 1}=\mathrm{S}_{1}{ }^{*} \mathrm{~F}_{\mathrm{v}}= & 0.332 \text { (CSZ seismic hazard) } \\
\mathrm{T}= & 0.114 \mathrm{~s} \\
\mathrm{~S}_{\mathrm{X}}=\mathrm{S}_{\mathrm{s}}{ }^{*} \mathrm{~F}_{\mathrm{a}}= & 0.446(\text { CSZ seismic hazard }) \\
\text { Spectral Acceleration, } \mathrm{S}_{\mathrm{a}}= & 0.446 \\
\text { Seismic Weight, } \mathrm{W}= & 190.9 \mathrm{kip} \\
\text { Seismic Force, } \mathrm{V}= & 85.1 \mathrm{kip}
\end{aligned}
$$

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEETJOB NO.	
CHKD BY	DESCRIPTION		Operations Building		11962A. 00
DESIGN TASK		ASCE 41-17 - Tier 1 Screening (CSZ Seismic Level)			
WALL SHEAR STRESS CHECK					

4.4.3.3 Shear Stress in Shear Walls. The average shear stress in shear walls, $v_{j}^{\text {gug }}$, shall be calculated in accordance with Eq- $(4-8)$.

$$
\begin{equation*}
v_{j}^{\text {vg }}=\frac{1}{M_{s}}\left(\frac{V_{j}}{A_{s}}\right) \tag{4-8}
\end{equation*}
$$

where
$V=$ Story shear at level j compeuted in accordance with Section 4.4.2.2;
$A_{v}=$ Summation of the horizontal cross-sectional area of all shear walls in the direction of loading. Openings shall be taken into consideration where computing $A_{u v}$ For masonry walls, the net area shall be used. For wood-framed walls, the length shall be used rather than the area; and
$M_{s}=$ System modification factor, M_{x} shall be taken from Table 4-8.

$$
\begin{array}{rrr}
\text { CMU wall thickness, } \mathrm{t}= & 7.625 \mathrm{in} \\
\text { Roof Story Base Shear, } \mathrm{V}_{\text {roof }}= & 85.1 \mathrm{kips} \\
\text { System Modification Factor, } \mathrm{M}_{\mathrm{s}}= & 2.25
\end{array}
$$ (Interpolated between LS \& IO)

Roof Level

Shear Wall in N-S Direction
West Elevation Wall Line

$$
\begin{array}{rrr}
\text { Total length of exterior 8" CMU walls }= & 84.00 \mathrm{ft} \\
\text { Grout spacing }= & 32 \mathrm{in} \\
\text { total net area of shear walls }= & 4611.6 \mathrm{in}^{2} \\
\text { average shear stress, } v_{\text {avg,Ns }}= & 4.1 \mathrm{ps}
\end{array}
$$

East Elevation Wall Line

Total length of exterior 8" CMU walls = $\quad 60.67 \mathrm{ft}$
Grout spacing $=\quad 32$ in
total net area of shear walls $=3330.8 \mathrm{in}^{2}$
average shear stress, $v_{\text {avg,Ns }}=$

Shear Wall in E-W Direction
North Elevation Wall Line
$\begin{array}{rr}\text { Total length of exterior 8" CMU walls }= & 21.33 \mathrm{ft} \\ \text { Grout spacing }= & 32 \mathrm{in} \\ \text { total net area of shear walls }= & 1171.0 \mathrm{in}^{2} \\ \text { average shear stress, } v_{\text {avg, NS }}= & 32.3 \mathrm{psi}\end{array}$
South Elevation Wall Line
Total length of exterior 8" CMU walls $=\quad 22.00 \mathrm{ft}$
Grout spacing $=\quad 32$ in
total net area of shear walls $=\quad 1207.8 \mathrm{in}^{2}$ average shear stress, $v_{\text {avg,Ns }}=\quad 31.3 \mathrm{psi}$

Table 4-8. M_{s} Factors for Shear Walls

	Level of Performance		
Wall Type	$\mathbf{C P}^{\boldsymbol{a}}$	$\mathbf{L S S}^{\mathbf{a}}$	$\mathbf{1 0}^{\mathbf{a}}$
Reinforced concrete, precast concrete, wood, reinforced masonry, and cold-formed steel	4.5	3.0	1.5
Unreinforced masonry	1.75	1.25	1.0

${ }^{a} \mathrm{CP}=$ Collapse Prevention, LS $=$ Life Safety, $10=$ Immediate Occupancy.

$$
<\quad 70.0
$$

Shear Stress OK

$$
D C R=0.06
$$

$$
<\quad 70.0
$$

Shear Stress OK

$$
D C R=0.08
$$

$$
<\quad 70.0
$$

Shear Stress OK
$D C R=0.46$

$$
D C R=0.46
$$

< 70.0
Shear Stress OK
$D C R=0.45$

$\frac{\text { TOP OF WALL DETAIL }}{3^{3}+F^{-1-0}} \underset{95-5-201}{6}$

Transfer to shear wall connection

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION		Operations Building		11962A. 00
DESIGN TASK		ASC	ier 1 Screening	mic Level)	

TRANSFER TO SHEAR WALLS

Top of Wall Connection into CMU Walls (Detail 6/95-S-202)

diaphragm shear strength, $\mathrm{q}_{\mathrm{ult}}=$ anchor bolt spacing = diaphragm shear strength $=$	$\begin{gathered} 1170 \mathrm{lbs} / \mathrm{ft} \\ 24 \mathrm{in} \\ 2340.0 \mathrm{lbs} \end{gathered}$
Masonry \& Steel Strength (Assuming $\phi=1.0$ for Tier 1)	
anchor bolt size =	0.625 in
anchor bolt embed, $\mathrm{I}_{\mathrm{b}}=$	7.00 in
anchor bolt yield stress, $\mathrm{f}_{\mathrm{y}}=$	36.00 ksi
masonry compressive strength, $\mathrm{f}_{\mathrm{m}}=$	1500 psi
projected area of anchor bolt in tension, $\mathrm{A}_{\text {pt }}=$	$153.94 \mathrm{in}^{<}$
cross section area of anchor bolt, $A_{b}=$	$0.31 \mathrm{in}^{\text {2 }}$
$\mathrm{B}_{\mathrm{vnc}}=1050{ }^{*}\left(\mathrm{f}_{\mathrm{m}}{ }^{*} \mathrm{~A}_{\mathrm{b}}\right)^{0.25}=$	4863.2 lbs
$\mathrm{B}_{\text {vnpry }}=8^{*} \mathrm{~A}_{\mathrm{pt}}{ }^{*}\left(\mathrm{f}_{\mathrm{m}}\right)^{0.5}=$	47696.0 lbs
$\mathrm{B}_{\text {vns }}=0.60{ }^{*}{ }^{*}{ }^{*} \mathrm{f}_{\mathrm{y}}=$	6626.8 lbs
Masonry crushing strength DCR =	0.48 OK
Anchor pryout DCR =	0.05 OK
Steel yielding DCR =	0.35 OK

Puddle Weld Strength

$$
\text { deck thickness }=\quad 0.0359 \text { in }
$$

N-S Wall Elevations - Deck welded to support with puddle weld at 18" effective puddle weld diameter $=0.625$ in puddle weld spacing $=\quad 18.00$ in
load at puddle weld $=\quad 1755.0 \mathrm{lbs} /$ weld strength of puddle weld = 2093.7 lbs/weld

$$
\text { Puddle weld strength DCR }=\quad 0.84 \quad O K
$$

E-W Wall Elevations - Deck welded to support with puddle weld at 12"
effective puddle weld diameter $=0.625$ in puddle weld spacing $=\quad 12.00$ in
load at puddle weld $=\quad 1170.0 \mathrm{lbs} /$ weld strength of puddle weld $=2093.7 \mathrm{lbs} /$ weld

$$
\text { Puddle weld strength } D C R=\quad 0.56 \quad O K
$$

masonry crushing shear strength
anchor pryout shear strength
steel yielding strength

- Sidelaps connected with Button Punch
 or $11 / 2$ " Top Seam Weld

Allowable Diaphragm Shear Strength, q (plf) and Flexibility Factors, $\mathrm{F}\left((\mathrm{in} . / \mathrm{lb}) \times 10^{6}\right.$)

DECK GAGE	SIDELAP ATTACHMENT	SPAN (ft-in.)									
			4'-0"	5'-0"	6'-0"	7'-0"	8'-0"	9'-0"	10'-0"	11'-0"	12'-0"
22	BP @ 24"	q	369	303	248	218	187	174	156		
		F	1.5+187R	5.7+148R	9.5+122R	12.3+103R	15.2+88R	17.3+77R	19.9+68R		
	BP @ 12"	q	405	332	284	249	223	205	192		
		F	$0.8+188 \mathrm{R}$	5+149R	8.2+123R	10.8+104R	13.1+90R	15.1+79R	16.9+70R		
	TSW @ 24"	q	714	724	623	644	575	598	545		
		F	-4.6+191R	-2.5+153R	-0.4+127R	0.5+109R	$1.8+95 \mathrm{R}$	2.2+85R	$3.1+76 \mathrm{R}$		
	TSW @ 18"	q	857	839	731	736	739	672	682		
		F	-5.4+191R	-3.1+153R	-1.1+127R	0+109R	$0.8+95 \mathrm{R}$	1.7+85R	$2.2+76 \mathrm{R}$		
	TSW @ 12"	q	977	939	913	894	879	867	857		
		F	-5.9+191R	-3.5+153R	-1.8+127R	-0.7+109R	$0.2+96 \mathrm{R}$	$0.9+85 \mathrm{R}$	$1.4+76 \mathrm{R}$		
	TSW @ 6"	q	1275	1258	1246	1237	1231	1225	1001		
		F	-6.7+191R	-4.3+153R	-2.7+128R	-1.6+109R	-0.8+96R	-0.1+85R	$0.4+77 \mathrm{R}$		
20	BP @ 24"	q	524	433	356	315	271	249	224	213	195
		F	4.3+117R	7.5+92R	10.5+75R	12.7+63R	15.2+54R	17+47R	19.2+40R	20.6+36R	22.7+31R
	BP @ 12"	q	576	475	407	359	323	295	275	260	247
		F	$3.7+118 \mathrm{R}$	$6.8+93 \mathrm{R}$	$9.3+76 \mathrm{R}$	11.4+64R	13.3+55R	14.9+48R	16.4+42R	17.8+38R	19+34R
	TSW @ 24"	q	944	951	819	843	752	779	711	737	683
		F	-1.2+121R	0+96R	$1.5+80 \mathrm{R}$	2+69R	$3+60 \mathrm{R}$	$3.2+53 \mathrm{R}$	$3.8+48 \mathrm{R}$	$3.9+44 \mathrm{R}$	4.4+40R
	TSW @ 18"	q	1125	1097	956	959	962	874	885	894	832
		F	-2+121R	-0.5+97R	0.9+80R	1.5+69R	2+60R	$2.7+54 \mathrm{R}$	3+48R	$3.2+44 \mathrm{R}$	3.6+40R
	TSW @ 12"	q	1276	1224	1188	1160	1139	1123	1109	1085	912
		F	-2.4+121R	-0.8+97R	0.2+81R	$0.9+69 \mathrm{R}$	1.5+60R	1.9+54R	$2.3+48 \mathrm{R}$	$2.5+44 \mathrm{R}$	$2.8+40 \mathrm{R}$
	TSW @ 6"	q	1655	1631	1615	1602	1593	1585	1313	1085	912
		F	-3.1+121R	-1.6+97R	-0.6+81R	0.1+69R	0.6+61R	1+54R	1.4+48R	1.7+44R	1.9+40R
18	BP @ 24"	q	909	757	624	556	482	444	396	375	343
		F	$6.2+56 \mathrm{R}$	$8.4+44 \mathrm{R}$	10.6+35R	12.2+29R	14.2+24R	15.6+20R	17.3+17R	18.5+14R	20.2+12R
	BP @ 12"	q	989	830	716	634	573	525	487	458	435
		F	5.6+56R	7.8+44R	$9.6+36 \mathrm{R}$	11.1+29R	12.5+25R	13.8+21R	15+18R	16+16R	17+14R
	TSW @ 24"	q	1479	1472	1269	1295	1155	1190	1085	1120	1037
		F	1.3+59R	1.9+47R	$2.8+39 \mathrm{R}$	3+33R	3.6+29R	$3.6+26 \mathrm{R}$	4+23R	4+21R	4.4+19R
	TSW @ 18"	q	1739	1685	1468	1465	1462	1329	1341	1351	1257
		F	0.7+59R	1.4+47R	$2.3+39 \mathrm{R}$	2.5+34R	2.7+29R	$3.2+26 \mathrm{R}$	3.3+23R	3.4+21R	$3.7+20 \mathrm{R}$
	TSW @ 12"	q	1958	1871	1808	1762	1725	1697	1673	1654	1394
		F	0.3+59R	1.1+47R	1.6+39R	2+34R	2.3+29R	$2.5+26 \mathrm{R}$	$2.7+24 \mathrm{R}$	$2.8+21 \mathrm{R}$	3+20R
	TSW @ 6"	q	2520	2479	2449	2427	2410	2397	2007	1659	1394
		F	-0.3+59R	$0.4+47 \mathrm{R}$	0.9+39R	1.3+34R	1.6+30R	1.8+26R	1.9+24R	2.1+22R	2.2+20R
16	BP @ 24"	q	1161	984	812	731	634	591	527	501	457
		F	$6.4+31 \mathrm{R}$	$8.2+24 \mathrm{R}$	10+18R	11.4+15R	13+12R	14.2+9R	15.7+7R	16.7+6R	18.2+4R
	BP @ 12"	q	1285	1098	955	854	777	718	670	631	600
		F	6+31R	7.6+24R	9.1+19R	10.4+15R	11.5+13R	12.6+11R	13.6+9R	14.5+7R	15.4+6R
	TSW @ 24"	q	1904	1907	1647	1687	1508	1557	1422	1471	1363
		F	2.1+33R	2.4+27R	$3.1+22 \mathrm{R}$	3.1+19R	$3.5+17 \mathrm{R}$	$3.5+15 \mathrm{R}$	$3.8+13 \mathrm{R}$	$3.8+12 \mathrm{R}$	4+11R
	TSW @ 18"	q	2246	2185	1909	1910	1911	1741	1759	1774	1652
		F	1.6+34R	2+27R	2.6+22R	2.7+19R	2.8+17R	$3.1+15 \mathrm{R}$	3.2+13R	3.2+12R	$3.4+11 \mathrm{R}$
	TSW @ 12"	q	2529	2424	2350	2295	2252	2218	2190	2167	1941
		F	1.2+34R	1.7+27R	2+22R	2.2+19R	2.4+17R	$2.5+15 \mathrm{R}$	2.6+13R	2.7+12R	2.8+11R
	TSW @ 6"	q	3232	3185	3152	3127	3108	3093	2795	2310	1941
		F	$0.7+34 \mathrm{R}$	1.1+27R	$1.4+23 \mathrm{R}$	1.6+19R	1.7+17R	$1.9+15 \mathrm{R}$	2+14R	2+12R	2.1+11R

See footnotes on page 28.
Deck Span = 6'-8"
$\mathrm{q}=1170 \mathrm{psf}$ (interpolated)

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION		Operations Building		11962A. 00
DESIGN TASK		ASCE	- Tier 1 Screening (C	ic Level)	

FOUNDATION DOWELS

Wall Shear Strength

steel yield strength, $\mathrm{f}_{\mathrm{y}}=$ Seismic unit shear, $\mathrm{Vu}=$ Seismic unit moment, $\mathrm{Mu}=$ unit depth, $\mathrm{dv}=$	60000 psi $0.43 \mathrm{kip} / \mathrm{ft}$ 4.3 ft *kip/ft 12.00 in	
$\mathrm{Mu} /\left(\mathrm{Vu*}{ }^{*} \mathrm{dv}\right)=$	10.07	
Wall area, $A_{n v}=$ masonry strength, $f_{m}^{\prime}=$ Reinforcement area, $A_{v}=$ reinforcement spacing, $s=$	$\begin{aligned} & 91.5 \mathrm{in}^{<} \\ & 1500 \mathrm{psi}^{\prime} \\ & 0.44 \mathrm{in}^{\llcorner } \\ & 32.0 \text { in } \end{aligned}$	
Nominal reinforcement shear strength, $\begin{aligned} & \mathrm{V}_{\mathrm{ns}}= \\ & \Upsilon_{\mathrm{g}}=\end{aligned}$	$\begin{aligned} & 4.95 \text { kip } \\ & 0.75 \end{aligned}$	
Nominal Unit Wall Shear, $\mathrm{V}_{\mathrm{n}}=$	10.63 kip/ft	ACI 530-13 Eq. 9-23

Shear Friction between wall and slab
Dowels into foundation are \#6@32"

Unit Shear Friction, $\mathrm{V}_{\mathrm{n}}=26.40 \mathrm{kip} / \mathrm{ft}$

ROOF JOIST BEARING CONNECTION TO CMU WALL

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO. ic Level)	
CHKD BY	DESCRIPTION		Operations Building		11962A. 00
DESIGN TASK		ASCE	7 - Tier 1 Screening (CSZ		

Operations Building: Roof Joist Bearing Anchorage into 8" CMU Wall along East and West Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, T_{c} shall be calculated in accordance with Eq. (4-12).

$$
T_{c}=\psi S_{X S} w_{y} A_{p}
$$

where
$w_{p}=$ Unit weight of the wall:
$A_{p}=$ Area of wall tributary to the connection:
$\psi=1.0$ for Collapse Prevention Performance Level, 1.3 for
Life Safety Performance Level, and 1.8 for Immediate
Occupancy Performance Level; and
$S_{\mathrm{XS}}=$ Value specified in Section 4.4.2.3.
wall height to diaphragm, $\mathrm{h}_{\mathrm{w}}=10.17 \mathrm{ft}$
unit weight of wall, w
$\mathrm{w}_{\mathrm{p}}=$
$\Psi=$
$S_{x s}=$
wall out-of-plane load =
roof joist spacing =
wall anchorage force, $\mathrm{T}_{\mathrm{c}}=$
10.17 ft
58.20 psf (partial grout for wall)
1.55
0.446 g $204.6 \mathrm{lbs} / \mathrm{ft}$ 6.33 ft 1295.0 lbs

Masonry \& Steel Strength

group masonry breakout shear strength group masonry crushing shear strength group anchor pryout shear strength group steel yielding strength

Masonry breakout strength DCR = 0.18 OK

Anchor pryout $D C R=\quad 0.02 \quad$ OK

BEAM SEAT DETALL 5008

BEAM BEARING CONNECTION TO CMU WALL

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEETJOB NO.	
CHKD BY	DESCRIPTION		Operations Building		11962A. 00
DESIGN TASK		ASCE 41-17 - Tier 1 Screening (CSZ Seismic Level)			

Operations Building: Beam Anchorage into 8" CMU Wall along East and West Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, T_{c} shall be calculated in accordance with Eq. (4-12).

$$
T_{c}=\psi S_{X S} w_{p} A_{p}
$$

where
$w_{p}=$ Unit weight of the wall:
$A_{p}=$ Area of wall tributary to the connection:
$\psi=1.0$ for Collapse Prevention Performance Level, 1.3 for
Life Safety Performance Level, and 1.8 for Immediate
Occupancy Performance Level; and
$S_{\mathrm{XS}}=$ Value specified in Section 4.4.2.3.

wall height to diaphragm, $\mathrm{h}_{\mathrm{w}}=$	18.36 ft
unit weight of wall, $\mathrm{w}_{\mathrm{p}}=$	58.20 psf
$\Psi=$	1.55 g
$\mathrm{~S}_{\mathrm{Xs}}=$	0.446 g
wall out-of-plane load $=$	$369.3 \mathrm{lbs} / \mathrm{ft}$
beam spacing $=$	8.33 ft
wall anchorage force, $\mathrm{T}_{\mathrm{c}}=$	3076.6 lbs

Masonry \& Steel Strength

group masonry breakout shear strength
group masonry crushing shear strength group anchor pryout shear strength group steel yielding strength
(partial grout for exterior walls [CMU + venee (Interpolated between LS \& IO)

SLOPED BEAM BEARING CONNECTION TO CMU WALLS

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEETJOB NO.	
CHKD BY	DESCRIPTION		Operations Building		11962A. 00
DESIGN TASK		ASCE	17 - Tier 1 Screening (CSZ	ic Level)	

Operations Building: Beam Anchorage into 8" CMU Wall along North and South Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, T_{c} shall be calculated in accordance with Eq. (4-12).

$$
T_{c}=\psi S_{X S} w_{p} A_{p}
$$

where
$w_{p}=$ Unit weight of the wall:
$A_{p}=$ Area of wall tributary to the connection:
$\psi=1.0$ for Collapse Prevention Performance Level, 1.3 for
Life Safety Performance Level, and 1.8 for Immediate
Occupancy Performance Level; and
$S_{\mathrm{XS}}=$ Value specified in Section 4.4.2.3.

wall height to diaphragm, $\mathrm{h}_{\mathrm{w}}=$	10.17 ft
unit weight of wall, $\mathrm{w}_{\mathrm{p}}=$	58.20 psf
$\Psi=$	1.55
$\mathrm{~S}_{\mathrm{XS}}=$	0.446 g
wall out-of-plane load $=$	$204.6 \mathrm{lbs} / \mathrm{ft}$
beam spacing $=$	6.67 ft
wall anchorage force, $\mathrm{T}_{\mathrm{c}}=$	1364.6 lbs

Masonry \& Steel Strength

group masonry breakout shear strength
group masonry crushing shear strength
group anchor pryout shear strength group steel yielding strength
(partial grout for exterior walls [CMU + venee (Interpolated between LS \& IO)

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Process Gallery
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962 A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$07 / 06 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Table 17-2. Collapse Prevention Basic Configuration Checklist

Very Low Seismicity Structural Components				BSE-2E Seismic Level at Limited Safety	
				DESCRIPTION	COMMENTS
$\begin{aligned} & \text { C } \\ & \square \end{aligned}$	$\begin{gathered} N C \\ \boldsymbol{x} \end{gathered}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There is a roof beam aligned with an interior shear wall but no connection to the wall for seismic transfer. The diaphragm at this location will lack the ability to transfer diaphragm forces into the shear wall.
$\begin{aligned} & \text { C } \\ & \boldsymbol{x} \end{aligned}$	NC \square	N / A \square	U \square	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	- Ledger anchorage steel yielding DCR $=0.05$ (OK) - Interior wall bearing anchorage masonry breakout strength $\mathrm{DCR}=0.11$ (OK) - Beam anchorage masonry breakout strength DCR $=0.39$ (OK)

Low Seismicity

Building System
General

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & \mathrm{C} \\ & \square \end{aligned}$	NC x	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There is a roof beam aligned with an interior shear wall but no connection to the wall for seismic transfer. The diaphragm at this location will lack the ability to transfer diaphragm forces into the shear wall.
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ x \end{gathered}$	U \square	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement need not apply for the following building types: W1, W1A, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	U \square	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)	

Building Configuration

RATING				DESCRIPTION	COMMENTS
C x	NC \qquad	N/A \square	U \square	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1)	
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U	SOFT STORY: The stiffness of the seismic-forceresisting system in any story is not less than 70\% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)	
$\begin{aligned} & \mathrm{C} \\ & \square \end{aligned}$	NC x	N/A \square	U \square	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)	The center interior CMU shear walls don't continue down into the basement level. These walls are supported by concrete beams.
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-forceresisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)	

C	NC	N/A	U	MASS: There is no change in effective mass more than 50\% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	
\boldsymbol{x}	\square	\square	\square		
C	NC	N/A	U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20\% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	Building roof is considered flexible and check is not required.
\square	\square	\boldsymbol{x}	\square		

Moderate Seismicity

Geologic Site Hazards

RATING				DESCRIPTION	COMMENTS
C x	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.
C \square	NC \square	N/A	U \square	SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)	There are no slopes nearby structure.

C	NC	N/A	U	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2:	Liquefaction has been determined to not be an issue per NGI technical memorandum. \boldsymbol{x}	\square
\square	$\square .4 .3 .1)$					

High Seismicity
Foundation Configuration

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U \square	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/ height) is greater than $0.6 \mathrm{~S}_{\mathrm{a}}$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	$\begin{aligned} & \text { Height }=19.50 \mathrm{ft} \\ & \text { Length }=56.42 \mathrm{ft} \\ & \text { Sa }=0.744 \\ & \\ & \text { L/ } \mathrm{H}=56.42 / 19.50=2.89 \\ & 0.6^{*} \mathrm{Sa}=0.6^{*} 0.744=0.45 \\ & \\ & 2.89>0.45 \text { (ok) } \end{aligned}$
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U \square	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)	

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Process Gallery
SEISMICITY LEVEL:	High
PROJECT NUMBER:	$11962 A .00$
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$06 / 23 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Table 17-33. Collapse Prevention Structural Checklist for Building Types RM1 and RM2

Low and Moderate Seismicity Seismic-Force-Resisting System					
RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & c \\ & x \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{u} \\ & \square \end{aligned}$	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1)	
$\begin{aligned} & c \\ & x \end{aligned}$	$\begin{gathered} \mathrm{NC} \\ \square \end{gathered}$	N/A \square	$\begin{aligned} & \mathrm{u} \\ & \square \end{aligned}$	SHEAR STRESS CHECK: The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than $70 \mathrm{lb} / \mathrm{in}^{2}$. (Commentary: Sec. A.3.2.4.1. Tier 2: Sec. 5.5.3.1.1)	Roof Level N -S direction $\mathrm{DCR}=0.15$ (OK) $\mathrm{E}-\mathrm{W}$ direction $\mathrm{DCR}=0.13$ (OK) 1st Floor N -S direction $\mathrm{DCR}=0.12$ (OK) $E-W$ direction $D C R=0.13(O K)$
C	$\begin{gathered} \mathrm{NC} \\ \boldsymbol{x} \end{gathered}$	N/A \square	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	REINFORCING STEEL: The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in., and all vertical bars extend to the top of the walls. (Commentary: Sec. A.3.2.4.2. Tier 2: Sec. 5.5.3.1.3)	Horiz steel = \#6@48" Vert steel = \#6@24" (ext) \& \#6@32" (int) Horiz ratio $=0.44 /\left(7.625^{*} 48\right)=0.0012>$ 0.0007 (OK) Vert ratio $=0.44 /\left(7.625^{*} 24\right)=0.0024>0.0007$ (OK) $0.44 /\left(7.625^{*} 32\right)=0.0018>0.0007(\mathrm{OK})$ Horizontal reinforcing is specified at 48" but this is less than 48in required. Reinforcing is non-compliant.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Stiff Diaphragms

RATING			DESCRIPTION		COMMENTS
C	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	U \square	TOPPING SLAB: Precast concrete diaphragm elements are interconnected by a continuous reinforced concrete topping slab. (Commentary: Sec. A.4.5.1. Tier 2: Sec. 5.6.4)	

Connections

RATING				DESCRIPTION	COMMENTS
C x	NC \square \square	$\begin{array}{r} \mathrm{N} / \mathrm{A} \\ \square \end{array}$	U \square	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	- Ledger anchorage steel yielding $D C R=0.05$ (OK) - Interior wall bearing anchorage masonry breakout strength $D C R=0.11$ (OK) - Beam anchorage masonry breakout strength DCR $=0.39$ (OK)
C \qquad	NC \square	N/A	U \square	WOOD LEDGERS: The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Commentary: Sec. A.5.1.2. Tier 2: Sec. 5.7.1.3)	
C \qquad	$\begin{aligned} & \mathrm{NC} \\ & x \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of seismic forces to the shear walls. (Commentary: Sec. A.5.2.1. Tier 2: Sec. 5.7.2)	There is a roof beam aligned with an interior shear wall but no connection to the wall for seismic transfer.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

High Seismicity

Stiff Diaphragms

RATING	DESCRIPTION				
C	NC	N/A	U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25\% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3)	
\square	\square	\boldsymbol{x}	\square		

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

| C | NC | N/A | U | OPENINGS AT EXTERIOR MASONRY SHEAR WALLS:
 Diaphragm openings immediately adjacent to
 exterior masonry shear walls are not greater than
 8ft long. (Commentary: Sec. A.4.1.6. Tier 2: Sec.
 5.6.1.3) |
| :--- | :--- | :---: | :---: | :--- | :--- |
| \square | \square | \boldsymbol{x} | \square | |

Flexible Diaphragms

Connections

RATING		DESCRIPTION			COMMENTS
C	NC	N/A	U	STIFFNESS OF WALL ANCHORS: Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. before engagement of the anchors. (Commentary: Sec. A.5.1.4. Tier 2: Sec. 5.7.1.2)	
\square	\square	\boldsymbol{x}	\square		

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Process Gallery
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962 A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$07 / 06 / 2021$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Table 17-38. Nonstructural Checklist

The Performance Level is designated LS for Life Safety or PR for Position Retention. The level of seismicity is designated as "not required" or by L, M, or H, for Low, Moderate, and High.

All Life	ismi	Syste	evels	For BSE-1E Tier 1, use	R (Position Retention)
	TING			DESCRIPTION	COMMENTS
C	NC \square	$\begin{array}{\|c\|} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{array}$	U \square	LS-LMH; PR-LMH. FIRE SUPPRESSION PIPING: Fire suppression piping is anchored and braced in accordance with NFPA-13. (Commentary: Sec. A.7.13.1. Tier 2: Sec. 13.7.4)	
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U	LS-LMH; PR-LMH. FLEXIBLE COUPLINGS: Fire suppression piping has flexible couplings in accordance with NFPA-13. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.4)	
C \square	NC \square \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square	LS-LMH; PR-LMH. EMERGENCY POWER: Equipment used to power or control life safety systems is anchored or braced. (Commentary: Sec. A.7.12.1. Tier 2: Sec. 13.7.7)	
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. STAIR AND SMOKE DUCTS: Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Commentary: Sec. A.7.14.1. Tier 2: Sec. 13.7.6)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-MH; PR-MH. SPRINKLER CEILING CLEARANCE: Penetrations trough panelized ceilings for fire suppression devices provide clearances in accordance with	
\square	\square	X	\square		NFPA-13. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.4)
C	NC	N / A	U	LS-not required; PR-LMH. EMERGENCY LIGHTING: Emergency and egress lighting equipment is anchored or braced. (Commentary: Sec. A.7.3.1. Tier 2: Sec. 13.7.9)	
\square	\square	X	\square		

Hazardous Materials

RATING				DESCRIPTION	COMMENTS
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. HAZARDOUS MATERIAL EQUIPMENT: Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Commentary: Sec. A.7.12.2. Tier 2: 13.7.1)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. HAZARDOUS MATERIAL STORAGE: Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Commentary: Sec. A.7.15.1. Tier 2: Sec. 13.8.4)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { C } & \text { NC } & \text { N/A } & \text { U } & \begin{array}{l}\text { LS-MH; PR-MH. } \\ \text { HAZARDOUS MATERIAL DISTRIBUTION: Piping or } \\ \text { ductwork conveying hazardous materials is }\end{array} \\ \text { braced or otherwise protected from damage that } \\ \text { would allow hazardous material release. } \\ \text { (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and } \\ \text { 13.7.5) }\end{array}\right]$

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Partitions

RATING				DESCRIPTION	COMMENTS
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square \square	LS-LMH; PR-LMH. UNREINFORCED MASONRY: Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft in Low or Moderate Seismicity, or at most 6 ft in High Seismicity. (Commentary: Sec. A.7.1.1. Tier 2: Sec. 13.6.2)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. HEAVY PARTITIONS SUPPORTED BY CEILINGS: The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-MH; PR-MH. DRIFT: Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Commentary A.7.1.2 Tier 2: Sec. 13.6.2)	
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-MH. LIGHT PARTITIONS SUPPORTED BY CEILINGS: The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { C } & \text { NC } & \text { N/A } & \text { U } & \begin{array}{l}\text { LS-not required; PR-MH. } \\ \text { STRUCTURAL SEPARATIONS: Partitions that cross } \\ \text { structural separations have seismic or control }\end{array} & \\ \square & \square & X & \square & & \\ \text { joints. (Commentary: Sec. A.7.1.3. Tier 2. Sec. } \\ \text { 13.6.2) }\end{array}\right]$.

Ceilings

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-not required; PR-H. SEISMIC JOINTS: Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2500 ft² and has a ratio of long-to-short dimension no more than 4-to-1. (Commentary: Sec. A.7.2.7. Tier 2: 13.6.4)	\square
\square	\boxed{X}	\square			

Light Fixtures

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square	LS-MH; PR-MH. INDEPENDENT SUPPORT: Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Commentary: Sec. A.7.3.2. Tier 2: Sec. 13.6.4 and 13.7.9)	
C X	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	LS-not required; PR-H PENDANT SUPPORTS: Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft . Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigid supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Commentary: Sec. A.7.3.3. Tier 2: Sec. 13.7.9)	
C x	NC \square	N/A \square	U \square	LS-not required; PR-H. LENS COVERS: Lens covers on light fixtures are attached with safety devices. (Commentary: Sec. A.7.3.4. Tier 2: Sec. 13.7.9)	Rooms with lens cover present do have safety devices.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Cladding and Glazing

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{array}{\|c\|} \hline \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{array}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-MH; PR-MH. CLADDING ANCHORS: Cladding components weighing more than $10 \mathrm{lb} / \mathrm{ft}^{2}$ are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft ; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft . (Commentary: Sec. A.7.4.1. Tier 2: Sec. 13.6.1)	
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-MH; PR-MH CLADDING ISOLATION: For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02 , and the rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.3. Tier 2: Sec. 13.6.1)	
C \square	NC	$\begin{array}{\|c\|} \hline N / A \\ x \end{array}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-MH; PR-MH MULTI-STORY PANELS: For multi-story panels attahed at more than one floor level panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02 , and the rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.4. Tier 2: Sec. 13.6.1)	
C	NC \square	$\begin{array}{\|c\|} \hline N / A \\ x \end{array}$	U	LS-MH; PR-MH THREADED RODS: Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and for Position Retention in any seismicity. (Commentary: Sec. A.7.4.9. Tier 2: Sec. 13.6.1)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-MH; PR-MH. PANEL CONNECTIONS: Cladding panels are anchored out-of-plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections;	
\square	\square	\boldsymbol{x}	\square	for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Commentary: Sec. A.7.4.5. Tier 2: Sec. 13.6.1.4)	

Masonry Veneer

RATING				DESCRIPTION	COMMENTS
C \square	$\begin{array}{r} \mathrm{NC} \\ \square \end{array}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. TIES: Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every $2-2 / 3 \mathrm{ft}^{2}$, and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in.; for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (Commentary: Sec. A.7.5.1. Tier 2: Sec. 13.6.1.2)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Parapets, Cornices, Ornamentation, and Appendages

RATING		DESCRIPTION			
C	NC	N/A	U	LS-LMH; PR-LMH. URM PARAPETS OR CORNICES: Laterally unsupported unreinforced masonry parapets or cornices have height-to-thickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any	
\square	\square	\boxed{X}	\square		
seismicity, 1.5. (Commentary: Sec. A.7.8.1. Tier 2:					
Sec. 13.6.5)					

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Contents and Furnishings

RATING
C NC N/A U LS-MH; PR-MH. INDUSTRIAL STORAGE RACKS: Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/MH 16.1 as modified by ASCE 7 Chapter 15. (Commentary: Sec. A.7.11.1. Tier 2: Sec. 13.8.1) \square \square \boxed{X} \square

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { C } & \text { NC } & \text { N/A } & \text { U } & \begin{array}{l}\text { LS-H; PR-MH. } \\ \text { TALL NARROW CONTENTS: Contents more than 6 } \\ \text { ft high with a height-to-depth or height-to-width } \\ \text { ratio greater than 3-to-1 are anchored to the } \\ \text { structure or to each other. (Commentary: Sec. }\end{array} & \\ \hline \text { A.7.11.2. Tier 2: Sec. 13.8.2) }\end{array}\right]$
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { C } & \text { NC } & \text { N/A } & \mathrm{U} & \begin{array}{l}\text { LS-not required; PR-H. } \\ \text { SUSPENDED CONTENTS: Items suspended } \\ \text { Xithout lateral bracing are free to swing from or } \\ \text { move with the structure from which they are }\end{array} & \square \\ \square & \square & \square & \\ \text { suspended without damaging themselves or } \\ \text { adjoining components. (Commentary. A.7.11.6. } \\ \text { Tier 2: Sec. 13.8.2) }\end{array}\right]$

Mechanical and Electrical Equipment

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & \mathrm{C} \\ & \square \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-H; PR-H. FALL-PRONE EQUIPMENT: Equipment weighing more than 20 lb whose center of mass is more than 4 ft above the adjacent floor level, and which is not in-line equipment, is braced. (Commentary: A.7.12.4. Tier 2: 13.7.1 and 13.7.7)	
$\begin{aligned} & \mathrm{C} \\ & \square \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \times \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-H; PR-H. IN-LINE EQUIPMENT: Equipment installed in-line with a duct or piping system, with an operating weight more than 75 lb , is supported and laterally braced independent of the duct or piping system. (Commentary: Sec. A.7.12.5. Tier 2: Sec. 13.7.1)	Equipment 40-ASU-02 lacks anchorage along backside channel supports. There are (2) anchors to the front, but missing in back. See photo on next page. Aeration blower pumps do have anchor rods but the nuts appear to be backing off or missing completely.
$\begin{aligned} & \mathrm{C} \\ & \square \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-H; PR-MH. TALL NARROW EQUIPMENT: Equipment more than 6 ft high with a height-to-depth or height-towidth ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Commentary: Sec. A.7.12.6. Tier 2: Sec. 13.7.1 and 13.7.7)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

HVAC equipment is unanchored to structure along backside.

Aeration blower pump lacks anchorage to structure. Nuts are missing or backing off from threaded rods.

Piping

RATING						
C	NC	N/A	U	LS-not required; PR-H. FLEXIBLE COUPLINGS: Fluid and gas piping has flexible couplings. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.3 and 13.7.5)	COMMENTS	
	\square	\square	\square			
C	NC	N/A	U	LS-not required; PR-H. FLUID AND GAS PIPING: Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and 13.7.5)	Multiple pipes lack restraint to unistrut supports as these pipes are sitting on supports.	
\square	\boxed{X}	\square	\square		Compression strut supports lack diagonal bracing back to structure.	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Piping lacks restraint to unistrut support. Pipe shown is sitting on unistrut.

Compression strut lacks diagonal bracing.

C	NC	N/A	U	LS-not required; PR-H. C-CLAMPS: One-sided C-clamps that support piping larger than 2.5 in. in diameter are restrained. (Commentary: Sec. A.7.13.5. Tier 2: Sec. 13.7.3 and 13.7.5)	
\square	\square	\boxed{X}	\square		
C	NC	N/A	U	LS-not required; PR-H. PIPING CROSSING SEISMIC JOINTS: Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A7.13.6. Tier 2: Sec.13.7.3 and Sec. 13.7.5)	
\square	\square	X	\square		

Ducts

RATING				DESCRIPTION	COMMENTS
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-H. DUCT BRACING: Rectangular ductwork larger than $6 \mathrm{ft}^{2}$ in cross-sectional area and round ducts larger than 28 in. in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft . The maximum spacing of longitudinal bracing does not exceed 60 ft . (Commentary: Sec. A.7.14.2. Tier 2: Sec. 13.7.6)	
C Х	NC	N / A	U \square	LS-not required; PR-H. DUCT SUPPORT: Ducts are not supported by piping or electrical conduit. (Commentary: Sec. A.7.14.3. Tier 2: Sec. 13.7.6)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-not required; PR-H. DUCTS CROSSING SEISMIC JOINTS: Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A.7.14.5. Tier 2: Sec. 13.7.6)	
\square	\square	\boxed{X}	\square		

Elevators

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-H. SEISMIC SWITCH: Elevators capable of operating at speeds of $150 \mathrm{ft} / \mathrm{min}$ or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Commentary: Sec. A.7.16.4. Tier 2: 13.8.6)
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square	LS-not required; PR-H. SHAFT WALLS: Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Commentary: Sec. A.7.16.5. Tier 2: 13.8.6)
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-H. COUNTERWEIGHT RAILS: All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Commentary: Sec. A.7.16.6. Tier 2: 13.8.6)
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-H. BRACKETS: The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Commentary: Sec. A.7.16.7. Tier 2: 13.8.6)

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown
\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \text { C } & \text { NC } & \text { N/A } & \mathrm{U} & \begin{array}{l}\text { LS-not required; PR-H. } \\
\text { SPREADER BRACKET: Spreader brackets are not } \\
\text { used to resist seismic forces. (Commentary: Sec. }\end{array}
$$ \&

\square \& \square \& X \& \square \& \&

A.7.16.8. Tier 2: 13.8.6)\end{array}\right]\)| |
| :--- |
| C |

City of Wilsonville

Process Gallery Building Tier 1 Structural Calculations

ASCE 41-17 Seismic Parameters pg. 1Building Weightpg. 3
Seismic Base Shear pg. 6
Wall Shear Stress Check pg. 7Wall Anchorage Checkpg. 8

Latitude, Longitude: 45.294444, -122.77167

Type	Description	Value
Hazard Level		BSE-2N
S_{S}	spectral response (0.2 s)	0.813
S_{1}	spectral response (1.0 s)	0.381
$S_{X S}$	site-modified spectral response (0.2 s)	0.976
$S_{X 1}$	site-modified spectral response (1.0 s)	0.571
F_{a}	site amplification factor (0.2 s)	1.2
F_{v}	site amplification factor (1.0 s)	1.5
ssuh	max direction uniform hazard (0.2 s)	0.92
crs	coefficient of risk (0.2 s)	0.884
ssit	risk-targeted hazard (0.2 s)	0.813
ssd	deterministic hazard (0.2 s)	1.5
s1uh	max direction uniform hazard (1.0 s)	0.441
cr1	coefficient of risk (1.0 s)	0.863
s1rt	risk-targeted hazard (1.0 s)	0.381
s1d	deterministic hazard (1.0 s)	0.6

Type	Description	Value
Hazard Level		BSE-1N
$S_{X S}$	site-modified spectral response $(0.2 \mathrm{~s})$	0.651
$S_{X 1}$	site-modified spectral response $(1.0 \mathrm{~s})$	0.381

Type	Description	Value
Hazard Level	spectral response $(0.2 \mathrm{~s})$	BSE-2E
S_{S}	spectral response $(1.0 \mathrm{~s})$	0.589
$\mathrm{~S}_{1}$	site-modified spectral response $(0.2 \mathrm{~s})$	0.27
$\mathrm{~S}_{\mathrm{XS}}$	site-modified spectral response $(1.0 \mathrm{~s})$	0.744
$\mathrm{~S}_{\mathrm{X} 1}$	site amplification factor $(0.2 \mathrm{~s})$	0.405
f_{a}	site amplification factor $(1.0 \mathrm{~s})$	1.265
f_{v}		1.5

Type	Description	Value
Hazard Level		BSE-1E
S_{S}	spectral response $(0.2 \mathrm{~s})$	0.223
S_{1}	spectral response $(1.0 \mathrm{~s})$	0.082
$S_{X S}$	site-modified spectral response $(0.2 \mathrm{~s})$	0.291
$\mathrm{~S}_{\mathrm{X} 1}$	site-modified spectral response $(1.0 \mathrm{~s})$	0.123
$\mathrm{~F}_{\mathrm{a}}$	site amplification factor $(0.2 \mathrm{~s})$	1.3
$\mathrm{~F}_{\mathrm{v}}$	site amplification factor $(1.0 \mathrm{~s})$	1.5
Type	Description	Value
Hazard Level	Long-period transition period in seconds	TL Data
T-Sub-L		16

DISCLAIMER

While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

BY: \quad BS	DATE Jul-21	CLIENT City of Wilsonville	SHEET
CHKD BY	DESCRIPTION	Process Gallery Building	JOB NO. 11962A.00
DESIGN TASK	Process Gallery Building Seismic Weight		

Roof Loads

Roof EL 125.63

Description

1-1/2"x20ga metal deck
Rigid insulation w/ sheet roofing
Steel beam
Miscellaneous

Dead Load for Gravity Design
Roof Live Load
Snow Load

Load
2.3 psf
4.5
3.5
5.0

Notes

1. Roof beam self weight assumed total beam weight, 9831.0 lb , divided by total roof area, $3093.1 \mathrm{ft}^{2}$ which is $9831.0 \mathrm{lb} / 3093.1 \mathrm{ft}^{2}=3.18 \mathrm{lb} / \mathrm{ft}^{2}$. Assume 3.5 psf .

Floor Loads

Floor EL 111.00

Description

8" concrete slab
100.0 psf

Concrete beam
73.0

Miscellaneous
10.0

Dead Load for Gravity Design
183.0 psf

Floor Live Load
200.0 psf

Notes

1. Floor beam self weight assumed total beam weight, 226925.0 lb , divided by total floor area, $3093.1 \mathrm{ft}^{2}$ which is $226925.0 \mathrm{lb} / 3093.1 \mathrm{ft}^{2}=73.4 \mathrm{lb} / \mathrm{ft}^{2}$. Assume 73.5 psf .

Wall Loads

Wall Loads

Description Load

8" CMU wall (partial grouted @ 24")
51.0 psf

8" CMU wall (partial grouted @ 32")
47.0

8" Concrete wall 100.0
14" Concrete wall 175.0
Exterior Plastic Veneer Finish
7.5

8" Exterior CMU Wall Load for Seismic
58.5 psf

8" Interior CMU Wall Load for Seismic
8" Concrete Wall Load for Seismic
14" Concrete Wall Load for Seismic
47.0 psf
100.0 psf
175.0 psf

Seismic Weight

Roof Weight

Roof Area

$3093.1 \mathrm{ft}^{2}$
Roof Seismic Weight
47.3 kip

Dry Chemical Storage Area
Floor Seismic Weight
$3093.1 \mathrm{ft}^{2}$
566.0 kip

Wall Weight

Wall Height to Roof	14.63 ft
Wall Height to 2nd Level	18.00 ft
Parapet Height	0.87 ft
8" Exterior CMU Wall Length (1st floor)	220.00 ft
8" Interior CMU Wall Length (1st floor)	108.00 ft
8" Concrete Wall Length (basement)	37.42 ft
14" Concrete Wall Length (basement)	220.00 ft
Roof Wall Seismic Weight	$142.5 \mathbf{k i p}$
Basement Wall Seismic Weight	$\mathbf{5 1 1 . 5} \mathbf{~ k i p}$
Combined Roof Seismic Weight	$\mathbf{1 8 9 . 8} \mathbf{~ k i p}$
Combined Base Level Seismic Weight	$\mathbf{1 0 7 7 . 5} \mathbf{~ k i p}$

Total Seismic Weight $\quad 1267.3$ kip

Notes

1. Wall seismic weight assumes half of the wall height associated with each level.
2. Per Section 4.5.2.1, the effective seismic weight includes the total dead load, 25% of the live load when area is used as storage, and 20% of the roof snow live load if greater than 30 psf (otherwise assume zero).

BY: BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION			Process Gallery		11962A. 00
DESIGN TASK			ASCE	er 1 Screening (BSE		

SEISMIC BASE SHEAR

4.4.2.1 Pseudo Seismic Force. The pseudo seismic force, in a given horizontal direction of a building, shall be calculated in accordance with Eq. (4-1).

$$
\begin{equation*}
V=C S_{a} W \tag{4-1}
\end{equation*}
$$

where
$V=$ Pseudo seismic force;
$C=$ Modification factor to relane expected maximum inelastic displacements to displacements calculated for linear elastic response: C shall be taken from Table 4-7;
$S_{a}=$ Response spectral acceleration at the fundamental period of the building in the direction under consideration. The value of S_{0} shall be calculated in accordance with the procedures in Section 4.4.2.3: and
$W=$ Effective seismic weight of the building, incloding the total dead load and applicable portions of other gravity loads listed below:

Building Type ${ }^{\text {a }}$	Number of Stories			
	1	2	3	≥ 4
Woud ance cold-formes sheor shear will $\langle\mathrm{W} 1, \mathrm{Wia}, \mathrm{W} 2$. CFS1;	1.3	1,3	3.0	1.0
Moment frafse ($\mathrm{Sr} 1, \mathrm{~S} 3, \mathrm{Cl}$, 1202解				
Shear wall \{S4, S5, C2, C3. 	1.4	1.2	1.1	1.0
Braced trame (S2) Colc-formed sieel strap-brace wall (CF\$2)				
Unreisforced masomry (UPM)	1.0	1.0	1.0	1.0
Flexible diaphrayms ista, S2a. S5a, C2a, C3a, áC1. PM1!				

Process Gallery

\[

\]

Story	Weight, $w_{\mathrm{x}}(\mathrm{kip})$	Floor Height, $\mathrm{h}_{\mathrm{x}}(\mathrm{ft})$	k factor	$w_{\mathrm{x}} \mathrm{h}_{\mathrm{x}}{ }^{\mathrm{k}}$ $\left(\mathrm{kip}^{*} \mathrm{ft}^{2}\right)$	C_{vx}	Force on Level, $\mathrm{F}_{\mathrm{x}}(\mathrm{kip})$	Story Force, $V_{j}(\mathrm{kip})$
Roof	189.8	32.63	1.0	6193.2	0.242	273.8	273.8
1 st	1077.5	18.00	1.0	19395.0	0.758	857.6	1131.4

$$
\Sigma w_{x} h_{x}{ }^{k}=25588.2
$$

WALL SHEAR STRESS CHECK

4.4.3.3 Shroar Stress in Slorar Walle. The average shear stress in shear walls. $v_{j}^{n^{n}}$, shall be calculated in acocedanse with Eq ($4-8$).

$$
\begin{equation*}
V_{i=}^{v_{8}}=\frac{1}{M_{s}}\left(\frac{V_{i}}{A_{n}}\right) \tag{4.8}
\end{equation*}
$$

where
$V_{f}=$ Swey shear as level j coenpulad in accordance with Section 4.4.2.2:
$A_{z}=$ Summation of the borizontal cross-sectional area of all shear walle in the direction of loading. Openings shall be taken into consideration where computing $A_{\text {s. }}$. For masonry walls, the net wea shall be used. For wood-framed walls, the kngth shall be usod rather than the area; and
$M_{3}=$ System modification factor: M_{s} shall be taken from Table 4.8.

Table 4-8. M_{5} Factors for Shear Walls

Wall Type	Level of Performance		
	$6 P^{*}$	$1 S^{8}$	10^{8}
Reinforced concrete, precast concrete, wood, reinforced masonry, and cold-formed steet	4.5	3.0	1.5
Unreinforced masonny	1.75	1.25	1.0

CMU wall thickness, $\mathrm{t}=$	7.625 in
Concrete wall thickness, $\mathrm{t}=$	14 in
Concrete strength, $\mathrm{f}_{\mathrm{c}}=$	4000 psi
Roof Story Base Shear, $\mathrm{V}_{\text {roof }}=$	273.8 kips
1st Floor Story Base Shear, $\mathrm{V}_{1 \text { st }}=$	1131.4 kips
System Modification Factor, $\mathrm{M}_{\mathrm{s}}=$	3.75

Roof Level

Shear Wall in N-S Direction

Total length of exterior 8" CMU walls $=$	74.00 ft
Grout spacing $=$	24 in
Total length of interior 8" CMU walls $=$	49.42 ft
Grout spacing $=$	32 in
total net area of shear walls $=$	$6997.1 \mathrm{in}^{2}$
average shear stress, $v_{\text {avg, NS }}=$	10.4 psi

$<\quad 70.0 \quad$ Shear Stress OK	
$D C R=$	0.15

Shear Wall in E-W Direction

Total length of exterior 8" CMU walls $=$	88.00 ft
Grout spacing $=$	24 in
Total length of interior 8" CMU walls $=$	50.00 ft
Grout spacing $=$	32 in
total net area of shear walls $=$	$8280.8 \mathrm{in}^{2}$
average shear stress, $v_{\text {avg, NS }}=$	8.8 psi

$$
\text { < } 70.0 \quad \text { Shear Stress OK }
$$

$$
D C R=0.13
$$

1st Level

Shear Wall in N-S Direction

| Total length of 14 " concrete walls $=$ | 118.00 ft | | |
| ---: | ---: | ---: | ---: | :--- |
| total net area of shear walls $=$ | $19824.0 \mathrm{in}^{2}$ | | |
| average shear stress, $v_{\text {avg,Ns }}=$ | 15.2 psi | $<\quad 126.5 \quad$ Shear Stress OK | |
| | | $D C R=0.12$ | |

Shear Wall in E-W Direction

$$
D C R=0.12
$$

$$
\begin{array}{rr}
\text { Total length of } 14 \text { " concrete walls }= & 109.50 \mathrm{ft} \\
\text { total net area of shear walls }= & 18396.0 \mathrm{in}^{2} \\
\text { average shear stress, } v_{\text {avg,NS }}= & 16.4 \mathrm{psi}
\end{array}
$$

$$
\text { average shear stress, } v_{\text {avg,NS }}=\quad 16.4 \mathrm{psi} \quad<\quad 126.5 \quad \text { Shear Stress OK }
$$

$$
D C R=0.13
$$

WALL ANCHORAGE CONNECTION DETAIL ALONG NORTH AND SOUTH WALL ELEVATIONS

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION		Process Gallery		11962A. 00
DESIGN TASK		ASCE	- Tier 1 Screening (BSE	mic Level)	

Process Gallery: Ledger Angle Anchorage into 8" CMU Wall along North and South Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, T_{c} shall be calculated in accordance with Eq. (4-12).

$$
\begin{equation*}
T_{c}=\psi r S_{X S} w_{P} A_{p} \tag{4-12}
\end{equation*}
$$

where
$w_{p}=$ Unit weight of the wall:
$A_{p}=$ Area of wall tributary to the connection;
$\psi=1.0$ for Collapse Prevention Performance Level, 1.3 for Life Safety Performance Level, and 1.8 for Immediate Occupancy Performance Level; and
$S_{x s}=$ Value specified in Section 4.4.2.3.
wall height to diaphragm, $\mathrm{h}_{\mathrm{w}}=\quad 14.63 \mathrm{ft}$
parapet height, $\mathrm{h}_{\mathrm{p}}=\quad 0.87 \mathrm{ft}$
unit weight of wall, $\mathrm{w}_{\mathrm{p}}=\quad 58.50 \mathrm{psf}$
$\Psi=\quad 1.15$
$\mathrm{S}_{\mathrm{xs}}=\quad 0.744 \mathrm{~g}$
wall out-of-plane load $=\quad 409.7 \mathrm{lbs} / \mathrm{ft}$ anchor bolt spacing $=\quad 24.00$ in
wall anchorage force, $\mathrm{T}_{\mathrm{c}}=819.4 \mathrm{lbs}$
(partial grout for exterior walls [CMU + veneer])
(Interpolated between LS \& CP)

Masonry \& Steel Strength

anchor bolt size $=$	0.750 in
anchor bolt embed, $\mathrm{I}_{\mathrm{b}}=$	6.00 in
anchor bolt yield stress, $\mathrm{f}_{\mathrm{y}}=$	36.00 ksi
masonry compressive strength, $\mathrm{f}_{\mathrm{m}}=$	1500 psi
projected area of anchor bolt in tension, $\mathrm{A}_{\mathrm{pt}}=$	$113.10 \mathrm{in}^{\perp}$
cross section area of anchor bolt, $\mathrm{A}_{\mathrm{b}}=$	$0.44 \mathrm{in}^{\perp}$

$$
\begin{aligned}
& \phi \mathrm{B}_{\mathrm{anb}}=4^{*} \mathrm{~A}_{\mathrm{pt}}^{*}\left(\mathrm{f}_{\mathrm{m}}\right)^{0.5}=17521.0 \mathrm{lbs} \\
& \phi \mathrm{~B}_{\mathrm{ans}}=\mathrm{A}_{\mathrm{b}}^{*} \mathrm{f}_{\mathrm{y}}= 15904.3 \mathrm{lbs}
\end{aligned}
$$

masonry breakout tensile strength
steel yielding strength

Masonry breakout strength $D C R=$	0.05	$O K$
Steel yielding $D C R=$	0.05	$O K$

Puddle Weld Shear Strength

 Pasutek Fastenern and SDI Recognlised Berewn for Verco Deck Panel Bupport Connectiona

Deck Oren	Fretle			$\begin{aligned} & 3 \\ & 29 \\ & 48 \\ & \frac{3}{3} \end{aligned}$		$\begin{array}{r} \frac{2}{6} \\ 58 \\ 8 x \end{array}$	$\begin{aligned} & \frac{5}{5} \\ & \frac{8}{8} \\ & \frac{8}{8} \end{aligned}$	$\begin{aligned} & x \\ & \frac{x}{2} \\ & \frac{2}{2} \end{aligned}$	$\begin{aligned} & \frac{y}{4} \\ & \frac{3}{2} \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \frac{3}{4} \end{aligned}$	
		(a) 1	(10n)	(ba)	(ba)	(06)	(10n)	()0al	(ba)	(Ba)	(10n)
22	DSN	0.0800	700	1231	65	650	518	685	064	$3 \times$	261
39	ESM	0.0089	1091	1497	720	778	738	TM	N05	909	67
18	85 m	prets	1859	2at?	60\%	5090	31	$\cdots \mathrm{C}$	1204	प123	83
15	E4N	6.6054	2300	2564	1109	2050	5154	1235	194	$\$ 690$	5121

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		ESC	ON		ess Gallery	JOB NO.	11962A. 00

DESIGN TASK

WALL ANCHORAGE FORCE

Process Gallery: Bearing Anchorage into 8" Interior CMU Wall

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, T_{c}, shall be calculated in accordance with Eq. (4-12).

$$
\begin{equation*}
T_{c}=\psi S_{X S} w_{p} A_{p} \tag{4-12}
\end{equation*}
$$

where
$w_{p}=$ Unit weight of the wall;
$A_{j}=$ Area of wall tributary to the connection;
$\psi=1.0$ for Collapse Prevention Performance Level, 1.3 for Life Safety Performance Level, and 1.8 for Immediate Occupancy Performance Level; and
$S_{X S}=$ Value specified in Section 4.4.2.3.

Masonry \& Steel Strength

anchor bolt size $=\quad 0.750$ in anchor bolt embed, $\mathrm{I}_{\mathrm{b}}=\quad 6.00$ in anchor bolt location from face, $\mathrm{I}_{\mathrm{be}}=$ anchor bolt yield stress, $\mathrm{f}_{\mathrm{y}}=\quad 36.00 \mathrm{ksi}$
masonry compressive strength, $\mathrm{f}_{\mathrm{m}}=\quad 1500$ psi
projected area of anchor bolt in tension, $A_{p t}=113.10 \mathrm{in}^{\prime}$
projected area of each anchor bolt in shear, $A_{\text {pvbolt }}=22.80 \mathrm{in}^{<}$ cross section area of anchor bolt, $A_{b}=0.44 \mathrm{in}^{<}$

$$
\begin{array}{rr}
\phi \mathrm{B}_{\mathrm{vnb}}=4^{*} \mathrm{~A}_{\mathrm{pv}}{ }^{*}\left(\mathrm{f}_{\mathrm{\prime}}\right)^{0.5}= & 3532.4 \mathrm{lbs} \\
\phi \mathrm{~B}_{\mathrm{vnc}}=1050^{*}\left(\mathrm{f}_{\mathrm{m}}{ }^{*} \mathrm{~A}_{\mathrm{b}}\right)^{0.25}= & 5327.4 \mathrm{lbs} \\
\phi \mathrm{~B}_{\mathrm{vnpry}}=8^{*} \mathrm{~A}_{\mathrm{pt}}{ }^{*}\left(\mathrm{f}_{\mathrm{m}}\right)^{0.5}= & 35041.9 \mathrm{lbs} \\
\phi \mathrm{~B}_{\mathrm{vns}}=0.60^{*} \mathrm{~A}_{\mathrm{b}}{ }^{*} \mathrm{f}_{\mathrm{y}}= & 9542.6 \mathrm{lbs}
\end{array}
$$

masonry breakout shear strength masonry crushing shear strength anchor pryout shear strength steel yielding strength

Masonry breakout strength DCR = 0.11 OK Masonry crushing strength DCR = 0.07 OK Anchor pryout $D C R=0.01 \quad$ OK Steel yielding $D C R=0.04 \quad O K$

Puddle Weld Shear Strength

```
Table 4: Alowable Bheser Blresplh (Iowiconneclion) For Are Spot Welds. Are Beom Welds, Hisil Fanlesers.
Pawatok Fanbenern and SOI Rocognlsod Screws for Verco Deck Panel Suppert Connections
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Oeck Oren} & \multirow[t]{2}{*}{Fretle} & \multicolumn{2}{|l|}{} & \[
\begin{aligned}
& 3 \\
& \frac{3}{3} \\
& \frac{3}{3}
\end{aligned}
\] &  &  & \[
\begin{aligned}
& x \\
& \frac{5}{3} \\
& \frac{8}{3}
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& \frac{x}{2} \\
& \frac{2}{2}
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& \frac{3}{2} \\
& \frac{3}{2}
\end{aligned}
\] & 药 &  \\
\hline & & (a) & (Jon) & (ba) & (ba) & (Bes) & (10n) & (bal & (ba) & (ba) & (10n) \\
\hline 22 & DSN & 0.0.800 & 760 & 1234 & 605 & 080 & 518 & 605 & 654 & 38 & 561 \\
\hline 39 & 55 m & 0.0089 & 1091 & 1291 & 720 & 778 & 738 & ก¢ & 005 & 95 & 87 \\
\hline 18 & 85 m & peets & 1850 & 2at\% & prit & 5000 & 351 & W \({ }^{\text {P }}\) & 1204 & 2163 & 85 \\
\hline 15 & ESN & 0.0064 & 2000 & 2564 & 1109 & 2150 & 5154 & mas & 104 & 5690 & 5121 \\
\hline
\end{tabular}
    deck thickness = 0.0359 in
    weld spacing = 6.00 in
    load at weld = 147.1 lbs / weld
    allowable strength of screw from chart= 1091.0 lbs / weld ASCE 41-17 Section 9.10.1.3 allows for 2
        strength level of screw in shear = 2182.0 lbs / weld times allowable strength for strength level.
            Puddle weld strength DCR = 0.07 OK
```


BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET¡JOB NO.	
CHKD BY	DESCRIPTION		Process Gallery		11962A. 00
DESIGN TASK		ASCE	- Tier 1 Screening (BSE-	mic Level)	

WALL ANCHORAGE FORCE

Process Gallery: Beam Anchorage into 8" CMU Wall along East and West Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, T_{c}, shall be calculated in accordance with Eq. (4-12).

$$
\begin{equation*}
T_{c}=\psi S_{X s} w_{p} A_{p} \tag{4-12}
\end{equation*}
$$

where
$w_{p}=$ Unit weight of the wall;
$A_{p}=$ Area of wall tributary to the connection;
$\psi=1.0$ for Collapse Prevention Performance Level, 1.3 for Life Safety Performance Level, and 1.8 for Immediate Occupancy Performance Level: and
$S_{x s}=$ Value specified in Section 4.4.2.3.

wall height to diaphragm, $\mathrm{h}_{\mathrm{w}}=$	14.63 ft
parapet height, $\mathrm{h}_{\mathrm{p}}=$	0.87 ft
unit weight of wall, $\mathrm{w}_{\mathrm{p}}=$	58.50 psf
$\Psi=$	1.15
$\mathrm{S}_{\mathrm{xs}}=$	0.744 g
wall out-of-plane load =	409.7 lbs/ft
beam spacing =	6.67 ft
wall anchorage force, $\mathrm{T}_{\text {c }}$	732.6

(partial grout for exterior walls [CMU + veneer])
(Interpolated between LS \& CP)

Masonry \& Steel Strength

anchor bolt size $=$	0.7
or bolt embed	8.00 in
tion from face	3.81 in
d str	36.00
ssive strength, $\mathrm{f}_{\mathrm{m}}=$	1500
on	201.06
	22.80
, A_{b}	0.44 in
cted area, $\mathrm{A}_{\text {ptoverlap }}=$	50
It in tension, A	400.87
cted area, $\mathrm{A}_{\text {pvoverlap }}=$. 25
olt in shear, $\mathrm{A}_{\text {pvn }}$	98

$$
\begin{aligned}
& \phi B_{\mathrm{vnb}}=4^{*} \mathrm{~A}_{\text {pvnet }}{ }^{*}\left(\mathrm{f}_{\mathrm{m}}{ }^{0}\right)^{\mathrm{U} 5}=6968.1 \mathrm{lbs} \\
& \phi B_{\text {vnc }}=1050 *\left(f_{m}^{\prime}{ }^{*} A_{b}\right)^{0.2 b}=10654.8 \mathrm{lbs} \\
& \phi B_{\text {vnpry }}=8^{*} A_{\text {ptnet }}{ }^{*}\left(f_{m}^{\prime}\right)^{0.5}=124206.2 \mathrm{lbs} \\
& \phi \mathrm{~B}_{\text {vns }}=0.60^{*} \mathrm{~A}_{\mathrm{b}}{ }^{\star} \mathrm{f}_{\mathrm{y}}=19085.2 \mathrm{lbs}
\end{aligned}
$$

group masonry breakout shear strength group masonry crushing shear strength group anchor pryout shear strength group steel yielding strength

Masonry breakout strength $D C R=$	0.39	OK
Masonry crushing strength $D C R=$	0.26	OK
Anchor pryout $D C R=$	0.02	OK
Steel yielding $D C R=$	0.14	OK

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Process Gallery
SEISMICITY LEVEL:	High
PROJECT NUMBER:	$11962 A .00$
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$07 / 06 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Table 17-3. Immediate Occupancy Basic Configuration Checklist

Very Low Seismicity Structural Componen RATING				nts CSZ Seismic Level at Damage Control	
				DESCRIPTION	COMMENTS
C \square	NC \qquad	N/A \square	U \square	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There is a roof beam aligned with an interior shear wall but no connection to the wall for seismic transfer. The diaphragm at this location will lack the ability to transfer diaphragm forces into the shear wall.
$\begin{aligned} & \mathrm{C} \\ & \boldsymbol{x} \end{aligned}$	NC \square	N/A \square	U \square	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	- Ledger anchorage steel yielding $D C R=0.04$ (OK) - Interior wall bearing anchorage masonry breakout strength $\mathrm{DCR}=0.09$ (OK) - Beam anchorage masonry breakout strength DCR $=0.32$ (OK)

Very Low Seismicity

Building System
General

	ING		DESCRIPTION		COMMENTS
$\begin{aligned} & \mathrm{C} \\ & \square \end{aligned}$	$\begin{gathered} \mathrm{NC} \\ \boldsymbol{x} \end{gathered}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	There is a roof beam aligned with an interior shear wall but no connection to the wall for seismic transfer. The diaphragm at this location will lack the ability to transfer diaphragm forces into the shear wall.
$\begin{aligned} & \text { с } \\ & \square \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \square \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{gathered} \text { U } \\ \square \end{gathered}$	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement need not apply for the following building types: $\mathrm{W} 1, \mathrm{~W} 1 \mathrm{~A}$, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)	

Building Configuration

RATING				DESCRIPTION	COMMENTS
C x	NC \square	N/A \square	U \square	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction shall not be less than 80% of the strength in the adjacent story above. (Commentary: Sec. A.2.2.2. Tier 2: Sec. 5.4.2.1)	
C X	NC \square	N/A \square	U \square	SOFT STORY: The stiffness of the seismic-forceresisting system in any story shall not be less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)	
C \square	$\begin{aligned} & \mathrm{NC} \\ & x \end{aligned}$	N/A \square	U \square	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)	The center interior CMU shear walls don't continue down into the basement level. These walls are supported by concrete beams.
C x	NC \square	N / A	U \square	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-forceresisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	MASS: There is no change in effective mass more than 50\% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	
\boldsymbol{x}	\square	\square	\square		
C	NC	N/A	U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20\% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	Building roof is considered flexible and check is not required.
\square	\square	\boldsymbol{x}	\square		

Low Seismicity

Geologic Site Hazards

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U \square	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	U \square	SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)	There are no slopes nearby structure.
C x	NC \square	N / A	U \square	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)	Surface fault rupture has been determined to not be an issue per NGI technical memorandum.

Moderate and High Seismicity

Foundation Configuration

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/ height) is greater than $0.6 \mathrm{~S}_{\mathrm{a}}$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	$\begin{aligned} & \text { Height }=19.50 \mathrm{ft} \\ & \text { Length }=56.42 \mathrm{ft} \\ & \mathrm{Sa}=0.446 \\ & \mathrm{~L} / \mathrm{H}=56.42 / 19.50=2.89 \\ & 0.6^{*} \mathrm{Sa}=0.6^{*} 0.446=0.27 \\ & 2.89>0.27(\mathrm{OK}) \end{aligned}$

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not	
\boldsymbol{x}	\square	\square	\square	restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)	

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Process Gallery
SEISMICITY LEVEL:	High
PROJECT NUMBER:	$11962 A .00$
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$07 / 07 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Table 17-35. Immediate Occupancy Structural Checklist for Building Types RM1 and RM2

Very Low Seismicity					
Seismic-Force-Resisting System					
RATING				DESCRIPTION	COMMENTS
C x	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1)	
C x	NC \square	N/A \square	U \square	SHEAR STRESS CHECK: The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than $70 \mathrm{lb} / \mathrm{in} .^{2}$. (Commentary: Sec. A.3.2.4.1. Tier 2: Sec. 5.5.3.1.1)	Roof Level N -S direction $\mathrm{DCR}=0.15$ (OK) $\mathrm{E}-\mathrm{W}$ direction $\mathrm{DCR}=0.13(\mathrm{OK})$ 1st Floor $\mathrm{N}-\mathrm{S}$ direction $\mathrm{DCR}=0.12$ (OK) $\mathrm{E}-\mathrm{W}$ direction $\mathrm{DCR}=0.13(\mathrm{OK})$
C \square	NC x	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	REINFORCING STEEL: The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in., and all vertical bars extend to the top of the walls. (Commentary: Sec. A.3.2.4.2. Tier 2: Sec. 5.5.3.1.3)	Horiz steel = \#6@48" Vert steel = \#6@24" (ext) \& \#6@32" (int) Horiz ratio $=0.44 /(7.625 * 48)=0.0012>$ 0.0007 (OK) Vert ratio $=0.44 /\left(7.625^{*} 24\right)=0.0024>0.0007$ (OK) $0.44 /\left(7.625^{*} 32\right)=0.0018>0.0007(\mathrm{OK})$ Horizontal reinforcing is specified at 48 " but this is not less than 48in required. Reinforcing is non-compliant.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Connections

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	WOOD LEDGERS: The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Commentary: Sec. A.5.1.2. Tier 2: Sec. 5.7.1.3)	
C	$\begin{aligned} & \mathrm{NC} \\ & \boldsymbol{x} \end{aligned}$	N/A \square	$\begin{aligned} & \mathrm{u} \\ & \square \end{aligned}$	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of seismic forces to the shear walls, and the connections are able to develop the lesser of the shear strength of the walls or diaphragms. (Commentary: Sec. A.5.2.1. Tier 2: Sec. 5.7.2)	Ledger Connection: Anchorage connection DCR $=0.48$ (OK) Deck weld connection DCR $=0.61$ (OK) Collector Beam: Anchorage connection DCR $=5.51$ (NG)
$\begin{gathered} C \\ x \end{gathered}$	$\begin{aligned} & \text { NC } \\ & \square \end{aligned}$	N/A \square	$\begin{aligned} & \text { U } \\ & \square \end{aligned}$	FOUNDATION DOWELS: Wall reinforcement is doweled into the foundation, and the dowels are able to develop the lesser of the strength of the walls or the uplift capacity of the foundation. (Commentary: Sec. A.5.3.5. Tier 2: Sec. 5.7.3.4)	CMU wall dowel $\mathrm{DCR}=0.40$ (OK) Concrete wall dowel $\mathrm{DCR}=0.34$ (OK)
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{u} \\ & \square \end{aligned}$	GIRDER-COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2: Sec. 5.7.4.1)	

C	NC	N/A	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	\square
\square	\square	-Ledger anchorage steel yielding DCR $=0.04$ (OK) - Interior wall bearing anchorage masonry breakout strength DCR $=0.09$ (OK) - Beam anchorage masonry breakout strength DCR = 0.32 (OK)			

Stiff Diaphragms

RATING				DESCRIPTION	COMMENTS
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	TOPPING SLAB: Precast concrete diaphragm elements are interconnected by a continuous reinforced concrete topping slab. (Commentary: Sec. A.4.5.1. Tier 2: Sec. 5.6.4)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$		TOPPING SLAB TO WALLS OR FRAMES: Reinforced concrete topping slabs that interconnect the precast concrete diaphragm elements are doweled for transfer of forces into the shear wall or frame elements. (Commentary: Sec. A.5.2.3. Tier 2: Sec. 5.7.2)	

Foundation System

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	SLOPING SITES: The difference in foundation embedment depth from one side of the building to another does not exceed one story high. (Commentary: Sec. A.6.2.4)	
\square	\square	\boldsymbol{x}	\square		

Low, Moderate, and High Seismicity
Seismic-Force-Resisting System

RATING				DESCRIPTION	COMMENTS
C x	NC \square	$\begin{array}{r} \mathrm{N} / \mathrm{A} \\ \square \end{array}$	U \square	REINFORCING AT WALL OPENINGS: All wall openings that interrupt rebar have trim reinforcing on all sides. (Commentary: Sec. A.3.2.4.3. Tier 2: Sec. 5.5.3.1.5)	
C x	NC \square	$\begin{array}{r} \mathrm{N} / \mathrm{A} \\ \square \end{array}$	U \square	PROPORTIONS: The height-to-thickness ratio of the shear walls at each story is less than 30. (Commentary: Sec. A.3.2.4.4. Tier 2: Sec. 5.5.3.1.2)	Height $=14.63 \mathrm{ft}$ Thickness $=7.625$ in $\mathrm{H} / \mathrm{t}=14.63 * 12 / 7.625=23.0<30(\mathrm{OK})$

Diaphragms (Flexible or Stiff)

RATING				DESCRIPTION	COMMENTS
C	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ x \end{gathered}$	U	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 15% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C \square	NC \square	$\begin{gathered} N / A \\ x \end{gathered}$	U \square	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 4 ft long. (Commentary: A.4.1.6. Tier 2: Sec. 5.6.1.3)
C	NC\square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	U\square	PLAN IRREGULARITIES: There is tensile capacity to develop the strength of the diaphragm at reentrant corners or other locations of plan irregularities. (Commentary: Sec. A.4.1.7. Tier 2: Sec. 5.6.1.4)
				DIAPHRAGM REINFORCEMENT AT OPENINGS:
C			\square	There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension. (Commentary: Sec. A.4.1.8. Tier 2: Sec. 5.6.1.5)

Flexible Diaphragms

RATING		DESCRIPTION						COMMENTS
\boldsymbol{X}	\square	\square	\square	\square	CROSS TIES: There are continuous cross ties between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2)			

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	OTHER DIAPHRAGMS: The diaphragm does not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)	
\boldsymbol{x}	\square	\square	\square		

Connections

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square	STIFFNESS OF WALL ANCHORS: Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than $1 / 8$ in. before engagement of the anchors. (Commentary: Sec. A.5.1.4. Tier 2: Sec. 5.7.1.2)	

City of Wilsonville

Process Gallery Building Tier 1 Structural Calculations

CSZ Seismic Parameters pg. 1Building Weightpg. 3
Seismic Base Shear pg. 6
Wall Shear Stress Check pg. 7
Transfer to Shear Wall Check pg. 8
Foundation Dowels Check pg. 11Wall Anchorage Checkpg. 12

GENERALIZED SITE SPECIFIC SPECTRA CASCADIA SUBDUCTION ZONE FULL RUPTURE
$\rightarrow 400 \mathrm{~m} / \mathrm{s}$ Spectra $-500 \mathrm{~m} / \mathrm{s}$ Spectra $-600 \mathrm{~m} / \mathrm{s}$ Spectra

Northwest Geotech, Inc.
Figure No. 3

	Table 2: CSZ Generalized Response Spectra Ordinates					
	Latitude 45.295155 degrees Longitude -122				810 degrees	
	$\mathrm{Vs} 30=400 \mathrm{~m} / \mathrm{s}$		$\mathrm{Vs} 30=500 \mathrm{~m} / \mathrm{s}$		$\mathrm{Vs} 30=600 \mathrm{~m} / \mathrm{s}$	
	Period T(sec)	csz Sa(g)	Period T (sec)	csz Sa (g)	Period T (sec)	csz Sa (g)
	0	0.168	0	0.163	0	0.158
	0.05	0.175	0.05	0.172	0.05	0.170
Ss @ T=0.20 sec	0.1	0.256	0.1	0.253	0.1	0.250
	$0.15 \text { n }$	Mo345	0.15	0.310	0.15	0.305
	< 0.2	0.343	0.2	0.334	0.2	0.326
	${ }_{0.25}$	0.352	0.25	0.340	0.25	0.330
	0.3	0.356	0.3	0.342	0.3	0.330
	0.4	0.340	0.4	0.322	0.4	0.305
	0.5	0.314	0.5	0.292	0.5	0.274
	0.6	0.284	0.6	0.260	0.6	0.243
	0.7	0.269	0.7	0.244	0.7	0.227
	0.8	0.255	0.8	0.231	0.8	0.214
	1	0.221	1	0.200	1	0.185
	1.5	0.165	1.5	0.149	1.5	0.138
	2	0.128	2	0.116	2	0.108
	2.5	0.104	2.5	0.094	2.5	0.087
	3	0.085	3	0.077	3	0.071

Northwest Geotech, Inc.

BY: \quad BS	DATE Jul-21	CLIENT City of Wilsonville	SHEET
CHKD BY	DESCRIPTION	Process Gallery Building	JOB NO. 11962A.00
DESIGN TASK	Process Gallery Building Seismic Weight		

Roof Loads

Roof EL 125.63

Description

1-1/2"x20ga metal deck
Rigid insulation w/ sheet roofing
Steel beam
Miscellaneous

Dead Load for Gravity Design
Roof Live Load
Snow Load

Load
2.3 psf
4.5
3.5
5.0

Notes

1. Roof beam self weight assumed total beam weight, 9831.0 lb , divided by total roof area, $3093.1 \mathrm{ft}^{2}$ which is $9831.0 \mathrm{lb} / 3093.1 \mathrm{ft}^{2}=3.18 \mathrm{lb} / \mathrm{ft}^{2}$. Assume 3.5 psf .

Floor Loads

Floor EL 111.00

Description

8" concrete slab
100.0 psf

Concrete beam
73.0

Miscellaneous
10.0

Dead Load for Gravity Design
183.0 psf

Floor Live Load
200.0 psf

Notes

1. Floor beam self weight assumed total beam weight, 226925.0 lb , divided by total floor area, $3093.1 \mathrm{ft}^{2}$ which is $226925.0 \mathrm{lb} / 3093.1 \mathrm{ft}^{2}=73.4 \mathrm{lb} / \mathrm{ft}^{2}$. Assume 73.5 psf .

Wall Loads

Wall Loads

Description

8" CMU wall (partial grouted @ 24")
8" CMU wall (partial grouted @ 32")
8" Concrete wall
14 Concrete wall 175.0
Exterior Plastic Veneer Finish

8" Exterior CMU Wall Load for Seismic
8" Interior CMU Wall Load for Seismic
8" Concrete Wall Load for Seismic
14" Concrete Wall Load for Seismic
58.5 psf

Load
51.0 psf
47.0
100.0
7.5
47.0 psf
100.0 psf
175.0 psf

Seismic Weight

Roof Weight

Roof Area

$3093.1 \mathrm{ft}^{2}$
Roof Seismic Weight
47.3 kip

Dry Chemical Storage Area
Floor Seismic Weight
$3093.1 \mathrm{ft}^{2}$
566.0 kip

Wall Weight

Wall Height to Roof	14.63 ft
Wall Height to 2nd Level	18.00 ft
Parapet Height	0.87 ft
8" Exterior CMU Wall Length (1st floor)	220.00 ft
8" Interior CMU Wall Length (1st floor)	108.00 ft
8" Concrete Wall Length (basement)	37.42 ft
14" Concrete Wall Length (basement)	220.00 ft
Roof Wall Seismic Weight	$142.5 \mathbf{k i p}$
Basement Wall Seismic Weight	$\mathbf{5 1 1 . 5} \mathbf{~ k i p}$
Combined Roof Seismic Weight	$\mathbf{1 8 9 . 8} \mathbf{~ k i p}$
Combined Base Level Seismic Weight	$\mathbf{1 0 7 7 . 5} \mathbf{~ k i p}$

Total Seismic Weight $\quad 1267.3$ kip

Notes

1. Wall seismic weight assumes half of the wall height associated with each level.
2. Per Section 4.5.2.1, the effective seismic weight includes the total dead load, 25% of the live load when area is used as storage, and 20% of the roof snow live load if greater than 30 psf (otherwise assume zero).

BY: BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY	DESCRIPTION			Process Gallery	JOB NO.	11962A. 00
DESIGN TASK			ASCE	- Tier 1 Screening (CSZ	Level)	

SEISMIC BASE SHEAR

4.4.2.1 Pseudo Seismic Force. The pseudo seismic force, in a given borizontal direction of a building, shall be calculated in accordance with Eq. (4-1).

$$
\begin{equation*}
V=C S_{a} W \tag{4-1}
\end{equation*}
$$

where
$V=$ Pseudo seismic force:
$C=$ Modification factor to relane expected maximum inelastic displacements to displacements calculated for linear elastic response; C shall be taken from Table 4-7;
$S_{a}=$ Response spectral acceleration at the fundamental period of the building in the direction under consideration. The value of S_{a} shall be calculated in accordance with the procedures in Section 4.4.2.3: and
$W=$ Effective seismic weight of the building, incloding the total dead load and applicable portions of other gravity loads listed below:

Building Type ${ }^{\text {a }}$	Number of Stories			
	1	2	3	≥ 4
Woud and cold-formes sfeot shear wall [W1, Wia, W2. CFS1;	1.3	1.3	3.0	1.0
Moment framse $\{\mathrm{S} 1, \mathrm{~S}, \mathrm{C} 1$, (202G)				
Shear wall \{S4, S5, C2, C3. 	1.4	1.2	1.1	1.0
Braced :tame (S2) Colc-formed sieel stap-brace wall (Cf\$2)				
Unreisforced masonry (UAM)	1.0	1.0	1.0	1.0
Flexlthe diaphayms ista, S2a. S5\%, C2a, C3a, ãC1. RM1!				

Process Gallery

$$
\begin{aligned}
\text { Modification Factor, } \mathrm{C}= & 1.2 \\
\mathrm{~S}_{\mathrm{s}}= & 0.343(\text { CSZ spectral response }) \\
\mathrm{S}_{1}= & 0.221(\text { CSZ spectral response }) \\
\mathrm{F}_{\mathrm{a}}= & 1.3 \text { (Site amplication factor per ASCE 7-16) } \\
\mathrm{F}_{\mathrm{v}}= & 1.5 \text { (Site amplication factor per ASCE 7-16) } \\
\mathrm{S}_{\mathrm{X} 1}=\mathrm{S}_{1}{ }^{*} \mathrm{~F}_{\mathrm{v}}= & 0.332 \text { (CSZ seismic hazard) } \\
\mathrm{T}= & 0.149 \mathrm{~s} \\
\mathrm{~S}_{\mathrm{X}}=\mathrm{S}_{\mathrm{s}}{ }^{*} \mathrm{~F}_{\mathrm{a}}= & 0.446(\text { CSZ seismic hazard }) \\
\text { Spectral Acceleration, } \mathrm{S}_{\mathrm{a}}= & 0.446 \\
\text { Seismic Weight, } \mathrm{W}= & 1267.3 \mathrm{kip} \\
\text { Seismic Force, } \mathrm{V}= & 678.1 \mathrm{kip}
\end{aligned}
$$

Story	Weight, $w_{x}(k i p)$	Floor Height, $h_{x}(f t)$	k factor	$w_{x} h_{x}{ }^{k}$ $\left(\mathrm{kip}^{*} \mathrm{ft}^{2}\right)$	C_{vx}	Force on Level, $\mathrm{F}_{\mathrm{x}}(\mathrm{kip})$	Story Force, $V_{j}(\mathrm{kip})$
Roof	189.8	32.63	1.0	6193.2	0.242	164.1	164.1
1st	1077.5	18.00	1.0	19395.0	0.758	514.0	678.1

$$
\Sigma w_{x} h_{x}{ }^{k}=25588.2
$$

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION		Process Gallery		11962A. 00
DESIGN TASK		ASCE	- Tier 1 Screening (CSZ	Level)	

WALL SHEAR STRESS CHECK

4.4.3.3 Shroar Stress in Slorar Walle. The average shear stress in shear walls, $y_{j}^{m / 3}$, stall be calculated in acocedance with Eq (4-8).

$$
\begin{equation*}
V_{i=}^{\omega z}=\frac{1}{M_{s}}\left(\frac{V_{i}}{A_{z}}\right) \tag{4.8}
\end{equation*}
$$

where
$V_{f}=$ Swey shear as level j ceenpuled in accordance with Section 4.4.2.2:
$A_{z}=$ Summation of the berizontal cross-sectional area of all shear walls in the direction of loading. Openings shall be taken into consideration where computing $A_{\text {s. }}$. For masonry walls, the net area shall be weed. For wood-framed walls, the kength stall be usod rather than the area; and
$M_{3}=$ System modification factor: M_{3} shall be taken from Table 4.8.

Table 4-8. M_{5} Factors for Shear Walls

Wall Type	Level of Performance		
	$6 P^{*}$	$1 S^{8}$	10^{8}
Reinforced concrete, precast concrete, wood, reinforced masonry, and cold-formed steet	4.5	3.0	1.5
Unreinforced masonny	1.75	1.25	1.0

${ }^{3} \mathrm{CP}=$ Collapse Prevention, $\mathrm{LS}=$ Life Safety, $1 \mathrm{O}=$ Immediate Occupancy.

CMU wall thickness, $\mathrm{t}=$	7.625 in	
Concrete wall thickness, $\mathrm{t}=$	14 in	
Concrete strength, $\mathrm{f}_{\mathrm{c}}=$	4000 psi	
Roof Story Base Shear, $\mathrm{V}_{\text {roof }}=$	164.1 kips	
1st Floor Story Base Shear, $\mathrm{V}_{1 \text { st }}=$	678.1 kips	
System Modification Factor, $\mathrm{M}_{\mathrm{s}}=$	2.25	(Interpolated between LS \& IO)

Roof Level

Shear Wall in N-S Direction

Total length of exterior 8" CMU walls $=$	74.00 ft
Grout spacing $=$	24 in
Total length of interior 8" CMU walls $=$	49.42 ft
Grout spacing $=$	32 in
total net area of shear walls $=$	$6997.1 \mathrm{in}^{2}$
average shear stress, $v_{\text {avg, NS }}=$	10.4 psi

$<\quad 70.0 \quad$ Shear Stress OK	
$D C R=$	0.15

Shear Wall in E-W Direction

Total length of exterior 8" CMU walls $=$	88.00 ft
Grout spacing $=$	24 in
Total length of interior 8" CMU walls $=$	50.00 ft
Grout spacing $=$	32 in
total net area of shear walls $=$	$8280.8 \mathrm{in}^{2}$
average shear stress, $v_{\text {avg, NS }}=$	8.8 psi

$$
\begin{gathered}
70.0 \quad \text { Shear Stress OK } \\
D C R=0.13
\end{gathered}
$$

1st Level
Shear Wall in N-S Direction

Total length of 14 " concrete walls $=$	118.00 ft			
total net area of shear walls $=$	$19824.0 \mathrm{in}^{2}$			
average shear stress, $v_{\text {avg,Ns }}=$	15.2 psi	$<$	126.5	Shear Stress OK

Shear Wall in E-W Direction
$\begin{array}{rr}\text { Total length of } 14 \text { " concrete walls }= & 109.50 \mathrm{ft} \\ \text { total net area of shear walls }= & 18396.0 \mathrm{in}^{2} \\ \text { average shear stress, } v_{\text {avg, Ns }}= & 16.4 \mathrm{psi}\end{array}$

$$
D C R=0.12
$$

average shear stress, $v_{\text {avg,Ns }}=\quad 16.4 \mathrm{psi} \quad<\quad 126.5 \quad$ Shear Stress OK
$D C R=0.13$

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEETJOB NO.	
CHKD BY	DESCRIPTION		Process Gallery		11962A. 00
DESIGN TĀSK		ASCE 4	- Tier 1 Screening (CS	mic Level)	

Beam Connection to CMU Walls (Detail 5008)

diaphragm shear strength, $q_{\mathrm{ult}}=$	$1280 \mathrm{lbs} / \mathrm{ft}$
beam length $=$	30 ft
diaphragm shear strength $=$	38400.0 lbs

$\underline{\text { W16x26 Beam Tensile Strength (Assuming } \phi=1.0 \text { for Tier 1) }}$

beam area, $A=$	$7.68 \mathrm{in}^{2}$
steel yield stress, $\mathrm{F}_{\mathrm{y}}=$	50 ksi
steel tensile stress, $\mathrm{F}_{\mathrm{u}}=$	65 ksi
$\phi \mathrm{B}_{\mathrm{t}}=\min \left(\mathrm{F}_{\mathrm{y}}{ }^{*} \mathrm{~A}, \mathrm{~F}_{\mathrm{u}}{ }^{*} \mathrm{~A}\right)=$	384.0 kip
Masonry breakout strength $D C R=$	0.10 OK

Masonry \& Steel Strength (Assuming $\phi=1.0$ for Tier 1)
anchor bolt size $=\quad 0.750$ in
anchor bolt embed, $\mathrm{l}_{\mathrm{b}}=\quad 8.00$ in
anchor bolt location from face, $l_{\text {be }}=3.81$ in
anchor bolt yield stress, $\mathrm{f}_{\mathrm{y}}=\quad 36.00 \mathrm{ksi}$
masonry compressive strength, $\mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi}$
projected area of single anchor bolt in tension, $A_{p t}=201.06 \mathrm{in}^{<}$
projected area of single anchor bolt in shear, $A_{\text {pvbolt }}=22.80 \mathrm{in}^{<}$
cross section area of single anchor bolt, $A_{b}=0.44 \mathrm{in}^{\perp}$
estimated overlap of projected area, $A_{\text {ptoverlap }}=\quad 2.50 \mathrm{in}^{<}$
net projected area of anchor bolt in tension, $A_{\text {ptnet }}=400.87 \mathrm{in}^{\angle}$
estimated overlap of projected area, $\mathrm{A}_{\text {pvoverlap }}=\quad 1.25 \mathrm{in}^{\angle}$
net projected area of anchor bolt in shear, $\mathrm{A}_{\text {pvnet }}=44.98 \mathrm{in}^{く}$

$\phi B_{\text {vnc }}=1050 *\left(f_{m}{ }^{*} A_{b}\right)^{0.25}=10654.8 \mathrm{lbs}$
$\phi \mathrm{B}_{\text {vnpry }}=8^{*} \mathrm{~A}_{\text {ptnet }}{ }^{*}\left(\mathrm{f}_{\mathrm{m}}\right)^{0.5}=124206.2 \mathrm{lbs}$
$\phi \mathrm{B}_{\mathrm{vns}}=0.60^{*} \mathrm{~A}_{\mathrm{b}}{ }^{*} \mathrm{f}_{\mathrm{y}}=19085.2 \mathrm{lbs}$
(assumed less than wall shear strength)

OK
group masonry breakout shear strength group masonry crushing shear strength group anchor pryout shear strength group steel yielding strength

- Sidelaps connected with Button Punch
 or $11 / 2$ " Top Seam Weld

Allowable Diaphragm Shear Strength, q (plf) and Flexibility Factors, $\mathbf{F}\left((\mathrm{in} . / \mathrm{lb}) \times 10^{6}\right.$)

DECK GAGE	SIDELAP ATTACHMENT		SPAN (ft-in.)								
			4'-0"	5'-0"	6'-0"	7'-0"	8'-0"	9'-0"	10'-0"	11'-0"	12'-0"
22	BP @ 24"	q	398	327	267	235	202	186	168		
		F	9.9+27R	11.9+20R	14+15R	15.7+12R	17.6+9R	19.1+7R	20.9+5R		
	BP @ 12"	q	434	355	303	266	238	218	204		
		F	9.5+27R	11.4+21R	13.1+16R	14.6+13R	16.1+10R	17.4+8R	18.7+6R		
	TSW @ 24"	q	770	777	661	682	601	627	566		
		F	5.1+30R	$5.3+24 \mathrm{R}$	6.1+20R	6.1+17R	$6.6+15 \mathrm{R}$	$6.5+13 \mathrm{R}$	7+12R		
	TSW @ 18"	q	937	911	781	785	787	710	720		
		F	4.4+30R	4.8+24R	$5.4+20 \mathrm{R}$	5.5+17R	5.6+15R	6+13R	6.1+12R		
	TSW @ 12"	q	1084	1033	998	972	952	936	924		
		F	4+30R	4.4+24R	4.7+20R	4.9+17R	5.1+15R	5.2+13R	5.3+12R		
	TSW @ 6"	q	1504	1476	1456	1442	1430	1236	1001		
		F	$3.2+30 \mathrm{R}$	$3.6+24 \mathrm{R}$	$3.8+20 \mathrm{R}$	4+17R	4.2+15R	4.3+14R	4.4+12R		
20	BP @ 24"	q	564	466	383	338	292	267	240	228	209
		F	9.3+16R	11+12R	$12.8+8 \mathrm{R}$	$14.3+6 \mathrm{R}$	16+4R	17.3+2R	19+1R	20.1+0R	21.7-1R
	BP @ 12"	q	616	507	434	382	343	313	292	274	260
		F	8.8+16R	10.5+12R	12+9R	13.3+7R	14.6+5R	15.8+3R	16.9+2R	18+1R	19+0R
	TSW @ 24"	q	1024	1026	873	896	793	821	742	772	711
		F	4.8+19R	$4.9+15 \mathrm{R}$	$5.6+12 \mathrm{R}$	$5.5+11 \mathrm{R}$	6+9R	$5.8+8 \mathrm{R}$	$6.2+7 \mathrm{R}$	6.1+7R	6.4+6R
	TSW @ 18"	q	1236	1197	1026	1027	1028	926	937	946	875
		F	4.2+19R	4.4+15R	5+13R	5+11R	$5.1+9 \mathrm{R}$	$5.4+8 \mathrm{R}$	5.4+7R	5.4+7R	5.7+6R
	TSW @ 12"	q	1425	1354	1304	1267	1239	1217	1200	1085	912
		F	3.8+19R	$4.1+15 \mathrm{R}$	4.3+13R	4.5+11R	4.6+10R	4.7+8R	4.7+8R	4.8+7R	4.8+6R
	TSW @ 6"	q	1970	1930	1901	1880	1864	1621	1313	1085	912
		F	3.1+19R	$3.4+15 \mathrm{R}$	$3.5+13 \mathrm{R}$	$3.7+11 \mathrm{R}$	3.7+10R	3.8+9R	3.9+8R	3.9+7R	4+6R
18	BP @ 24"	q	979	812	670	595	516	475	423	400	366
		F	$8.1+7 \mathrm{R}$	$9.5+4 \mathrm{R}$	11+2R	12.2+1R	13.7+0R	14.8-1R	16.2-2R	17.2-3R	18.6-4R
	BP @ 12"	q	1070	885	761	673	607	556	515	483	458
		F	7.7+7R	9+5R	10.3+3R	11.4+2R	12.5+1R	13.5+0R	14.4-1R	15.3-2R	16.2-2R
	TSW @ 24"	q	1617	1598	1359	1383	1224	1258	1141	1177	1085
		F	$4.3+9 \mathrm{R}$	4.2+7R	$4.7+6 \mathrm{R}$	$4.6+5 \mathrm{R}$	5+4R	$4.9+4 \mathrm{R}$	$5.2+3 \mathrm{R}$	5+3R	$5.3+3 \mathrm{R}$
	TSW @ 18"	q	1928	1851	1586	1577	1570	1414	1425	1434	1326
		F	3.7+9R	3.8+7R	$4.2+6 \mathrm{R}$	4.2+5R	$4.2+4 \mathrm{R}$	$4.5+4 \mathrm{R}$	4.5+4R	$4.4+3 \mathrm{R}$	4.7+3R
	TSW @ 12"	q	2208	2084	1998	1935	1886	1848	1817	1659	1394
		F	$3.4+9 \mathrm{R}$	3.5+7R	3.6+6R	3.7+5R	$3.8+5 \mathrm{R}$	$3.8+4 \mathrm{R}$	3.9+4R	3.9+3R	3.9+3R
	TSW @ 6"	q	3036	2962	2910	2872	2842	2478	2007	1659	1394
		F	2.7+9R	2.9+8R	3+6R	$3+5 \mathrm{R}$	$3.1+5 \mathrm{R}$	3.1+4R	3.1+4R	3.2+3R	3.2+3R
16	BP @ 24"	q	1255	1052	869	780	677	629	561	532	485
		F	7.2+3R	$8.4+1$ R	9.7+0R	10.8-1R	12.1-2R	13.1-2R	14.3-3R	15.2-4R	16.4-4R
	BP @ 12"	q	1395	1167	1013	902	820	756	704	662	628
		F	$6.8+3 \mathrm{R}$	8+2R	$9.1+1 \mathrm{R}$	10.1+0R	11-1R	11.9-2R	12.7-2R	13.5-3R	14.3-3R
	TSW @ 24"	q	2083	2073	1766	1805	1599	1649	1497	1548	1428
		F	$3.7+5 \mathrm{R}$	$3.7+4 \mathrm{R}$	$4.1+3 \mathrm{R}$	4+3R	4.3+2R	$4.2+2 \mathrm{R}$	$4.5+2 \mathrm{R}$	$4.3+2 R$	4.6+1R
	TSW @ 18"	q	2496	2408	2067	2062	2058	1856	1874	1889	1748
		F	3.2+5R	$3.3+4 \mathrm{R}$	$3.7+3 \mathrm{R}$	$3.6+3 \mathrm{R}$	3.6+2R	3.9+2R	$3.8+2 \mathrm{R}$	$3.8+2 \mathrm{R}$	4+2R
	TSW @ 12"	q	2862	2713	2609	2532	2473	2427	2389	2310	1941
		F	$2.9+5 \mathrm{R}$	3.1+4R	$3.1+3 \mathrm{R}$	$3.2+3 \mathrm{R}$	3.2+3R	$3.3+2 \mathrm{R}$	$3.3+2 \mathrm{R}$	$3.3+2 \mathrm{R}$	3.4+2R
	TSW @ 6"	q	3918	3833	3773	3729	3695	3451	2795	2310	1941
		F	$2.4+5 \mathrm{R}$	$2.5+4 \mathrm{R}$	$2.5+4 \mathrm{R}$	$2.6+3 \mathrm{R}$	$2.6+3 \mathrm{R}$	2.6+2R	2.6+2R	2.7+2R	2.7+2R

See footnotes on page 28.
Deck span = 6'-8" $\mathrm{q}=1280 \mathrm{lb} / \mathrm{ft}$ (interpolated)

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION		Process Gallery		11962A. 00
DESIGN TĀAK		ASCE	- Tier 1 Screening (c Level)	

TRANSFER TO SHEAR WALLS

Ledger Angle Connection into CMU Walls

Puddle Weld Strength

$$
\text { deck thickness }=0.0359 \text { in }
$$

N-S Wall Elevations - Deck welded to support with puddle weld at 6" effective puddle weld diameter $=0.625$ in puddle weld spacing $=\quad 6.00$ in
load at puddle weld $=\quad 640.0 \mathrm{lbs} /$ weld strength of puddle weld $=\quad 2093.7 \mathrm{lbs} /$ weld

$$
\text { Puddle weld strength DCR }=\quad 0.31 \quad \text { OK }
$$

E-W Wall Elevations - Deck welded to support with puddle weld at 12" effective puddle weld diameter $=0.625$ in puddle weld spacing $=\quad 12.00$ in
load at puddle weld $=\quad 1280.0 \mathrm{lbs} /$ weld strength of puddle weld $=2093.7 \mathrm{lbs} /$ weld
Puddle weld strength DCR = 0.61 OK

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION		Process Gallery		11962A. 00
DESIGN TĀSK		ASCE	- Tier 1 Screening (CSZ	ic Level)	

FOUNDATION DOWELS

CMU Wall Shear Strength

steel yield strength, $\mathrm{f}_{\mathrm{y}}=$ Seismic unit shear, $\mathrm{Vu}=$ Seismic unit moment, $\mathrm{Mu}=$ unit depth, $d v=$	60000 psi $1.54 \mathrm{kip} / \mathrm{ft}$ 22.5 ft*kip/ft 12.00 in	
$\mathrm{Mu} /\left(\mathrm{Vu}{ }^{*} \mathrm{dv}\right)=$	14.62	
Wall area, $A_{n v}=$ masonry strength, $f_{m}^{\prime}=$ Reinforcement area, $A_{v}=$ reinforcement spacing, $s=$	$\begin{aligned} & 91.5 \mathrm{in}^{〔} \\ & 1500 \mathrm{psi}_{\mathrm{in}} \\ & 0.44 \mathrm{in}^{〔} \\ & 32.0 \text { in } \end{aligned}$	
Nominal reinforcement shear strength, $\begin{aligned} & \mathrm{V}_{\mathrm{ns}}= \\ & \mathrm{Y}_{\mathrm{g}}=\end{aligned}$	$\begin{aligned} & 4.95 \text { kip } \\ & 0.75 \end{aligned}$	
Nominal Unit Wall Shear, $\mathrm{V}_{\mathrm{n}}=$	10.63 kip/ft	ACI 530-13 Eq. 9-23

Shear Friction between wall and slab

Dowels into concrete walls below are \#6@32'

Reinforcement area, $\mathrm{A}_{\mathrm{vf}}=$	$0.44 \mathrm{in}^{\perp}$
$\mu=$	1.0
Unit Shear Friction, $\mathrm{V}_{\mathrm{n}}=$	26.40 kip/ft
Dowel $D C R=$	$0.40 \quad$ Dowels can develop wall strength

Concrete Wall Shear Strength

Concrete wall thickness, $\mathrm{t}=$	14 in
Concrete strength, $\mathrm{f}_{\mathrm{c}}=$	4000 psi
Seismic unit shear, $\mathrm{Vu}=$	$6.4 \mathrm{kips} / \mathrm{ft}$
Axial unit load on wall, $\mathrm{Nu}=$	$10.1 \mathrm{kips} / \mathrm{ft}$

Shear strength, $\mathrm{V}_{\mathrm{c} 1}=2^{*} \lambda^{*}\left(\mathrm{f}_{\mathrm{c}}{ }^{0.5}\right)^{0 .{ }^{*} h^{*} \mathrm{dv}=} \quad 17.0 \mathrm{kips} / \mathrm{ft} \quad(\mathrm{ACl} 318-14$ Table 11.5.4.6)
Shear strength, $\mathrm{V}_{\mathrm{c} 2}=3.3^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5 *} \mathrm{~h}^{*} \mathrm{dv}+\left[\left(\mathrm{Nu}^{*} \mathrm{dv}\right) /\left(4^{*} \mathrm{~L}\right)\right]=\quad 28.1 \mathrm{kips} / \mathrm{ft} \quad(\mathrm{ACl} \mathrm{318-14} \mathrm{Table} \mathrm{11.5.4.6)}$

$$
\text { Shear strength, } \mathrm{V}_{\mathrm{cmax}}=10^{*}\left(\mathrm{f}_{\mathrm{c}}^{\prime}\right)^{0.5 *} \mathrm{~h}^{*} \mathrm{dv}=\quad 85.0 \mathrm{kips} / \mathrm{ft} \quad(\mathrm{ACl} 318-14 \text { Section 11.5.4.3) }
$$

Conc shear capacity, $\mathrm{V}_{\mathrm{c}}=\min \left[\max \left(\mathrm{V}_{\mathrm{c} 1}, \mathrm{~V}_{\mathrm{c} 2}\right), \mathrm{V}_{\text {cmax }}\right]=\quad 28.1 \mathrm{kips} / \mathrm{ft}$

Shear Friction between wall and slab

Dowels into foundation are \#7@12" \& \#8@12" alternating (effective 6" spacing),

$$
\begin{aligned}
\text { Reinforcement area, } \mathrm{A}_{\mathrm{vf}}= & 1.39 \mathrm{in}^{<} \\
\text {steel yield strength, } \mathrm{f}_{\mathrm{y}}= & 60000 \mathrm{psi} \\
\mu= & 1.0 \\
\text { Unit Shear Friction, } \mathrm{V}_{\mathrm{n}}= & 83.40 \text { kip/ft } \\
\text { Dowel } D C R & =0.34 \quad \text { Dowels can develop wall strength }
\end{aligned}
$$

WALL ANCHORAGE CONNECTION DETAIL ALONG NORTH AND SOUTH WALL ELEVATIONS

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET־ JOB NO.	
CHKD BY	DESCRIPTION		ess Gallery		11962A. 00
DESIGN TASK		ASCE 41-17 - Tier 1 Screening (CSZ Seismic Level)			
WALL ANCHORAGE FORCE					

Process Gallery: Ledger Angle Anchorage into 8" CMU Wall along North and South Wall Elevations

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, T_{c} shall be calculated in accordance with Eq. (4-12).

$$
\begin{equation*}
T_{c}=\psi r S_{X S} w_{P} A_{p} \tag{4-12}
\end{equation*}
$$

where
$w_{p}=$ Unit weight of the wall:
$A_{p}=$ Area of wall tributary to the connection;
$\psi=1.0$ for Collapse Prevention Performance Level, 1.3 for Life Safety Performance Level, and 1.8 for Immediate Occupancy Performance Level; and
$S_{x s}=$ Value specified in Section 4.4.2.3.
wall height to diaphragm, $\mathrm{h}_{\mathrm{w}}=14.63 \mathrm{ft}$
parapet height, $\mathrm{h}_{\mathrm{p}}=\quad 0.87 \mathrm{ft}$
unit weight of wall, $\mathrm{w}_{\mathrm{p}}=\quad 58.50 \mathrm{psf} \quad$ (partial grout for exterior walls [CMU + veneer])
$\Psi=\quad 1.55$
$\mathrm{S}_{\mathrm{Xs}}=\quad 0.446 \mathrm{~g}$
wall out-of-plane load $=\quad 331.0 \mathrm{lbs} / \mathrm{ft}$ anchor bolt spacing $=\quad 24.00$ in
wall anchorage force, $\mathrm{T}_{\mathrm{c}}=662.0 \mathrm{lbs}$

Masonry \& Steel Strength

anchor bolt size $=$	0.750 in
anchor bolt embed, I_{b}	$=$
6.00 in	
anchor bolt yield stress, $\mathrm{f}_{\mathrm{y}}=$	36.00 ksi
masonry compressive strength, $\mathrm{f}_{\mathrm{m}}=$	1500 psi
projected area of anchor bolt in tension, $\mathrm{A}_{\mathrm{pt}}=$	$113.10 \mathrm{in}^{\text { }}$
cross section area of anchor bolt, $\mathrm{A}_{\mathrm{b}}=$	$0.44 \mathrm{in}^{\text {C }}$

$$
\begin{aligned}
& \phi \mathrm{B}_{\mathrm{anb}}=4^{*} \mathrm{~A}_{\mathrm{pt}}^{*}\left(\mathrm{f}_{\mathrm{m}}\right)^{0.5}=17521.0 \mathrm{lbs} \\
& \phi \mathrm{~B}_{\mathrm{ans}}=\mathrm{A}_{\mathrm{b}}^{*} \mathrm{f}_{\mathrm{y}}= 15904.3 \mathrm{lbs}
\end{aligned}
$$

masonry breakout tensile strength steel yielding strength

Puddle Weld Shear Strength
 Pasutek Fastenern and SDI Recognlised Berewn for Verco Deck Panel Bupport Connectiona

Deck Oren	Fretle			$\begin{aligned} & 3 \\ & 29 \\ & 48 \\ & \frac{3}{3} \end{aligned}$		$\begin{array}{r} \frac{2}{6} \\ 58 \\ 8 x \end{array}$	$\begin{aligned} & \frac{5}{5} \\ & \frac{8}{8} \\ & \frac{8}{8} \end{aligned}$	$\begin{aligned} & x \\ & \frac{x}{2} \\ & \frac{2}{2} \end{aligned}$	$\begin{aligned} & \frac{y}{4} \\ & \frac{3}{2} \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \frac{3}{4} \end{aligned}$	
		(a) 1	(10n)	(ba)	(ba)	(06)	(10n)	()0al	(ba)	(Ba)	(10n)
22	DSN	0.0800	700	1231	65	650	518	685	064	$3 \times$	261
39	ESM	0.0089	1091	1497	720	778	738	TM	N05	909	67
18	85 m	prets	1859	2at?	60\%	5090	31	$\cdots \mathrm{C}$	1204	प123	83
15	E4N	6.6054	2300	2564	1109	2050	5154	1235	194	$\$ 690$	5121

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION		Process Gallery		11962A. 00
DESIGN TASK		ASCE	- Tier 1 Screening (CS		

WALL ANCHORAGE FORCE

Process Gallery: Bearing Anchorage into 8" Interior CMU Wall

4.4.3.7 Flexible Diaphragm Connection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, T_{c}, shall be calculated in accordance with Eq. (4-12).

$$
\begin{equation*}
T_{c}=\psi S_{X S} w_{p} A_{p} \tag{4-12}
\end{equation*}
$$

where
$w_{p}=$ Unit weight of the wall;
$A_{j}=$ Area of wall tributary to the connection;
$\psi=1.0$ for Collapse Prevention Performance Level, 1.3 for Life Safety Performance Level, and 1.8 for Immediate Occupancy Performance Level; and
$S_{X S}=$ Value specified in Section 4.4.2.3.

Masonry \& Steel Strength

anchor bolt size $=\quad 0.750$ in anchor bolt embed, $\mathrm{I}_{\mathrm{b}}=\quad 6.00$ in anchor bolt location from face, $\mathrm{I}_{\mathrm{be}}=\quad 3.81$ in anchor bolt yield stress, $\mathrm{f}_{\mathrm{y}}=\quad 36.00 \mathrm{ksi}$
masonry compressive strength, $\mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi}$
projected area of anchor bolt in tension, $A_{p t}=113.10 \mathrm{in}^{<}$
projected area of each anchor bolt in shear, $A_{\text {pvbolt }}=22.80 \mathrm{in}^{<}$ cross section area of anchor bolt, $\mathrm{A}_{\mathrm{b}}=0.44 \mathrm{in}^{<}$

$$
\begin{array}{rr}
\phi \mathrm{B}_{\mathrm{vnb}}=4^{*} \mathrm{~A}_{\mathrm{pv}}{ }^{*}\left(\mathrm{f}_{\mathrm{m}}^{\prime}\right)^{0.5}= & 3532.4 \mathrm{lbs} \\
\phi \mathrm{~B}_{\mathrm{vnc}}=1050^{*}\left(\mathrm{f}_{\mathrm{m}}{ }^{*} \mathrm{~A}_{\mathrm{b}}\right)^{0.25}= & 5327.4 \mathrm{lbs} \\
\phi \mathrm{~B}_{\mathrm{vnpry}}=8^{*} \mathrm{~A}_{\mathrm{pt}}^{*}\left(\mathrm{f}_{\mathrm{m}}\right)^{0.5}= & 35041.9 \mathrm{lbs} \\
\phi \mathrm{~B}_{\mathrm{vns}}=0.60^{*} \mathrm{~A}_{\mathrm{b}}{ }^{*} \mathrm{f}_{\mathrm{y}}= & 9542.6 \mathrm{lbs}
\end{array}
$$

masonry breakout shear strength masonry crushing shear strength anchor pryout shear strength steel yielding strength

Masonry breakout strength DCR = 0.09 OK Masonry crushing strength DCR = 0.06 OK Anchor pryout $D C R=0.01 \quad O K$ Steel yielding $D C R=0.03 \quad O K$

Puddle Weld Shear Strength

```
Table 4: Alowable Bheser Blresplh (Iowiconneclion) For Are Spot Welds. Are Beom Welds, Hisil Fanlesers.
Pawatok Fanbenern and SOI Rocognlsod Screws for Verco Deck Panel Suppert Connections
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Deck Otose} & \multirow[t]{2}{*}{Fretle} & \multicolumn{2}{|l|}{} & \[
\begin{aligned}
& 3 \\
& \frac{3}{3} \\
& \frac{3}{3}
\end{aligned}
\] &  & \[
5 \frac{2}{2}
\] & \[
\begin{aligned}
& \frac{x}{5} \\
& \frac{3}{3} \\
& \hline
\end{aligned}
\] &  & \[
\begin{aligned}
& x \\
& \frac{3}{2} \\
& \frac{3}{2}
\end{aligned}
\] &  &  \\
\hline & & (a) & (10n) & (ba) & (ba) & (Bx) & (10n) & (0al & (ba) & (ba) & (10n) \\
\hline 12 & DSN & 0.0.200 & 760 & 1231 & 605 & 680 & 618 & 6S5 & 604 & 38 & 561 \\
\hline 29 & E5sm & 0.008s & 1091 & 1291 & 720 & 778 & 730 & ก¢ & 805 & 905 & \%7 \\
\hline 18 & 85 m & pesers & 1850 & 2at? & 60\% & Teqo & 351 & W7 & 1204 & 2123 & 8 se \\
\hline 15 & EAN & 6.5064 & 2000 & 2564 & 1169 & 5150 & 5154 & 1203 & 104 & 5690 & 5121 \\
\hline
\end{tabular}
    deck thickness = 0.0359 in
    weld spacing = 6.00 in
    load at weld = 118.8 lbs}/\mathrm{ weld
    allowable strength of screw from chart= 1091.0 lbs / weld ASCE 41-17 Section 9.10.1.3 allows for 2
        strength level of screw in shear = 2182.0 lbs / weld times allowable strength for strength level.
            Puddle weld strength DCR = 0.05 OK
```


BEAM ANCHORAGE CONNECTION DETAIL ALONG EAST AND WEST WALL ELEVATIONS

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION		Process Gallery		11962A. 00
DESIGN TASK		ASCE	- Tier 1 Screening (CS	ic Level)	

WALL ANCHORAGE FORCE

Process Gallery: Beam Anchorage into 8" CMU Wall along East and West Wall Elevations

4.4.3.7 Flexible Diaphragm Conrection Forces. The horizontal seismic forces associated with the connection of a flexible diaphragm to either concrete or masonry walls, T_{c}, shall be calculated in accordance with Eq. (4-12).

$$
\begin{equation*}
T_{c}=\psi S_{X s} w_{p} A_{p} \tag{4-12}
\end{equation*}
$$

where
$w_{p}=$ Unit weight of the wall;
$A_{p}=$ Area of wall tributary to the connection;
$\psi=1.0$ for Collapse Prevention Performance Level, 1.3 for Life Safety Performance Level, and 1.8 for Immediate Occupancy Performance Level: and
$S_{x s}=$ Value specified in Section 4.4.2.3.

Masonry \& Steel Strength

anchor bolt size $=$	0.7
or bolt em	
tion from face,	3.81
stres	36.00
,	1500
ten	201.06
in shear, $A_{\text {pvbolt }}=$	22.80
chor bolt, A_{b}	0.44 in
cted area, $\mathrm{A}_{\text {ptoverlap }}=$	2.50
It in tension, A	400.87
ted area, $\mathrm{A}_{\text {pvoverlap }}=$	1.25
olt in shear, $\mathrm{A}_{\text {pvn }}$	44.

$$
\begin{array}{rr}
\phi B_{\text {vnb }}=4^{*} A_{\text {pvnet }}^{*}\left(f_{m}^{\prime}\right)^{u . b}= & 6968.1 \mathrm{lbs} \\
\phi B_{\text {vnc }}=1050^{*}\left(f_{m}^{*}{ }^{*} A_{b}\right)^{0.2 b}= & 10654.8 \mathrm{lbs} \\
\phi B_{\text {vnpry }}=8^{*} A_{\text {ptnet }}^{*}\left(f_{m}^{\prime}\right)^{0.5}= & 124206.2 \mathrm{lbs} \\
\phi B_{\text {vns }}=0.60^{*} A_{b}^{* *} f_{y}= & 19085.2 \mathrm{lbs}
\end{array}
$$

group masonry breakout shear strength group masonry crushing shear strength group anchor pryout shear strength group steel yielding strength

Masonry breakout strength $D C R=$	0.32	OK
Masonry crushing strength $D C R=$	0.21	OK
Anchor pryout $D C R=$	0.02	OK
Steel yielding $D C R=$	0.12	OK

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEETJOB NO.	
CHKD BY	DESCRIPTION		Process Gallery		11962A. 00
DESIGN TĀSK		ASCE 4	- Tier 1 Screening (CS	mic Level)	

Beam Connection to CMU Walls (Detail 5008)

diaphragm shear strength, $q_{\mathrm{ult}}=$	$1466 \mathrm{lbs} / \mathrm{ft}$
beam length $=$	30 ft
diaphragm shear strength $=$	43980.0 lbs

$\underline{\text { W16x26 Beam Tensile Strength (Assuming } \phi=1.0 \text { for Tier 1) }}$

beam area, $A=$	$7.68 \mathrm{in}^{2}$
steel yield stress, $\mathrm{F}_{\mathrm{y}}=$	50 ksi
steel tensile stress, $\mathrm{F}_{\mathrm{u}}=$	65 ksi
$\phi \mathrm{B}_{\mathrm{t}}=\min \left(\mathrm{F}_{\mathrm{y}}{ }^{*} \mathrm{~A}, \mathrm{~F}_{\mathrm{u}}{ }^{*} \mathrm{~A}\right)=$	384.0 kip
Masonry breakout strength $D C R=$	$0.11 \quad$ OK

Masonry \& Steel Strength (Assuming $\phi=1.0$ for Tier 1)
anchor bolt size $=\quad 0.750$ in
anchor bolt embed, $\mathrm{l}_{\mathrm{b}}=\quad 8.00$ in
anchor bolt location from face, $l_{\text {be }}=3.81$ in
anchor bolt yield stress, $\mathrm{f}_{\mathrm{y}}=\quad 36.00 \mathrm{ksi}$
masonry compressive strength, $\mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi}$
projected area of single anchor bolt in tension, $A_{p t}=201.06 \mathrm{in}^{<}$
projected area of single anchor bolt in shear, $A_{\text {pvbolt }}=22.80 \mathrm{in}^{<}$
cross section area of single anchor bolt, $A_{b}=0.44 \mathrm{in}^{\perp}$
estimated overlap of projected area, $A_{\text {ptoverlap }}=\quad 2.50 \mathrm{in}^{<}$
net projected area of anchor bolt in tension, $A_{\text {ptnet }}=400.87 \mathrm{in}^{\angle}$
estimated overlap of projected area, $\mathrm{A}_{\text {pvoverlap }}=\quad 1.25 \mathrm{in}^{\angle}$
net projected area of anchor bolt in shear, $\mathrm{A}_{\text {pvnet }}=44.98 \mathrm{in}^{く}$

$$
\begin{array}{rr}
\phi B_{\text {vnb }}=4^{*} A_{\text {pvnet }}{ }^{*}\left(f_{m}^{\prime}\right)^{0.5}= & 6968.1 \mathrm{lbs} \\
\phi B_{\text {vnc }}=1050^{*}\left(f_{m}{ }^{*} A_{b}\right)^{0.25}= & 10654.8 \mathrm{lbs} \\
\phi \mathrm{~B}_{\text {vnpry }}=8^{*} A_{\text {ptnet }}{ }^{*}\left(f_{m}^{\prime}\right)^{0.5}= & 124206.2 \mathrm{lbs} \\
\phi B_{\text {vns }}=0.60^{*} A_{b}{ }^{*} f_{y}= & 19085.2 \mathrm{lbs}
\end{array}
$$

Masonry breakout strength $D C R=$	6.31	NG
Masonry crushing strength $D C R=$	4.13	NG
Anchor pryout $D C R=$	0.35	OK
Steel yielding DCR $=$	2.30	NG

(assumed less than wall shear strength)

OK

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Workshop
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962 A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$07 / 07 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Table 17-2. Collapse Prevention Basic Configuration Checklist

Very Low Seismicity BSE-2E Seismic Leve Structural Components					
RATING				DESCRIPTION	COMMENTS
$\begin{gathered} \text { C } \\ \boldsymbol{x} \end{gathered}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	
C	NC \square	N / A x	$\begin{array}{\|c\|} \hline \mathrm{U} \\ \square \end{array}$	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps taht are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	Workshop exterior walls are wood stud with plywood sheathing.

Low Seismicity

Building System

General

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & c \\ & \times \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \square \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	
$\begin{aligned} & \text { С } \\ & \square \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \square \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{u} \\ & \square \end{aligned}$	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement need not apply for the following building types: $\mathrm{W} 1, \mathrm{~W} 1 \mathrm{~A}$, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)	
$\begin{aligned} & \text { C } \\ & \boldsymbol{x} \end{aligned}$	NC \square	N/A \square	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)	

Building Configuration

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{array}{\|c\|} \hline N / A \\ x \end{array}$	U \square	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1)	Building is a one-story structure.
C \square	NC \square	$\begin{array}{\|c\|} \hline N / A \\ x \end{array}$	U \square	SOFT STORY: The stiffness of the seismic-forceresisting system in any story is not less than 70\% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)	Building is a one-story structure.
C x	NC \square	N/A \square	U \square \square	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)	
C \square	NC \square	$\begin{array}{\|c\|} \hline N / A \\ x \end{array}$	U \square	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-forceresisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)	Building is a one-story structure.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	MASS: There is no change in effective mass more than 50\% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	Building is a one-story structure.
\square	\square	\boldsymbol{x}	\square		
C	NC	N/A	U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20\% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	Torsion check applies to rigid diaphragms. \square
\square	\boldsymbol{x}	\square			

Moderate Seismicity

Geologic Site Hazards

RATING			DESCRIPTION		COMMENTS
C x	NC \square	N/A \square	U \square	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.
C x	NC \square	N/A \square	U \square	SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)	Slope failure has been determined to not be an issue per NGI technical memorandum.

C	NC	N/A	U	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2:	Surface fault rupture has been determined to not be an issue per NGI technical memorandum.	
\boldsymbol{x}	\square	\square	\square			5.4.3.1)

High Seismicity
Foundation Configuration

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U \square	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/ height) is greater than $0.6 \mathrm{~S}_{\mathrm{a}}$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	$\begin{aligned} & \text { Height }=15.50 \mathrm{ft} \\ & \text { Base }=36.00 \mathrm{ft} \\ & \text { Sa }=0.744 \end{aligned}$ $\begin{aligned} & \mathrm{B} / \mathrm{H}=36 / 15.5=2.32 \\ & 0.6^{*} \mathrm{Sa}=0.6^{*} 0.744=0.45 \\ & 2.32>0.45(\mathrm{OK}) \end{aligned}$
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U \square	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)	

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Workshop
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962 A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$06 / 24 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Table 17-6. Collapse Prevention Structural Checklist for Building Type W2

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C \square	NC \qquad	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1)	East elevation wall and northwest wall segments all exceed the 2:1 requirement. $\begin{aligned} & \mathrm{E} 1=14.5 \mathrm{ft} / 2.5 \mathrm{ft}=5.8: 1(\mathrm{NG}) \\ & \mathrm{E} 2=14.5 \mathrm{ft} / 4.5 \mathrm{ft}=3.2: 1(\mathrm{NG}) \\ & \mathrm{E} 3=14.5 \mathrm{ft} / 6 \mathrm{ft}=2.4: 1(\mathrm{NG}) \\ & \mathrm{E} 4=14.5 \mathrm{ft} / 2 \mathrm{ft}=7.3: 1(\mathrm{NG}) \end{aligned}$
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	U \square	WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Commentary: Sec. A.3.2.7.5. Tier 2: Sec.5.5.3.6.2)	
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	U \square	HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1. (Commentary: Sec. A.3.2.7.6. Tier 2: Sec. 5.5.3.6.3)	
C \square	NC \square	$\begin{array}{\|c\|} \hline \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{array}$	U \square	CRIPPLE WALLS: Cripple walls below first-floorlevel shear walls are braced to the foundation with wood structural panels. (Commentary: Sec. A.3.2.7.7. Tier 2: Sec. 5.5.3.6.4)	

C	NC	N/A	U	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Commentary: Sec. A.3.2.7.8. Tier 2: Sec. 5.5.3.6.5)	East elevation wall line has openings extending 70\% of the length.
\square	\square	\boldsymbol{x}	$\square \square$		

Connections

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & \mathrm{c} \\ & \square \end{aligned}$	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	WOOD POSTS: There is a positive connection of wood posts to the foundation. (Commentary: Sec. A.5.3.3. Tier 2: Sec. 5.7.3.3)	
$\begin{aligned} & \text { C } \\ & \boldsymbol{x} \end{aligned}$	NC \square	N/A \qquad	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	WOOD SILLS: All wood sills are bolted to the foundation. (Commentary: Sec. A.5.3.4. Tier 2: Sec. 5.7.3.3)	
$\begin{aligned} & \mathrm{C} \\ & \mathrm{x} \end{aligned}$	NC \square	N/A	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	GIRDER-COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2 Sec. 5.7.4.1)	

High Seismicity

Diaphragms

C x	NC \square	N/A \square	U \square	SPANS: All wood diaphragms with spans greater than 24 ft consist of wood structural panels or diagonal sheathing. Wood commercial and industrial buildings may have rod-braced systems. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2)	Drawings show 1/2" plywood diaphragm.
C x	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)	The roof uses bridging but it is unclear if blocking between framing members. The spans are less than 40 ft between shear walls and aspect ratio is less than 4-to-1.
C x	NC \square	N/A \square	U \square	OTHER DIAPHRAGMS: The diaphragm does not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)	Plans do show plywood at roof level.

Connections

RATING				DESCRIPTION	COMMENTS
C x	NC	N/A \square	U \square	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft or less, with proper edge and end distance provided for wood and concrete. (Commentary: A.5.3.7. Tier 2: Sec. 5.7.3.3)	

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Workshop
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962 A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$06 / 18 / 2021$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Table 17-38. Nonstructural Checklist

The Performance Level is designated LS for Life Safety or PR for Position Retention. The level of seismicity is designated as "not required" or by L, M, or H, for Low, Moderate, and High.

All Life	ismi	Syste	evels	For BSE-1E Tier 1, use	R (Position Retention)
	TING			DESCRIPTION	COMMENTS
C	NC \square	$\begin{array}{\|c\|} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{array}$	U \square	LS-LMH; PR-LMH. FIRE SUPPRESSION PIPING: Fire suppression piping is anchored and braced in accordance with NFPA-13. (Commentary: Sec. A.7.13.1. Tier 2: Sec. 13.7.4)	
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U	LS-LMH; PR-LMH. FLEXIBLE COUPLINGS: Fire suppression piping has flexible couplings in accordance with NFPA-13. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.4)	
C \square	NC \square \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square	LS-LMH; PR-LMH. EMERGENCY POWER: Equipment used to power or control life safety systems is anchored or braced. (Commentary: Sec. A.7.12.1. Tier 2: Sec. 13.7.7)	
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. STAIR AND SMOKE DUCTS: Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Commentary: Sec. A.7.14.1. Tier 2: Sec. 13.7.6)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-MH; PR-MH. SPRINKLER CEILING CLEARANCE: Penetrations trough panelized ceilings for fire suppression devices provide clearances in accordance with	
\square	\square	X	\square		NFPA-13. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.4)
C	NC	N / A	U	LS-not required; PR-LMH. EMERGENCY LIGHTING: Emergency and egress lighting equipment is anchored or braced. (Commentary: Sec. A.7.3.1. Tier 2: Sec. 13.7.9)	
\square	\square	X	\square		

Hazardous Materials

RATING				DESCRIPTION	COMMENTS
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. HAZARDOUS MATERIAL EQUIPMENT: Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Commentary: Sec. A.7.12.2. Tier 2: 13.7.1)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. HAZARDOUS MATERIAL STORAGE: Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Commentary: Sec. A.7.15.1. Tier 2: Sec. 13.8.4)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { C } & \text { NC } & \text { N/A } & \text { U } & \begin{array}{l}\text { LS-MH; PR-MH. } \\ \text { HAZARDOUS MATERIAL DISTRIBUTION: Piping or } \\ \text { ductwork conveying hazardous materials is }\end{array} \\ \text { braced or otherwise protected from damage that } \\ \text { would allow hazardous material release. } \\ \text { (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and } \\ \text { 13.7.5) }\end{array}\right]$

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Partitions

RATING				DESCRIPTION	COMMENTS
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square	LS-LMH; PR-LMH. UNREINFORCED MASONRY: Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft in Low or Moderate Seismicity, or at most 6 ft in High Seismicity. (Commentary: Sec. A.7.1.1. Tier 2: Sec. 13.6.2)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. HEAVY PARTITIONS SUPPORTED BY CEILINGS: The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-MH; PR-MH. DRIFT: Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Commentary A.7.1.2 Tier 2: Sec. 13.6.2)	
$\begin{aligned} & \mathrm{C} \\ & \mathrm{X} \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	LS-not required; PR-MH. LIGHT PARTITIONS SUPPORTED BY CEILINGS: The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { C } & \text { NC } & \text { N/A } & \text { U } & \begin{array}{l}\text { LS-not required; PR-MH. } \\ \text { STRUCTURAL SEPARATIONS: Partitions that cross } \\ \text { structural separations have seismic or control }\end{array} & \\ \square & \square & X & \square & & \\ \text { joints. (Commentary: Sec. A.7.1.3. Tier 2. Sec. } \\ \text { 13.6.2) }\end{array}\right]$.

Ceilings

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-MH; PR-LMH. SUSPENDED LATH AND PLASTER: Suspended lath and plaster ceilings have attachments that resist seismic forces for every $12 \mathrm{ft}^{2}$ of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)	
C 区	NC \square	N/A \square	U \square	LS-MH; PR-LMH. SUSPENDED GYPSUM BOARD: Suspended gypsum board ceilings have attachments that resist seismic forces for every $12 \mathrm{ft}^{2}$ of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)	Gypsum board is nailed to roof framing.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-not required; PR-H. SEISMIC JOINTS: Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2500 ft² and has a ratio of long-to-short dimension no more than 4-to-1. (Commentary: Sec. A.7.2.7. Tier 2: 13.6.4)	\square
\square	\boxed{X}	\square			

Light Fixtures

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Cladding and Glazing

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{array}{\|c\|} \hline \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{array}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-MH; PR-MH. CLADDING ANCHORS: Cladding components weighing more than $10 \mathrm{lb} / \mathrm{ft}^{2}$ are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft ; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft . (Commentary: Sec. A.7.4.1. Tier 2: Sec. 13.6.1)	
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-MH; PR-MH CLADDING ISOLATION: For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02 , and the rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.3. Tier 2: Sec. 13.6.1)	
C \square	NC	$\begin{array}{\|c\|} \hline N / A \\ x \end{array}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-MH; PR-MH MULTI-STORY PANELS: For multi-story panels attahed at more than one floor level panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02 , and the rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.4. Tier 2: Sec. 13.6.1)	
C	NC \square	$\begin{array}{\|c\|} \hline N / A \\ x \end{array}$	U	LS-MH; PR-MH THREADED RODS: Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and for Position Retention in any seismicity. (Commentary: Sec. A.7.4.9. Tier 2: Sec. 13.6.1)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-MH; PR-MH. PANEL CONNECTIONS: Cladding panels are anchored out-of-plane with a minimum number of connections for each wall panel, as follows: for	
\square	\square	\boxed{x}	\square	Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Commentary: Sec. A.7.4.5. Tier 2: Sec. 13.6.1.4)	

C	NC	N/A	U	LS-MH; PR-MH. BEARING CONNECTIONS: Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Commentary: Sec. A.7.4.6. Tier 2: Sec. 13.6.1.4)	
C					

Masonry Veneer

RATING				DESCRIPTION	COMMENTS
C \square	$\begin{array}{r} \mathrm{NC} \\ \square \end{array}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. TIES: Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every $2-2 / 3 \mathrm{ft}^{2}$, and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in.; for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (Commentary: Sec. A.7.5.1. Tier 2: Sec. 13.6.1.2)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Parapets, Cornices, Ornamentation, and Appendages

RATING		DESCRIPTION			
C	NC	N/A	U	LS-LMH; PR-LMH. URM PARAPETS OR CORNICES: Laterally unsupported unreinforced masonry parapets or cornices have height-to-thickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any	
\square	\square	\boxed{X}	\square		
seismicity, 1.5. (Commentary: Sec. A.7.8.1. Tier 2:					
Sec. 13.6.5)					

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Contents and Furnishings

RATING
C NC N/A U LS-MH; PR-MH. INDUSTRIAL STORAGE RACKS: Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/MH 16.1 as modified by ASCE 7 Chapter 15. (Commentary: Sec. A.7.11.1. Tier 2: Sec. 13.8.1) \square \square \boxed{X} \square

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C \square	$\begin{gathered} \mathrm{NC} \\ X \end{gathered}$	N / A \square	U \square	LS-H; PR-MH. TALL NARROW CONTENTS: Contents more than 6 ft high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Commentary: Sec. A.7.11.2. Tier 2: Sec. 13.8.2)	Storage racks within building are on wheels and lack anchorage to structure. In addition, along the south elevation wall, not all shelving units are secured to structure.
$\begin{gathered} \mathrm{C} \\ \times \end{gathered}$	NC \square	N/A \square	U \square	LS-H; PR-H. FALL-PRONE CONTENTS: Equipment, stored items, or other contents weighing more than 20 lb whose center of mass is more than 4 ft above the adjacent floor level are braced or otherwise restrained. (Commentary: Sec. A.7.11.3. Tier 2: Sec. 13.8.2)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square	LS-not required; PR-MH. ACCESS FLOORS: Access floors more than 9 in. high are braced. (Commentary: Sec. A.7.11.4. Tier 2: Sec. 13.8.3)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-MH. EQUIPMENT ON ACCESS FLOORS: Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Commentary: Sec. A.7.11.5. Tier 2: Sec. 13.7.7 and 13.8.3)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Storage rack shelves have wheels and free to move without restraint back to structure.

Not all storage rack shelves are anchored back to structure.

C	NC	N/A	U	LS-not required; PR-H. SUSPENDED CONTENTS: Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Commentary. A.7.11.6. Tier 2: Sec. 13.8.2)	\square
\square	\square				

Mechanical and Electrical Equipment

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & C \\ & X \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	LS-H; PR-H. FALL-PRONE EQUIPMENT: Equipment weighing more than 20 lb whose center of mass is more than 4 ft above the adjacent floor level, and which is not in-line equipment, is braced. (Commentary: A.7.12.4. Tier 2: 13.7.1 and 13.7.7)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square \square	LS-H; PR-H. IN-LINE EQUIPMENT: Equipment installed in-line with a duct or piping system, with an operating weight more than 75 lb , is supported and laterally braced independent of the duct or piping system. (Commentary: Sec. A.7.12.5. Tier 2: Sec. 13.7.1)	
$\begin{aligned} & C \\ & X \end{aligned}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	LS-H; PR-MH. TALL NARROW EQUIPMENT: Equipment more than 6 ft high with a height-to-depth or height-towidth ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Commentary: Sec. A.7.12.6. Tier 2: Sec. 13.7.1 and 13.7.7)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { C } & \text { NC } & \text { N/A } & \mathrm{U} & \begin{array}{l}\text { LS-not required; PR-H. } \\ \text { ELECTRICAL EQUIPMENT: Electrical equipment is } \\ \text { ELE }\end{array} & \square \\ \square & \boxed{Z} & \square & \\ \text { laterally braced to the structure. (Commentary: } \\ \text { Sec. A.7.12.11. Tier 2: 13.7.7) }\end{array}\right]$

Piping

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & \mathrm{C} \\ & \square \end{aligned}$	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-not required; PR-H. FLEXIBLE COUPLINGS: Fluid and gas piping has flexible couplings. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.3 and 13.7.5)	
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-not required; PR-H. FLUID AND GAS PIPING: Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and 13.7.5)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-not required; PR-H. C-CLAMPS: One-sided C-clamps that support piping larger than 2.5 in. in diameter are restrained. (Commentary: Sec. A.7.13.5. Tier 2: Sec. 13.7.3 and 13.7.5)	
\square	\square	\boxed{X}	\square		
C NC	N/A	U	LS-not required; PR-H. PIPING CROSSING SEISMIC JOINTS: Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A7.13.6. Tier 2: Sec.13.7.3 and Sec. 13.7.5)		
\square	\square	X	\square		

Ducts

RATING				DESCRIPTION	COMMENTS
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-H. DUCT BRACING: Rectangular ductwork larger than $6 \mathrm{ft}^{2}$ in cross-sectional area and round ducts larger than 28 in. in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft . The maximum spacing of longitudinal bracing does not exceed 60 ft . (Commentary: Sec. A.7.14.2. Tier 2: Sec. 13.7.6)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-H. DUCT SUPPORT: Ducts are not supported by piping or electrical conduit. (Commentary: Sec. A.7.14.3. Tier 2: Sec. 13.7.6)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-not required; PR-H. DUCTS CROSSING SEISMIC JOINTS: Ducts that cross seismic joints or isolation planes or are connected to independent structures have	
\square	\square	\boxed{X}	\square	locher couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A.7.14.5. Tier 2: Sec. 13.7.6)	

Elevators

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

City of Wilsonville

Workshop Tier 1 Structural Calculations

ASCE 41-17 Seismic Parameters

pg. 1

Building Weight
Seismic Base Shear
Wall Shear Stress Check
pg. 3
pg. 5
pg. 6

Latitude, Longitude: 45.294444, -122.77167

Type	Description	Value
Hazard Level		BSE-2N
S_{S}	spectral response (0.2 s)	0.813
S_{1}	spectral response (1.0 s)	0.381
$S_{X S}$	site-modified spectral response (0.2 s)	0.976
$S_{X 1}$	site-modified spectral response (1.0 s)	0.571
F_{a}	site amplification factor (0.2 s)	1.2
F_{v}	site amplification factor (1.0 s)	1.5
ssuh	max direction uniform hazard (0.2 s)	0.92
crs	coefficient of risk (0.2 s)	0.884
ssrt	risk-targeted hazard (0.2 s)	0.813
ssd	deterministic hazard (0.2 s)	1.5
s1uh	max direction uniform hazard (1.0 s)	0.441
cr1	coefficient of risk (1.0 s)	0.863
s1rt	risk-targeted hazard (1.0 s)	0.381
s1d	deterministic hazard (1.0 s)	0.6

Type	Description	Value
Hazard Level		BSE-1N
$S_{X S}$	site-modified spectral response $(0.2 \mathrm{~s})$	0.651
$S_{X 1}$	site-modified spectral response $(1.0 \mathrm{~s})$	0.381

Type	Description	Value
Hazard Level	spectral response $(0.2 \mathrm{~s})$	BSE-2E
S_{S}	spectral response $(1.0 \mathrm{~s})$	0.589
$\mathrm{~S}_{1}$	site-modified spectral response $(0.2 \mathrm{~s})$	0.27
$\mathrm{~S}_{\mathrm{XS}}$	site-modified spectral response $(1.0 \mathrm{~s})$	0.744
$\mathrm{~S}_{\mathrm{X} 1}$	site amplification factor $(0.2 \mathrm{~s})$	0.405
f_{a}	site amplification factor $(1.0 \mathrm{~s})$	1.265
f_{v}		1.5

Type	Description	Value
Hazard Level		BSE-1E
S_{S}	spectral response $(0.2 \mathrm{~s})$	0.223
S_{1}	spectral response $(1.0 \mathrm{~s})$	0.082
$S_{X S}$	site-modified spectral response $(0.2 \mathrm{~s})$	0.291
$\mathrm{~S}_{\mathrm{X} 1}$	site-modified spectral response $(1.0 \mathrm{~s})$	0.123
$\mathrm{~F}_{\mathrm{a}}$	site amplification factor $(0.2 \mathrm{~s})$	1.3
$\mathrm{~F}_{\mathrm{v}}$	site amplification factor $(1.0 \mathrm{~s})$	1.5
Type	Description	Value
Hazard Level	Long-period transition period in seconds	TL Data
T-Sub-L		16

DISCLAIMER

While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

BY: \quad BS	DATE Jul-21	CLIENT City of Wilsonville	SHEET
CHKD BY	DESCRIPTION \quad Workshop Building	JOB NO. 11962A.00	
DESIGN TASK	Workshop Building Seismic Weight		

Roof Loads

Roof EL 125.63

Description

1/2" plywood
Rigid insulation w/ built-up roofing
2×12 wood joists @ 24"
3 1/8"x15" glulam beam
5/8" gypsum wall board interior finish
Miscellaneous

Dead Load for Gravity Design
Roof Live Load

Load
1.5 psf
$6.0 \quad$ (See note 2)
2.0
1.0 (See note 1)
3.2
3.0
16.7 psf
20.0 psf (Assumed)

Notes

1. Roof glulam beam self weight assumed unit beam weight, $13.2 \mathrm{lb} / \mathrm{ft}$, divided by beam tributary width, 17.0 ft which is $13.2 \mathrm{lb} / \mathrm{ft} / 17.0 \mathrm{ft}=0.78 \mathrm{lb} / \mathrm{ft}^{2}$. Assume 1.0 psf .
2. Rigid insulation slopes from $1.5^{\prime \prime}$ to 6 ". The average insulation thickness is assumed to be 3 ".

Wall Loads

Wall Loads

Description Load
$2 x 6$ @ 16 " stud wall w/ 5/8" GWB int and 1/2" gypsum sheathing ext
1/2" plywood siding

2x6 Stud Wall Load for Seismic
13.0 psf

Seismic Weight

Roof Weight

Roof Seismic Weight

41.1 kip

Wall Weight

Wall Height to Roof	15.50 ft
Stud Wall Length	212.00 ft
Opening Length in Stud Wall	35.00 ft
Roof Wall Seismic Weight	$\mathbf{1 7 . 8} \mathbf{~ k i p}$
Total Seismic Weight	$\mathbf{5 9 . 0} \mathbf{~ k i p}$

Notes

1. Wall seismic weight assumes half of the wall height associated with each level.
2. Per Section 4.5.2.1, the effective seismic weight includes the total dead load, 25% of the live load when area is used as storage, and 20% of the roof snow live load if greater than 30 psf (otherwise assume zero).

BY: BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY	DESCRIPTION			Workshop		11962A. 00
DESIGN TASK				Tier 1 Screening (

SEISMIC BASE SHEAR

4.4.2.1 Pseudo Seismic Force. The pseudo seismic force, in a given borizontal direction of a building, shall be calculated in accordance with Eq. (4-1).

$$
\begin{equation*}
V=C S_{s} W \tag{4-1}
\end{equation*}
$$

where

$V=$ Pseudo seismic force:

$C=$ Modification factor to relane expected maximum inelastic displacements to displacements calculated for linear elastic response; C shall be taken from Table 4-7;
$S_{a}=$ Response spectral acceleration at the fundamental period of the building in the direction under consideration. The value of S_{o} shall be calculated in accordance with the procedures in Section 4.4.2.3: and
$W=$ Effective seismic weight of the building, including the total dead load and applicable portions of other gravity loads listed below:

Building Type*	Number of Stories			
	1	2	3	≥ 4
Wood ands cold-fomess sfeal shoar wall \{W! Wia, W2. CFS1;	1.3	1,3	3.0	1.0
Momert frazse $\{\mathrm{S} 1, \mathrm{~S} 3, \mathrm{C} 1$, (20\%				
Shear wall \{S4, S5, C2, C3. 	1.4	1.2	1.1	1.0
Braced trame (S 2) Colc-formed sieel strap-brace wall (CF\$2)				
Unreisforced masosmy (UAN)	1.0	1.0	1.0	1.0
Flexlbte diaphayms ista, S2a. S5a, C2a, C3a, áC1. PM1!				

Process Gallery

Modification Factor, $\mathrm{C}=$	1.3
$\mathrm{S}_{\mathrm{x} 1}=$	0.405 (BSE-2E seismic parameter)
$\mathrm{T}=$	0.149 s
$\mathrm{S}_{\mathrm{xs}}=$	0.744 (BSE-2E seismic parameter)
Spectral Acceleration, $\mathrm{S}_{\mathrm{a}}=$	0.744
Seismic Weight, W =	59.0 kip
Seismic Force, V =	57.1 kip

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET־ JOB NO.	
CHKD BY	DESCRIPTION		Workshop		11962A. 00
DESIGN TASK		ASCE 41-17 - Tier 1 Screening (BSE-2E Level)			
WALL SHEAR STRESS CHECK					

4.4.3.3 Shear Stress in Shear Walls. The average shear stress in shear walls, $v_{j}^{\text {mes }}$, shall be calculated in accordance with Eq. (4-8).

$$
\begin{equation*}
v_{j}^{w_{g}}=\frac{1}{M_{s}}\left(\frac{V_{j}}{A_{w}}\right) \tag{4-8}
\end{equation*}
$$

wbere
$V_{j}=$ Story shear at level j computed in accordance with Section 4.4.2.2;
$A_{4}=$ Summation of the horizontal cross-sectional area of all shear walls in the direction of loading. Openings shall be taken into consideration where computing A_{40}. For masonry walls, the net area shall be used. For wood-framed walls, the length shall be used rather than the area; and
$M_{s}=$ System modification factor, M_{x} shall be taken from Table 4-8.

Table 4-8. M_{s} Factors for Shear Walls

	Level of Pertormance		
Wall Type	CP $^{\mathbf{a}}$	LS $^{\text {a }}$	$10^{\text {a }}$
Reinforced concrete, precast concrete, wood, reinforced	4.5	3.0	1.5
masonry, and cold-formed steel			

${ }^{\text {a }} \mathrm{CP}=$ Collapse Prevention, $15=$ Life Safety, $10 \ldots$ Immediate Occupancy.

Roof Story Base Shear, $\mathrm{V}_{\text {roof }}$	$=$	57.1 kips
System Modification Factor, M_{s}	$=$	$3.75 \quad$ (Interpolated between LS \& CP)

Roof Level

Shear Wall in N-S Direction
West Elevation Wall Line

$$
\begin{aligned}
\text { Total length of stud walls }= & 44.67 \mathrm{ft} \\
\text { average shear stress, } v_{\text {avg,Ns }}= & 340.9 \mathrm{lb} / \mathrm{ft}
\end{aligned} \quad \begin{aligned}
& \quad 1000.0 \quad \text { Shear Stress OK } \\
&
\end{aligned}
$$

$$
\begin{array}{ll}
> & 1000.0 \quad \underline{N G} \\
D C R= & 1.02
\end{array}
$$

Shear Wall in E-W Direction
North Elevation Wall Line

$$
\begin{aligned}
\text { Total length of stud walls }= & 29.33 \mathrm{ft} \\
\text { average shear stress, } v_{\text {avg,EW }}= & 519.1 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

$$
<\quad 1000.0
$$

Shear Stress OK

$$
D C R=0.52
$$

South Elevation Wall Line

$$
\begin{aligned}
\text { Total length of stud walls }= & 32.67 \mathrm{ft} \\
\text { average shear stress, } v_{\text {avg, } \mathrm{EW}}= & 466.1 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

$$
\begin{array}{ll}
< & 1000.0 \\
D C R= & 0.47
\end{array}
$$

Shear Stress OK

Interior Wall Line
Total length of stud walls $=\quad 36.00 \mathrm{ft}$
average shear stress, $v_{\text {avg, } \mathrm{EW}}=423.0 \mathrm{lb} / \mathrm{ft}$
$\begin{array}{ll}< & 1000.0\end{array} \quad$ Shear Stress OK

$$
D C R=0.42
$$

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Workshop
SEISMICITY LEVEL:	High
PROJECT NUMBER:	$11962 A .00$
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$07 / 07 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Table 17-3. Immediate Occupancy Basic Configuration Checklist

Very Low Seismicity CSZ Seismic Level at Damage Control Structural Components					
RATING				DESCRIPTION	COMMENTS
$\begin{gathered} \mathrm{C} \\ \boldsymbol{x} \end{gathered}$	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{u} \\ & \square \end{aligned}$	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections shall have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.5.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1)	Workshop exterior walls are wood stud with plywood sheathing.

Very Low Seismicity

Building System

General

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & c \\ & \times \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \square \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LOAD PATH: The structure shall contain a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	
$\begin{aligned} & \text { С } \\ & \square \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \square \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \mathrm{u} \\ & \square \end{aligned}$	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement need not apply for the following building types: $\mathrm{W} 1, \mathrm{~W} 1 \mathrm{~A}$, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)	
$\begin{aligned} & \text { C } \\ & \boldsymbol{x} \end{aligned}$	NC \square	N/A \square	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)	

Building Configuration

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{array}{\|c\|} \hline N / A \\ x \end{array}$	U \square	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction shall not be less than 80% of the strength in the adjacent story above. (Commentary: Sec. A.2.2.2. Tier 2: Sec. 5.4.2.1)	Building is a one-story structure.
C \square	NC \square	$\begin{array}{\|c\|} \hline N / A \\ x \end{array}$	U \square	SOFT STORY: The stiffness of the seismic-forceresisting system in any story shall not be less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)	Building is a one-story structure.
C x	NC \square	N/A \square	U \square \square	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)	
C \square	NC \square	$\begin{array}{\|c\|} \hline N / A \\ x \end{array}$	U \square	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-forceresisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)	Building is a one-story structure.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	MASS: There is no change in effective mass more than 50\% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)	Building is a one-story structure.
\square	\square	\boldsymbol{x}	\square		
C	NC	N / A	U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20\% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)	Torsion check applies to rigid diaphragms. \square
\square	\boldsymbol{x}	\square			

Low Seismicity

Geologic Site Hazards

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U \square	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)	Liquefaction has been determined to not be an issue per NGI technical memorandum.
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	U \square	SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)	Slope failure has been determined to not be an issue per NGI technical memorandum.
C x	NC \square	N / A	U \square	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)	Surface fault rupture has been determined to not be an issue per NGI technical memorandum.

Moderate and High Seismicity

Foundation Configuration

RATING				DESCRIPTION	COMMENTS
C \boldsymbol{x}	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/ height) is greater than $0.6 \mathrm{~S}_{\mathrm{a}}$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)	$\begin{aligned} & \text { Height }=15.50 \mathrm{ft} \\ & \text { Base }=36.00 \mathrm{ft} \\ & \mathrm{Sa}=0.446 \\ & \\ & \mathrm{~B} / \mathrm{H}=36 / 15.5=2.32 \\ & 0.6^{*} \mathrm{Sa}=0.6^{*} 0.446=0.27 \\ & 2.32>0.27(\mathrm{OK}) \end{aligned}$

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)	
\square	\square	\square	\square		

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Workshop
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962 A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$07 / 07 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 03 / 21$

Table 17-7. Immediate Occupancy Structural Checklist for Building Type W2

Very Low Seismicity						
Seismic-Force-Resisting System						
RATING				DESCRIPTION		COMMENTS
$\begin{aligned} & C \\ & x \end{aligned}$	NC \square	N/A \square	$\begin{gathered} \mathrm{u} \\ \square \end{gathered}$	REDUNDANCY: The number in each principal direction is to 2. (Commentary: Sec. A. 3 5.5.1.1)	es of shear walls ter than or equal Tier 2: Sec.	
$\begin{aligned} & c \\ & \underline{x} \end{aligned}$	NC \square	N/A \square	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	SHEAR STRESS CHECK: The shear walls, calculated using procedure of Section 4.5.3.3 following values (Comment 2: Sec. 5.5.3.1.1): Structural panel sheathing Diagonal sheathing Straight sheathing All other conditions	stress in the Quick Check ss than the Sec. A.3.2.7.1. Tier $1,000 \mathrm{lb} / \mathrm{ft}$ $700 \mathrm{lb} / \mathrm{ft}$ $100 \mathrm{lb} / \mathrm{ft}$ $100 \mathrm{lb} / \mathrm{ft}$	West Wall Line DCR $=0.34$ (OK) East Wall Line DCR $=1.01$ (Slightly overstressed but considered OK) North Wall Line DCR $=0.52$ (OK) South Wall Line DCR $=0.47$ (OK) Interior Wall Line DCR $=0.42$ (OK)
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \text { U } \\ & \square \end{aligned}$	STUCCO (EXTERIOR PLASTER) Multi-story buildings do not stucco walls as the primary system. (Commentary: Sec. 5.5.3.6.1)	EAR WALLS: on exterior ic-force-resisting 7.2. Tier 2: Sec.	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \text { U } \\ & \square \end{aligned}$	GYPSUM WALLBOARD OR P WALLS: Interior plaster or gyp not used as shear walls on bu one story high with the exceptin uppermost level of a multi-s (Commentary: Sec. A.3.2.7.3	ER SHEAR wallboard is gs more than of the building. 2: Sec. 5.5.3.6.1)	Structure is one story.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C \square	NC \qquad	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1)	East elevation wall segments all exceed the 2:1 requirement. $\begin{aligned} & \mathrm{E} 1=14.5 \mathrm{ft} / 2.5 \mathrm{ft}=5.8: 1(\mathrm{NG}) \\ & \mathrm{E} 2=14.5 \mathrm{ft} / 4.5 \mathrm{ft}=3.2: 1(\mathrm{NG}) \\ & \mathrm{E} 3=14.5 \mathrm{ft} / 6 \mathrm{ft}=2.4: 1(\mathrm{NG}) \\ & \mathrm{E} 4=14.5 \mathrm{ft} / 2 \mathrm{ft}=7.3: 1(\mathrm{NG}) \end{aligned}$
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	U \square	WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Commentary: Sec. A.3.2.7.5. Tier 2: Sec. 5.5.3.6.2)	
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{gathered}$	U \square	HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-2. (Commentary: Sec. A.3.2.7.6. Tier 2: Sec. 5.5.3.6.3)	
C \square	NC \square	$\begin{array}{\|c\|} \hline \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{array}$	U \square	CRIPPLE WALLS: Cripple walls below first-floorlevel shear walls are braced to the foundation with wood structural panels. (Commentary: Sec. A.3.2.7.7. Tier 2: Sec. 5.5.3.6.4)	

C	NC	N/A	U	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Commentary: Sec. A.3.2.7.8. Tier 2: Sec. 5.5.3.6.5)	East elevation wall line has openings extending 70\% of the length.
\square	\square	\boldsymbol{x}	\square		
\mathbf{C}	NC	N / A	U	HOLD-DOWN ANCHORS: All shear walls have hold-down anchors, constructed per acceptable construction practices, attached to the end studs. (Commentary: Sec. A.3.2.7.9. Tier 2: Sec. 5.5.3.6.6)	
\square	\square	\square	\square		

Connections

| C | NC | N/A | U | GIRDER-COLUMN CONNECTION: There is a
 positive connection using plates, connection
 hardware, or straps between the girder and the
 column support. (Commentary: Sec. A.5.4.1. Tier 2:
 Sec. 5.7.4.1) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \boldsymbol{x} | \square | \square | \square | |

Foundation System

RATING						
C	NC	N/A	U	DEEP FOUNDATIONS: Piles and piers are capable of transferring the lateral forces between the structure and the soil. (Commentary: Sec.A.6.2.3.)	There are no deep foundation systems supporting structure.	
\square	\square	\boldsymbol{x}	\square			
C	NC	N/A	U	SLOPING SITES: The difference in foundation embedment depth from one side of the building to another shall not exceed one story high. (Commentary: Sec. A.6.2.4)		
\square	\square	\boldsymbol{x}	\square			

Low, Moderate, and High Seismicity
Seismic-Force-Resisting System

RATING			DESCRIPTION		COMMENTS
C \qquad	NC \qquad	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 1.5-to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1)	East elevation wall segments all exceed the 1.5:1 requirement. $\begin{aligned} & \mathrm{E} 1=14.5 \mathrm{ft} / 2.5 \mathrm{ft}=5.8: 1(\mathrm{NG}) \\ & \mathrm{E} 2=14.5 \mathrm{ft} / 4.5 \mathrm{ft}=3.2: 1(\mathrm{NG}) \\ & \mathrm{E} 3=14.5 \mathrm{ft} / 6 \mathrm{ft}=2.4: 1(\mathrm{NG}) \\ & \mathrm{E} 4=14.5 \mathrm{ft} / 2 \mathrm{ft}=7.3: 1(\mathrm{NG}) \end{aligned}$

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Diaphragms

RATING				DESCRIPTION	COMMENTS
C x	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1)	
C x	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation. (Commentary: Sec. A.4.1.3. Tier 2: Sec. 5.6.1.1)	
C \square	NC \square	$\begin{array}{\|c\|} \hline \mathrm{N} / \mathrm{A} \\ \boldsymbol{x} \end{array}$	U \square	PLAN IRREGULARITIES: There is tensile capacity to develop the strength of the diaphragm at reentrant corners or other locations of plan irregularities. (Commentary: Sec. A.4.1.7. Tier 2: Sec. 5.6.1.4)	No plan irregularities.
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square	DIAPHRAGM REINFORCEMENT AT OPENINGS: There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension. (Commentary: Sec. A.4.1.8. Tier 2: Sec. 5.6.1.5)	

C	NC	N/A	U	STRAIGHT SHEATHING: All straight sheathed diaphragms have aspect ratios less than 1-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2)	Drawings show 1/2" plywood diaphragm.	
\square	\square	\boldsymbol{x}				
\boldsymbol{x}	\square	\square	\square	NC		

Connections

RATING				DESCRIPTION	COMMENTS
C x	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U	WOOD SILL BOLTS: Sill bolts are spaced at 4 ft or less, with proper edge and end distance provided for wood and concrete. (Commentary: Sec. A.5.3.7. Tier 2: Sec. 5.7.3.3)	

City of Wilsonville

Workshop Tier 1 Structural Calculations

CSZ Seismic Parameters

pg. 1

Building Weight
Seismic Base Shear
Wall Shear Stress Check
pg. 3
pg. 5
pg. 6

GENERALIZED SITE SPECIFIC SPECTRA CASCADIA SUBDUCTION ZONE FULL RUPTURE
$\rightarrow 400 \mathrm{~m} / \mathrm{s}$ Spectra $-500 \mathrm{~m} / \mathrm{s}$ Spectra $-600 \mathrm{~m} / \mathrm{s}$ Spectra

Northwest Geotech, Inc.
Figure No. 3

	Table 2: CSZ Generalized Response Spectra Ordinates					
	Latitude 45.295155 degrees Longitude -122.77				810 degrees	
	$\mathrm{Vs} 30=400 \mathrm{~m} / \mathrm{s}$		$\mathrm{Vs} 30=500 \mathrm{~m} / \mathrm{s}$		$\mathrm{Vs} 30=600 \mathrm{~m} / \mathrm{s}$	
	Period T(sec)	CSZ Sa(g)	Period T (sec)	csz Sa (g)	Period T (sec)	csz Sa (g)
	0	0.168	0	0.163	0	0.158
	0.05	0.175	0.05	0.172	0.05	0.170
Ss @ T=0.20 sec	0.1	0.256	0.1	0.253	0.1	0.250
	0.15	-0,345	0.15	0.310	0.15	0.305
	0.2	0.343	0.2	0.334	0.2	0.326
	0.25	352	0.25	0.340	0.25	0.330
	0.3	0.356	0.3	0.342	0.3	0.330
	0.4	0.340	0.4	0.322	0.4	0.305
	0.5	0.314	0.5	0.292	0.5	0.274
	0.6	0.284	0.6	0.260	0.6	0.243
	0.7	0.269	0.7	0.244	0.7	0.227
	0.8	0.255	0.8	0.231	0.8	0.214
	1	0.221	1	0.200	1	0.185
	1.5	0.165	1.5	0.149	1.5	0.138
	2	0.128	2	0.116	2	0.108
	2.5	0.104	2.5	0.094	2.5	0.087
	3	0.085	3	0.077	3	0.071

Northwest Geotech, Inc.

BY: \quad BS	DATE Jul-21	CLIENT City of Wilsonville	SHEET
CHKD BY	DESCRIPTION \quad Workshop Building	JOB NO. 11962A.00	
DESIGN TASK	Workshop Building Seismic Weight		

Roof Loads

Roof EL 125.63

Description

1/2" plywood
Rigid insulation w/ built-up roofing
2x12 wood joists @ 24"
3 1/8"x15" glulam beam
5/8" gypsum wall board interior finish
Miscellaneous

Dead Load for Gravity Design
Roof Live Load

Load
1.5 psf
$6.0 \quad$ (See note 2)
2.0
$1.0 \quad$ (See note 1)
3.2
3.0
16.7 psf
20.0 psf (Assumed)

Notes

1. Roof glulam beam self weight assumed unit beam weight, $13.2 \mathrm{lb} / \mathrm{ft}$, divided by beam tributary width, 17.0 ft which is $13.2 \mathrm{lb} / \mathrm{ft} / 17.0 \mathrm{ft}=0.78 \mathrm{lb} / \mathrm{ft}^{2}$. Assume 1.0 psf .
2. Rigid insulation slopes from 1.5 " to $6^{\prime \prime}$. The average insulation thickness is assumed to be $3^{\prime \prime}$.

Wall Loads

Wall Loads

Description
Load
$2 x 6$ @ 16 " stud wall w/ 5/8" GWB int and 1/2" gypsum sheathing ext
1/2" plywood siding

2x6 Stud Wall Load for Seismic
13.0 psf

Seismic Weight

Roof Weight

Roof Seismic Weight

41.1 kip

Wall Weight

Wall Height to Roof	15.50 ft
Stud Wall Length	212.00 ft
Opening Length in Stud Wall	35.00 ft
Roof Wall Seismic Weight	$\mathbf{1 7 . 8} \mathbf{~ k i p}$
Total Seismic Weight	$\mathbf{5 9 . 0} \mathbf{~ k i p}$

Notes

1. Wall seismic weight assumes half of the wall height associated with each level.
2. Per Section 4.5.2.1, the effective seismic weight includes the total dead load, 25% of the live load when area is used as storage, and 20% of the roof snow live load if greater than 30 psf (otherwise assume zero).

BY: BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY	DESCRIPTION			Workshop		11962A. 00
DESIGN TASK				Tier 1 Screening (

SEISMIC BASE SHEAR

4.4.2.1 Pseudo Seismic Force. The pseudo seismic force, in a given borizontal direction of a building, shall be calculated in accordance with Eq. (4-1).

$$
\begin{equation*}
V=C S_{s} W \tag{4-1}
\end{equation*}
$$

where

$V=$ Pseudo seismic force;

$C=$ Modification factor to relane expected maximum inelastic displacements to displacements calculated for linear elastic response; C shall be taken from Table 4-7;
$S_{a}=$ Response spectral acceleration at the fundamental period of the building in the direction under consideration. The value of S_{o} shall be calculated in accordance with the procedures in Section 4.4.2.3: and
$W=$ Effective seismic weight of the building, incloding the total dead load and applicable portions of other gravity loads listed below:

Building Type*	Number of Stories			
	1	2	3	≥ 4
Wood ands cold-fomess sfeal shoar wall \{W! Wia, W2. CFS1;	1.3	1,3	3.0	1.0
Momert frazse $\{\mathrm{S} 1, \mathrm{~S} 3, \mathrm{C} 1$, (20\%				
Shear wall \{S4, S5, C2, C3. 	1.4	1.2	1.1	1.0
Braced trame (S 2) Colc-formed sieel strap-brace wall (CF\$2)				
Unreisforced masosmy (UAN)	1.0	1.0	1.0	1.0
Flexlbte diaphayms ista, S2a. S5a, C2a, C3a, áC1. PM1!				

Process Gallery

Modification Factor, $\mathrm{C}=$	1.3
$\mathrm{~S}_{\mathrm{s}}=$	0.343 (CSZ spectral response)
$\mathrm{S}_{1}=$	0.221 (CSZ spectral response)
$\mathrm{F}_{\mathrm{a}}=$	1.3 (Site amplication factor per ASCE 7-16)
$\mathrm{F}_{\mathrm{v}}=$	1.5 (Site amplication factor per ASCE 7-16)
$\mathrm{S}_{\mathrm{X} 1}=\mathrm{S}_{1}{ }^{*} \mathrm{~F}_{\mathrm{v}}=$	0.332 (CSZ seismic hazard)
$\mathrm{T}=$	0.149 s
$\mathrm{~S}_{\mathrm{Xs}}=\mathrm{S}_{\mathrm{s}}{ }^{*} \mathrm{~F}_{\mathrm{a}}=$	0.446 (CSZ seismic hazard)
Spectral Acceleration, $\mathrm{S}_{\mathrm{a}}=$	0.446
Seismic Weight, $\mathrm{W}=$	59.0 kip
Seismic Force, $\mathrm{V}=$	34.2 kip

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET־ JOB NO.	
CHKD BY	DESCRIPTION		Workshop		11962A. 00
DESIGN TASK		ASCE 41-17 - Tier 1 Screening (BSE-2E Level)			
WALL SHEAR STRESS CHECK					

4.4.3.3 Shear Stress in Shear Walls. The average shear stress in shear walls, $v_{j}^{\text {mes }}$, shall be calculated in accordance with Eq. (4-8).

$$
\begin{equation*}
v_{j}^{w_{g}}=\frac{1}{M_{s}}\left(\frac{V_{j}}{A_{w}}\right) \tag{4-8}
\end{equation*}
$$

wbere
$V_{j}=$ Story shear at level j computed in accordance with Section 4.4.2.2;
$A_{4}=$ Summation of the horizontal cross-sectional area of all shear walls in the direction of loading. Openings shall be taken into consideration where computing A_{4}. For masonry walls, the net area shall be used. For wood-framed walls, the length shall be used rather than the area; and
$M_{s}=$ System modification factor, M_{x} shall be taken from Table 4-8.

Table 4-8. M_{s} Factors for Shear Walls

	Level of Pertormance		
Wall Type	CP $^{\mathbf{a}}$	LS $^{\text {a }}$	$10^{\text {a }}$
Reinforced concrete, precast concrete, wood, reinforced	4.5	3.0	1.5
masonry, and cold-formed steel			

${ }^{\text {a }} \mathrm{CP}=$ Collapse Prevention, $15=$ Life Safety, $10 \ldots$ Immediate Occupancy.
(Interpolated between LS \& IO)

Roof Level

Shear Wall in N-S Direction
West Elevation Wall Line

$$
\begin{aligned}
\text { Total length of stud walls }= & 44.67 \mathrm{ft} \\
\text { average shear stress, } v_{\text {avg,Ns }}= & 340.3 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

$$
\begin{array}{ll}
< & 1000.0 \quad \text { Shear Stress OK } \\
D C R= & 0.34
\end{array}
$$

East Elevation Wall Line

$$
\begin{array}{rc}
\text { Total length of stud walls }= & 15.00 \mathrm{ft} \\
\text { average shear stress, } v_{\text {avg,Ns }}= & 1013.3 \mathrm{lb} / \mathrm{ft}
\end{array}
$$

$$
>\quad 1000.0 \quad \mathrm{NG}
$$

$$
D C R=1.01
$$

Shear Wall in E-W Direction
North Elevation Wall Line

$$
\begin{aligned}
& \text { Total length of stud walls }= \\
& \text { average shear stress, } v_{\text {avg, } \mathrm{EW}}= 518.2 \mathrm{ft} \\
& \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

$$
<\quad 1000.0
$$

Shear Stress OK

$$
D C R=0.52
$$

South Elevation Wall Line

$$
\begin{aligned}
& \text { Total length of stud walls }= \\
& \text { average shear stress, } v_{\text {avg,EW }}= 32.67 \mathrm{ft} \\
& 465.3 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

$$
<\quad 1000.0
$$

Shear Stress OK

$$
D C R=0.47
$$

Interior Wall Line
Total length of stud walls $=\quad 36.00 \mathrm{ft}$
average shear stress, $v_{\text {avg,EW }}=422.2 \mathrm{lb} / \mathrm{ft}$
< 1000.0 Shear Stress OK
$D C R=0.42$

City of Wilsonville

Aeration Basins Structural Calculations

Aeration Basin Dividing Wall (BSE-2E Seismic Level)
pg. 1
Aeration Basin Dividing Wall (CSZ Seismic Level)
pg. 24
Stabilization Basin Perimeter Wall (BSE-2E Seismic Level)
pg. 43
Stabilization Basin Perimeter Wall (CSZ Seismic Level)
pg. 68

Dividing Wall Section Reinforcing
\qquad $B S$ DATE $7 / 8 / 21$ SUBJECT City of Wilsonvitle SHEET NO. \qquad OF \qquad CHKD. BY \qquad DATE \qquad Arextion Basins ... JOBNO. 119624.00
Aeration Basins - Drubbing Wall Check
The existing aeration basin dividing wall between
Aeration Busing $1 \frac{1}{4} 2$ will be checked for the seismic loads. Since there is water present on both sides, the wall will be checked for the hydrodynamic load. The wall thickness is $18^{\prime \prime}$ at base and
 extends $5^{\prime}-6^{\prime \prime}$ with $19 e 6^{\prime \prime}$. Above this, the wall thickness is $12^{\prime \prime}$ with $4 \mathrm{P} 12^{\prime \prime}$.

See attached spreadsheet for hydro dynamic loading.
Wall will be assumed to act as a compilever. Force is at BSE-2E level. Checking wall strength of base ($k q e 6^{n}$ Nest reinforcing)

$$
\begin{aligned}
& M_{s}=50.81 \mathrm{k} \mathrm{ft} / \mathrm{f} \\
& \phi M_{n}=135.29 \mathrm{~L} . \mathrm{f} / \mathrm{f} / \mathrm{t} \\
& V_{v}=7.78 \mathrm{k} / \mathrm{ff}_{f} \quad \phi V_{m}=22.77 \mathrm{k} / \mathrm{ft} \\
& \text { Moment } D C R=\frac{5081}{785.29}=0.38(06) \\
& \text { Shear } O C R=\frac{7.88}{22 \pi 7}=0.34 \text { (ok) }
\end{aligned}
$$

Chacleing wall strength at start of $12^{\prime \prime}$ wall (steel $z^{\prime \prime}$ vert reinforcing)

$$
\begin{aligned}
& V_{v}=450 \mathrm{k} / \mathrm{f}_{\mathrm{f}} \quad \phi V_{n}=13.66 \mathrm{k} / \mathrm{ft} \\
& \text { Moment } D C E=\frac{22.88}{25.68}=0.86 \text { (ole) } \\
& \text { Shear } O C R_{1}=\frac{4.50}{13.66}=0.33(.6)
\end{aligned}
$$

Checking freeboard height in basin. For Risk Category III, $\delta=0.7 * d_{\text {max }}$
free board height: 2.68 ft
2.68 ft 7.51 ff (d) Freeboard is sufficient.
2.68 ff 72.38 ff (ok) Free board is sufficient.
\qquad BS DATE $7 / 8 / 21$ SUBJECT \qquad City of Witsonville SHEET NO. \qquad OF \qquad CHKD. BY \qquad DATE \qquad Aeration Basins JOB NO. 119624.00

Checking wall strength at base of $18^{" w}$ wall. Forces are at CSZ seismic level.

$$
\begin{aligned}
& M_{J}=38.63 \mathrm{k} . \mathrm{HA}_{+} \quad \phi \mathrm{Ma}_{\mathrm{n}}=135.29 \mathrm{~L} \cdot \mathrm{~F} / \mathrm{A} \\
& V_{u}=5.65 \mathrm{k} / \mathrm{f}_{\mathrm{t}} \quad \phi V_{A}=22.77 \mathrm{k} / \mathrm{ft} \\
& \text { Moment } D C R=\frac{38.636 f+1 f}{135.29 k+14}=0.29(0 k) \\
& \text { Shear } D C R=\frac{55.246 f f}{22.776 f f}=0.25(\mathrm{dt})
\end{aligned}
$$

Checking wall strength at stat of 12 "will.

$$
\begin{aligned}
& V_{0}=3.50 \mathrm{~L} / \mathrm{f} \quad 17.08 \mathrm{~L} \cdot \mathrm{~V} 1 \mathrm{~F}=13.66 \mathrm{k} / \mathrm{ff}_{7} \\
& \text { sonant } D C R=\frac{17.08 k \text {.fold }}{75.68 \text { kfift }}=0.67(0 k) \\
& \text { Shear } D C R=\frac{3504, \mathrm{fr}}{1360 \mathrm{kif}}=0.26 \text { (ole) }
\end{aligned}
$$

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCR	N:		Aeration Basins	JOB NO:	11962A. 00
DESIGN	SK:			Basin	rodynamic Pressures	Seismic	

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity $=$ no roof $\&$ fixed at floor
tank unit width perpendicular to EQ ., $\mathrm{B}=1 \mathrm{ft}$
tank inside length in direction of seismic, $\mathrm{L}=19.75 \mathrm{ft}$
tank wall thickness, $\mathrm{t}_{\mathrm{w}}=18$ inch
wall height, $\quad \mathrm{H}_{\mathrm{w}}=18.5 \mathrm{ft}$
liquid height, $H_{L}=15.82 \mathrm{ft}$
liquid specific gravity $=1$
liquid density, $\gamma_{\mathrm{L}}=(\mathrm{sp} . \mathrm{gr} \text {. })^{*} \gamma_{\mathrm{w}}=0.0624 \mathrm{k} / \mathrm{ft}^{3}$
acceleration due to gravity, $\mathrm{g}=32.17 \mathrm{ft} / \mathrm{sec}^{2}$
liquid mass density, $\rho_{\mathrm{L}}=\gamma_{\mathrm{L}} / \mathrm{g}=0.00194 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}{ }^{4}$

Soil Data
The site has groundwater present.
soil height above top of foundation base $=\mathbf{0} \mathrm{ft}$
groundwater ht. above foundation base $=\mathbf{0} \mathrm{ft}$
dry soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$

\qquad
saturated soil lateral pressure $=0 \quad \mathbf{k} / \mathrm{ft}^{3}$
dry soil unit weight $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \quad \mathrm{ksf}$
concrete strength, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4 \mathrm{ksi}$
concrete density, $\gamma_{\mathrm{c}}=0.150 \mathrm{k} / \mathrm{ft}^{3}$
concrete modulus of elasticity, $\mathrm{E}_{\mathrm{c}}=3605.0 \mathrm{ksi}$
concrete mass density, $\rho_{c}=\gamma_{c} / g=0.004663 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{4}$
Seismic:
Deisgn, 5% damped, spectral response acceleration at the short period of 0.2-second, $\mathrm{S}_{\mathrm{DS}}=$
Deisgn, 5% damped, spectral response acceleration at a period of 1 -second, $\mathrm{S}_{\mathrm{D} 1}=$
$\mathbf{0 . 7 4 4}$
$\mathbf{0 . 4 0 5}$${ }^{\mathrm{*}} \mathrm{*g}$ g

Structure Risk Category $=$	$\mathbf{2}$
Importance factor, $\mathrm{I}=$	$\mathbf{1}$
Response modification factor, $\mathrm{R}_{\mathrm{wi}}=$	$\mathbf{3}$
Response modification factor, $\mathrm{R}_{\mathrm{wc}}=$	$\mathbf{1}$

Load Cases:

case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case $4=$ soil + soil seismic + wall seismic

Engineers...Working Wonders With Water '"

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$
$(18 / 12) *(18.5) * 0.15=4.16$ kip
$18.5 / 2=9.250 \mathrm{ft}$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=(19.75)^{*}(1) *(15.82) * 32.17=19.50$ kip

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \rho_{\mathrm{c}}=0.12939 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}^{*} \rho_{L}=0.22237 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
centroidal distance of masses, $\mathrm{h}=\left(\mathrm{h}_{\mathrm{w}}{ }^{*} \mathrm{~m}_{\mathrm{w}}+\mathrm{h}_{\mathrm{i}}{ }^{*} \mathrm{~m}_{\mathrm{i}}\right) /\left(\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{i}}\right)=7.232 \mathrm{ft}$
wall fixity condition is no roof \& fixed at floor:
wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k=E c^{*}(\mathrm{tw} / \mathrm{h})^{3} / 48=1157.99 \mathrm{k} / \mathrm{ft} / \mathrm{ft}$

$(1157.99 /(0.1294+0.2224))^{\wedge 11 / 2}=57.3756 \mathrm{rad} / \mathrm{sec}$
period of tank plus impulsive mass, $\mathrm{T}_{\mathrm{i}}=2 \pi / \omega_{\mathrm{i}}=2 \pi / 57.3756=0.1095 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{a i}=S_{D S}=0.744 \quad g$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

3). lateral fluid impulsive force: Dynamic Model

$$
\begin{aligned}
& \mathrm{Wi}=\text { equivalent mass of the impulsive component of liquid. } \\
& \mathrm{W}_{\mathrm{i}}=\mathrm{W}_{\mathrm{L}}\binom{\tanh \left(0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right)}{0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}}=\quad 19.5^{*}\left(\tanh \left(0.866^{*}(1.2484)\right) / 0.866^{*}(1.2484)\right)=14.31 \mathrm{kip} \\
& \text { hi }(\mathrm{EBP})=\mathrm{HL} \mathrm{HL}^{*}\left(0.5-0.09375^{*}(\mathrm{~L} / \mathrm{HL})\right)=15.82^{*}\left(0.5-0.09375^{*}(1.2484)\right)= 6.058 \mathrm{ft} \\
& \mathrm{hi}(\mathrm{IBP})=\mathrm{HL} \mathrm{HL}^{*}\left\{\left(\left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right) /\left(2^{*} \tanh \left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right)\right)\right\}-1 / 8\right\}=8.798 \mathrm{ft} \\
& \text { impulsive force, } \mathrm{P}_{\mathrm{i}}=\left(\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I}}{\mathrm{R}_{\mathrm{wi}}}\right) \mathrm{W}_{\mathrm{i}}=\quad\left(0.744^{*} 1 / 3\right)^{*} 14.31= 3.5 \mathrm{kip}
\end{aligned}
$$

4). lateral fluid convective force:

$$
\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{L}}\left(0.264\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right) \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)\right)=
$$

$\mathrm{Wc}=$ e equivalent mass of the convective component of liquid.

$$
19.5^{*}\left(0.264^{*}(1.2484)^{*} \tanh \left(3.16^{*}(0.801)\right)\right)=6.35 \quad \text { kip }
$$

$$
h_{c(\text { EEP })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{L}\right)\right)-1}{3.16\left(\frac{H_{L}}{L}\right) \sinh \left(3.16\left(\frac{H_{L}}{L}\right)\right)}\right)=10.491 \mathrm{ft}
$$

$$
h_{c(1 B P)}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{L}\right)\right)-2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh \left(3.16\left(\frac{H_{L}}{L}\right)\right)}\right)=11.502 \mathrm{ft}
$$

convective force, $\mathrm{P}_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{ac}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=$
$(0.218 * 1 / 1)^{*} 6.35=1.4$ kip

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCR	ON:		Aeration Basins	JOB NO:	11962A. 00
DESIGN TASK:		Aeration Basin Hydrodynamic Pressures (BSE-2E Seismic Level)					

5). lateral inertia force of the accelerating wall:
unit width wall mass, $\mathrm{W}_{\mathrm{w}}=4.16 \quad \mathrm{kip}$
wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=9.250 \mathrm{ft}$
wall inertia force, $P_{w}=\left(\frac{S_{a i} I \varepsilon}{R_{w i}}\right) W_{w}=\quad\left(0.744^{*} 1^{*} 0.8063 / 3\right)^{*} 4.16=0.83 \quad \mathrm{kip}$
6). maximum wave slosh height displacement:

$$
d_{(\max)}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.0} \mathrm{I}\right)=(19.75 / 2) *(0.218 / 1.0 * 1)=2.15 \mathrm{ft}
$$

7). vertical acceleration:

$$
\text { Design vertical acceleration, ü }=\frac{S_{a v} I \text { b }}{R_{i}}=0.2976^{*} 1^{* 1 / 1}=0.2976 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of $\mathrm{ACl} 350 \sec 5.3$:

convective

hydrostatic
impulsive:

$$
\mathrm{p}_{\mathrm{iy}}=\frac{\mathrm{P}_{\mathrm{i}}\left[4 \mathrm{H}_{\mathrm{L}}-6 h_{\mathrm{i}}-\left(6 \mathrm{H}_{\mathrm{L}}-12 h_{\mathrm{i}}\right)\left(\frac{\mathrm{y}}{\mathrm{H}_{\mathrm{L}}}\right)\right]}{2 B \mathrm{H}_{\mathrm{L}}^{2}}=
$$

convective:

$$
\mathrm{p}_{\mathrm{c} y}=\frac{\mathrm{P}_{\mathrm{c}}\left[4 \mathrm{H}_{\mathrm{L}}-6 h_{\mathrm{c}}-\left(6 \mathrm{H}_{\mathrm{L}}-12 h_{\mathrm{c}}\right)\left(\frac{\mathrm{y}}{\mathrm{H}_{\mathrm{L}}}\right)\right]}{2 B \mathrm{H}_{\mathrm{L}}^{2}}=
$$

$$
\begin{array}{rll}
\mathrm{P}_{\mathrm{i}} & =3.50 & \mathrm{kip} \\
\mathrm{~h}_{\mathrm{i}} & =6.058 & \mathrm{ft} \\
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{iy}} & =0.033 & \mathrm{ksf} \\
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{iy}} & =0.188 & \mathrm{ksf}
\end{array}
$$

$$
P_{c}=1.40 \quad \mathrm{kip}
$$

$$
\mathrm{h}_{\mathrm{c}}=10.491 \mathrm{ft}
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{cy}}=0.088 \mathrm{ksf}$ at base $y=0, p_{c y}=0.001 \mathrm{ksf}$

$$
\begin{aligned}
& \text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}=0.744 \quad \text { *g } \\
& \text { vertical spectral response acceleration (per ACl } 350 \text { para 9.4.3), } S_{a v}=C_{t}=0.4 * S_{D S}=0.2976 \mathrm{~g} \\
& \text { per ASCE 7-10 para. 15.7.7.2(b), use } I=R_{i}=b=1.0
\end{aligned}
$$

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN TASK:	Aerat	on Basin	rodynamic Pressures (Seismic	

vertical acceleration:

$$
p_{v y}=\ddot{u} \gamma_{L}\left(H_{L}-y\right)=
$$

$$
\begin{array}{rlrl}
\text { ü } & =0.2976 \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } y=0, p_{v y} & =0.294 \quad \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
\mathrm{p}_{\mathrm{wy}}=\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon \gamma_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{\mathrm{R}_{\mathrm{wi}}}=
$$

$$
\mathrm{p}_{\mathrm{wy}}=0.2000 * \gamma_{\mathrm{c}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)
$$

hydrostatic:

$$
q_{h y}=\gamma_{L}\left(H_{L}-y\right)=
$$

combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{1 y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.045 \mathrm{ksf}$ at base $\mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.045 \mathrm{ksf}$
at $y=H_{L}, q_{h y}=0.000$ ksf at base $\mathrm{y}=0, \mathrm{q}_{\mathrm{hy}}=0.987 \mathrm{ksf}$
at $\mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{y}}=0.117 \mathrm{ksf}$ at base $y=0, p_{y}=0.375 \mathrm{ksf}$

9). wall design pressure for hydrostatic + dynamic:

wall height, $\mathrm{H}_{\mathrm{w}}=18.5 \mathrm{ft}$
liquid height, $H_{L}=15.82 \mathrm{ft}$

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN TASK:		Aeration Basin Hydrodynamic Pressures (BSE-2E Seismic Level)				

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

The site has groundwater present.
wall height $=18.5 \mathrm{ft}$ soil height above top of base $=0 \quad 0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$
dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
sat. soil lateral pressure $=0.000 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000$ ksf unfactored soil, q3 $=0.0000 \mathrm{ksf}$ unfactored soil, q4 $=0.000$ ksf equivalent soil loadings:

unfactored q5	$=0.0000$	ksf
unfactored q6	$=0.0000$	ksf

soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq)}}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:


```
                                    Load Cases:
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic
```

a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

c). load case 3: static soil + LL surcharge:
wall height $=18.5 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$ groundwater height $=0 \mathrm{ft}$
equivalent static soil \& surcharge loadings...

LL lateral surcharge, q1 $=0.000 \mathrm{ksf}$
unfactored soil, q2 $=0.000$ ksf
unfactored soil, q3 $=0.000$ ksf
unfactored soil, q4 $=0.000$ ksf
equivalent soil loadings:
unfactored q5 $=0.000$ ksf
unfactored q6 $=0.000 \mathrm{ksf}$
unfactored q7 $=0.000$ ksf
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...

wall height $=18.5 \mathrm{ft}$
soil height on wall $=0 \mathrm{ft}$
unfactored equivalent soil seismic, q8 $=0.000$ ksf unfactored equivalent soil seismic, q9 = 0.000 ksf unfactored equivalent soil seismic, q10 $=0.032 \mathrm{ksf}$ unfactored equivalent soil seismic, q11 $=0.000$ ksf unfactored equivalent soil seismic, q12 $=0.000$ ksf

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wils	HEET:	
CHKD:		DESC	N:		Aeration Basins	JOB NO:	11962A. 00
DESIG	SK:		Basin		ssures (BSE	vel - Lon	1 D

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity $=$ no roof $\&$ fixed at floor
tank unit width perpendicular to EQ., $B=1 \mathrm{ft}$
tank inside length in direction of seismic, $\mathrm{L}=175 \mathrm{ft}$
tank wall thickness, $\mathrm{t}_{\mathrm{w}}=18$ inch
wall height, $\quad \mathrm{H}_{\mathrm{w}}=18.5 \mathrm{ft}$
liquid height, $H_{L}=15.82 \mathrm{ft}$
liquid specific gravity $=1$
liquid density, $\gamma_{\mathrm{L}}=(\mathrm{sp} . \mathrm{gr} \text {. })^{*} \gamma_{\mathrm{w}}=0.0624 \mathrm{k} / \mathrm{ft}^{3}$
acceleration due to gravity, $\mathrm{g}=32.17 \mathrm{ft} / \mathrm{sec}^{2}$
liquid mass density, $\rho_{\mathrm{L}}=\gamma_{\mathrm{L}} / \mathrm{g}=0.00194 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}{ }^{4}$

Soil Data
The site has groundwater present.
soil height above top of foundation base $=\mathbf{0} \mathrm{ft}$

groundwater ht. above foundation base $=\mathbf{0} \mathrm{ft}$
dry soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$ \qquad
saturated soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
dry soil unit weight $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \quad \mathrm{ksf}$
0
concrete strength, $\mathrm{f}^{\prime} \mathrm{c}=\mathbf{~ k s i}$
concrete density, $\gamma_{\mathrm{c}}=0.150 \mathrm{k} / \mathrm{ft}^{3}$
concrete modulus of elasticity, $\mathrm{E}_{\mathrm{c}}=3605.0 \mathrm{ksi}$
concrete mass density, $\rho_{c}=\gamma_{c} / g=0.004663 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{4}$

Seismic:
Deisgn, 5% damped, spectral response acceleration at the short period of 0.2-second, $\mathrm{S}_{\mathrm{DS}}=$
Deisgn, 5% damped, spectral response acceleration at a period of 1 -second, $\mathrm{S}_{\mathrm{D} 1}=$
$\mathbf{0 . 7 4 4}$
$\mathbf{0 . 4 0 5}$${ }^{\mathrm{*}} \mathrm{*g}$ g

Structure Risk Category $=$	$\mathbf{2}$
Importance factor, $\mathrm{I}=$	$\mathbf{1}$
Response modification factor, $\mathrm{R}_{\mathrm{w}}=$	$\mathbf{3}$
Response modification factor, $\mathrm{R}_{\mathrm{wc}}=$	$\mathbf{1}$

Load Cases:

case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case $4=$ soil + soil seismic + wall seismic

Engineers...Working Wonders With Water '"

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:			Aeration Basins	JOB NO:	11962A. 00
DESIGN	ASK:	Aeration Basin Hydrodynamic Pressures (BSE-2E Seismic Level - Longitudinal Direction)					

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$
$(18 / 12) *(18.5) * 0.15=4.16$ kip
$18.5 / 2=9.250 \mathrm{ft}$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=(175)^{*}(1)^{*}(15.82) * 32.17=172.75$ kip

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \rho_{\mathrm{c}}=0.12939 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}^{*} \rho_{L}=0.28024 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
centroidal distance of masses, $\mathrm{h}=\left(\mathrm{h}_{\mathrm{w}}{ }^{*} \mathrm{~m}_{\mathrm{w}}+\mathrm{h}_{\mathrm{i}}{ }^{\star} \mathrm{m}_{\mathrm{i}}\right) /\left(\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{i}}\right)=6.981 \mathrm{ft}$

period of tank plus impulsive mass, $T_{i}=2 \pi / \omega_{i}=2 \pi / 56.0621=0.1121 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{a i}=S_{D S}=0.744 \quad g$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:
$\lambda=\sqrt{3.16 \mathrm{~g} \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{L}}\right)\right)}=\quad\left(3.16^{*} 32.2^{*} \tanh \left(3.16^{*}(0.0904)\right)\right)^{\wedge} 1 / 2=5.3174$
$\omega_{\mathrm{c}}=\frac{\lambda}{\sqrt{\mathrm{L}}}=\quad 5.3174 /(175)^{\wedge 1 / 2}=0.4020 \mathrm{rad} / \mathrm{sec}$,

$$
\text { effective mass coeff., } \varepsilon=0.0151\left(\frac{L}{H_{L}}\right)^{2}-0.1908\left(\frac{L}{H_{L}}\right)+1.021 \text {, but } \leq 1.0=0.7581
$$

3). lateral fluid impulsive force: Dynamic Model
4). lateral fluid convective force: $\mathrm{Wc}=$ equivalent mass of the convective component of liquid.

$$
W_{c}=W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) \tanh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)\right)=172.75^{*}\left(0.264^{\star}(11.0619)^{\star} \tanh \left(3.16^{\star}(0.0904)\right)\right)=140.32 \text { kip }
$$

$$
h_{c(\text { (EBP) }}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{L}\right)\right)-1}{3.16\left(\frac{H_{L}}{L}\right) \sinh \left(3.16\left(\frac{H_{L}}{L}\right)\right)}\right)=7.963 \mathrm{ft}
$$

$$
h_{c(\text { IBP })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)-2.01}{3.16\left(\frac{H_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=201.127 \mathrm{ft}
$$

convective force, $\mathrm{P}_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{ac}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=\quad(0.0389 * 1 / 1) * 140.32=\quad 5.5 \quad$ kip

$$
\begin{aligned}
& \left(\tanh \left(0.866 \frac{\mathrm{~L}}{\mathrm{H}}\right)\right) \quad \mathrm{Wi}=\text { equivalent mass of the impulsive component of liquid. } \\
& W_{i}=W_{L}\left(\frac{\tanh \left(0.866 \frac{L}{H_{L}}\right)}{0.866 \frac{L}{H_{L}}}\right)=172.75^{*}\left(\tanh \left(0.866^{*}(11.0619)\right) / 0.866^{*}(11.0619)\right)=18.03 \mathrm{kip} \\
& \text { hi }(E B P)=H L \text { * } 0.375=15.82 \text { * } 0.375=5.933 \mathrm{ft} \\
& \text { hi }(\text { IBP })=H L *\left\{\left\{\left(0.866^{*} L / H L\right) /\left(2^{*} \tanh \left(0.866^{*} L / H L\right)\right)\right\}-1 / 8\right\}=73.798 \mathrm{ft} \\
& \text { impulsive force, } P_{i}=\left(\frac{S_{\mathrm{ai}} I}{R_{\mathrm{wi}}}\right) \mathrm{W}_{\mathrm{i}}=\quad(0.744 * 1 / 3) * 18.03=4.5 \quad \mathrm{kip}
\end{aligned}
$$

Engineers...Working Wonders With Water '"

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:			Aeration Basins	JOB NO:	11962A.00
DESIGN TASK:	Aeration Basin Hydrodynamic Pressures (BSE-2E Seismic Level - Longitudinal Direction)				

5). lateral inertia force of the accelerating wall:
unit width wall mass, $\mathrm{W}_{\mathrm{w}}=4.16$ kip
wall c.g. relative to base, $h_{w}=9.250 \mathrm{ft}$
wall inertia force, $P_{w}=\left(\frac{S_{a i} I \varepsilon}{R_{w i}}\right) W_{w}=\quad\left(0.744^{*} 1^{*} 0.7581 / 3\right)^{*} 4.16=0.78 \quad$ kip
6). maximum wave slosh height displacement:

$$
d_{(\max)}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.0} \mathrm{I}\right)=(175 / 2) *(0.0389 / 1.0 * 1)=3.40 \mathrm{ft}
$$

7). vertical acceleration:

$$
\begin{array}{r}
\text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}= \\
\text { vertical spectral response acceleration (per ACI } 350 \text { para 9.4.3), } \mathrm{S}_{\mathrm{av}}=\mathrm{C}_{\mathrm{t}}=0.744 \quad \text { * } \mathrm{H} \\
\text { per ASCE 7-10 para. 15.7.7.2(b), use } \mathrm{I}=\mathrm{R}_{\mathrm{DS}}=\mathrm{b}=1.0
\end{array}
$$

$$
\text { Design vertical acceleration, ü }=\frac{\mathrm{S}_{\mathrm{av}} \mathrm{I} \mathrm{~b}}{\mathrm{R}_{\mathrm{i}}}=0.2976^{*} 1^{*} 1 / 1=0.2976 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3 :

hydrostatic

impulsive:

$$
p_{\text {iy }}=\frac{P_{i}\left[4 H_{L}-6 h_{i}-\left(6 H_{L}-12 h_{i}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

convective:

$$
p_{o y}=\frac{P_{c}\left[4 H_{L}-6 h_{c}-\left(6 H_{L}-12 h_{c}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

$$
\begin{array}{rll}
\mathrm{P}_{\mathrm{i}} & =4.50 & \mathrm{kip} \\
\mathrm{~h}_{\mathrm{i}} & =5.933 & \mathrm{ft} \\
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{iy}} & =0.036 & \mathrm{ksf} \\
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{i} y} & =0.249 & \mathrm{ksf} \\
\mathrm{P}_{\mathrm{c}} & = & 5.50 \\
\mathrm{~h}_{\mathrm{c}} & = & \mathrm{kip} \\
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{cy}} & =063 & \mathrm{ft} \\
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{cy}} & =0.177 & \mathrm{ksf} \\
\mathrm{ksf}
\end{array}
$$

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Aeration Basins		
DESIGN TASK:	Aeration Basin H	drodynam	Pressures (BSE-2E Seism	vel - Longi	Direction)

vertical acceleration:

$$
p_{\mathrm{w}}=\ddot{u} \gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

$$
\begin{array}{rlrl}
u ̈ & = & 0.2976 \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } y=0, p_{v y} & =0.294 & \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
\mathrm{p}_{\mathrm{wy}}=\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon \gamma_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{\mathrm{R}_{\mathrm{wi}}}=
$$

$$
p_{w y}=0.1880 * \gamma_{c} *\left(t_{w} / 12\right)
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.042 \mathrm{ksf}
$$ at base $\mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.042 \mathrm{ksf}$

hydrostatic:

$$
q_{n y}=\gamma_{L}\left(H_{L}-y\right)=
$$

at $y=H_{L}, q_{h y}=0.000 \mathrm{ksf}$ at base $y=0, q_{\mathrm{hy}}=0.987 \mathrm{ksf}$
combine the effects of the dynamic pressures on the wall:

$$
\mathrm{p}_{\mathrm{y}}=\sqrt{\left(\mathrm{p}_{\mathrm{y}}+\mathrm{p}_{\mathrm{w}}\right)^{2}+\mathrm{p}_{\mathrm{cy}}^{2}+\mathrm{p}_{\mathrm{xy}}^{2}}=
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{y}}=0.194 \mathrm{ksf}$ at base $y=0, p_{y}=0.447 \mathrm{ksf}$

9). wall design pressures for hydrostatic + dynamic:

wall height, $\mathrm{H}_{\mathrm{w}}=18.5 \mathrm{ft}$
liquid height, $H_{L}=15.82 \mathrm{ft}$

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

The site has groundwater present.
wall height $=18.5 \mathrm{ft}$ soil height above top of base $=0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$
dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
sat. soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000$ ksf unfactored soil, q3 $=0.0000 \mathrm{ksf}$ unfactored soil, q4 $=0.000 \mathrm{ksf}$ equivalent soil loadings:

unfactored q5	$=0.0000$	ksf
unfactored q6	$=0.0000$	ksf

unfactored q7 $=0.0000$ ksf
soil seismic:

$$
\text { resultant factored soil seismic load per foot of wall width, } \mathrm{P}_{\mathrm{u}(\mathrm{eq)}}=\mathbf{0}^{\mathrm{k} / \mathrm{ft}}
$$

centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\quad \mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN TASK:	Aeration Basin	rodyn	ressures (BSE-2E Sei	vel - Long	

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:


```
                                    Load Cases:
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic
```

a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

c). load case 3: static soil + LL surcharge:
wall height $=18.5 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$ groundwater height $=0 \mathrm{ft}$
equivalent static soil \& surcharge loadings...

LL lateral surcharge, q1 $=0.000 \mathrm{ksf}$
unfactored soil, q2 $=0.000$ ksf
unfactored soil, q3 $=0.000$ ksf
unfactored soil, q4 $=0.000$ ksf
equivalent soil loadings:
unfactored q5 $=0.000 \mathrm{ksf}$
unfactored q6 $=0.000 \mathrm{ksf}$
unfactored q7 $=0.000$ ksf
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...

wall height $=18.5 \mathrm{ft}$
soil height on wall $=0 \mathrm{ft}$
unfactored equivalent soil seismic, q8 $=0.000$ ksf unfactored equivalent soil seismic, q9 = 0.000 ksf unfactored equivalent soil seismic, q10 $=0.030$ ksf unfactored equivalent soil seismic, q11 $=0.000$ ksf unfactored equivalent soil seismic, q12 $=0.000$ ksf
En:

CHKD:
DATE:
Aug-21
CLIENT:
City of Wilsonville
SHEET:
DESIGN TASK: DESCRIPTION: Aeration Basins JOB NO: 11962A. 00

Wall Data:

$\frac{(\mathrm{k} / \mathrm{ft})}{(0)}$	$\frac{(\mathrm{k} / \mathrm{ft})}{(0.23}$
(0)	(0)

Externally Applied Service Loads to a Wall with Cantilever Support									
Uniform	Trapezoidal Loads				Point Loads		Moment Loads		Concrete Load Factors
	Begin		End		$\begin{gathered} a \\ (\mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P} \\ (\mathrm{kip}) \\ \hline \end{gathered}$	$\begin{gathered} c \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{ft-k}) \end{gathered}$	
$\begin{gathered} \mathrm{w} \\ (\mathrm{k} / \mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} \hline b \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \mathrm{w}_{\mathrm{b}} \\ (\mathrm{k} / \mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{e} \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \begin{array}{c} \mathrm{w}_{\mathrm{e}} \\ (\mathrm{k} / \mathrm{ft}) \\ \hline \hline \end{array} \\ \hline \end{gathered}$					
	2.68	0.234	18.5	0.75					1
				optiona	nm	fac	mon	Cl 350)	1

Results:

$\begin{aligned} & \text { Calculated Rea } \\ & \text { Reactions, } R \text { or } R_{u} \\ & \hline \end{aligned}$			Maximum Moments, M or M_{u}				1 with C		ort					
			${ }^{*}$ Maximum Short Term Deflections											
	Left End	Right End					Max P	itive	Max	ative	down	ard	upw	
Type	$\begin{gathered} \mathrm{R}_{\mathrm{L}} \\ \text { (kip) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{R}} \\ \text { (kip) } \end{gathered}$	x distance (ft)	$\begin{gathered} \hline+\mathrm{M} \\ (\mathrm{ft}-\mathrm{k}) \end{gathered}$	x distance (ft)	$\begin{gathered} \hline-\mathrm{M} \\ (\mathrm{ft}) \\ \hline \end{gathered}$	$\mathrm{x} \text { distance }$ (ft)	$\begin{gathered} \hline \Delta \\ \text { (in) } \end{gathered}$	x distance (ft)	$\begin{gathered} \hline \Delta \\ \hline \text { (in) } \end{gathered}$				
service loads	0.00	7.78	0.000	0.00	18.500	-50.81	0.000	-0.584	18.500	0.000				
factored loads	0.00	7.78	0.000	0.00	18.500	-50.81	$\begin{gathered} \Delta \leq \mathrm{L} / 240 \text {, Okay } \quad \Delta \leq \mathrm{L} / 240 \text {, Okay } \\ \Delta \max =\mathrm{L} / 240=0.925 " \end{gathered}$							
environmental factor, $\mathrm{M}_{\mathrm{u}}=$			0.00		-50.81									

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN	ASK:	Dividing Wall between Aeration Basins 1\&2 (Hydrodynamic Loading Only) (BSE-2E)				

Wall Shear Capacity (Based on ACI 318, 11.2.1.1):

Maximum Shear, $\mathrm{V}_{\mathrm{u}}=$	7.78	kip	concrete, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=$	4	ksi
Wall width, $\mathrm{b}=$	12	in	reinforcing, $\mathrm{f}_{\mathrm{y}}=$	60	ksi
Depth to reinforcing, $\mathrm{d}=$	15	in	concrete modulus, $\mathrm{E}_{\mathrm{c}}=57^{*}\left(\mathrm{f}_{\mathrm{c}}{ }^{\prime}\right)^{1 / 2}=$	3605	ksi

Factored Shear Diagram

factored shear force, $\mathrm{V}_{\mathrm{u}}=7.780$ kip
Concrete Shear Capacity, $\quad \phi \mathrm{V}_{\mathrm{c}}=\phi * 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}^{\prime}{ }_{\mathrm{c}}\right)^{1 / 2}=\quad 22.768 \mathrm{kip}$

$$
ø \mathrm{Vc}>\mathrm{Vu}, \mathrm{OK}
$$

Minimum shrinkage-temperature requirement in the flexure direction:
wall minimum temperature $/$ shrinkage steel ratio $=\mathbf{0 . 0 0 5 0 0}$
number of layers of reinforcement in the wall (1 or 2?) = 2

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCR	ON:		Aeration Basins	JOB NO:	11962A. 00
DESIGN	TASK:		viding	between	on Basins 1\&2 (Hydr	Loading O	SE-2E)

Wall Bending:

Service Moment, $\mathrm{M}(+)=$	0.00	ft-k	concrete strength, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=$	4
Service Moment, M(-) =	50.81	ft-k	reinforcing yield strength, $\mathrm{f}_{\mathrm{y}}=$	60
Factored Moment, $\mathrm{M}_{\mathrm{u}}(+)=$	0.00	ft-k	concrete modulus, $E_{c}=57{ }^{*}\left(\mathrm{f}^{\prime}\right)^{1 / 2}=$	3605
Factored Moment, $\mathrm{M}_{\mathrm{u}}(-)=$	50.81	ft-k	reinforcement modulus, $\mathrm{E}_{\mathrm{s}}=$	29000
Wall width, $\mathrm{b}=$	12	in	$\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}=$	8.044
Depth to reinforcing, $\mathrm{d}=$	15	in	$\beta_{1}=$	0.85
Thickness of wall, $\mathrm{h}=$	18	in	ϕ, Bending =	0.9

distance, x (ft)
1). Negative Steel: (location at $x=18.5 \mathrm{ft}$)

Depth to negative reinforcing, $\mathrm{d} 1=2.5$ in

$$
M_{u}(-)=50.81 \quad \mathrm{ft}-\mathrm{k}
$$

Wall width, $\mathrm{b}=12$ in Depth to reinforcing, $\mathrm{d}=\mathrm{h}-\mathrm{d} 1=15.5$ in Area steel required, $\mathrm{A}_{\mathrm{s}(\text { req'd })}^{\prime}=0.756 \mathrm{in}^{2}$

Bar number size $=\quad \# 9$
Spacing of negative bars $=6 \quad$ in
Area of steel provided, $\mathrm{A}_{\mathrm{s}}^{\prime}=2.00 \mathrm{in}^{2}$
Min area steel req'd, $A_{s(\text { min })}=0.62 \mathrm{in}^{2}$
Max area allowed, $\mathrm{A}_{\mathrm{s}(\max)}^{\prime}=3.98 \mathrm{in}^{2}$
BY: BS
DATE: Aug-21
CLIENT:
City of Wilsonville
SHEET:
CHKD: DESCRIPTION: Aeration Basins JOB NO: 11962A. 00

DESIGN TASK: Dividing Wall Strength for 18" Thick Wall (Hydrodynamic Loading Only) (BSE-2E)

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

Compression width of wall, $b=$	12	inch
Thickness of wall, $h=$	18	inch
Depth to reinforcing, $\mathrm{d}=$	15	inch
factored design moment, $\mathrm{M}_{\mathrm{u}}=$	$\mathbf{5 0 . 8 1}$	$\mathrm{ft}-\mathrm{k}$
factored design shear, $\mathrm{V}_{\mathrm{u}}=$	$\mathbf{7 . 7 8}$	kip

$$
\begin{aligned}
\mathrm{f}_{\mathrm{c}}(\mathrm{psi}) & =4000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =60000 \\
\phi, \text { Bending } & =1 \\
\phi, \text { Shear } & =1 \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3604997 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =8.04 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2} & =22.77 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

comment : Existing 18" wall w/ \#9@6"

$$
\begin{aligned}
& \text { Area steel provided, } A_{s}=2 \quad \mathrm{in}^{2} \quad \rho=\mathrm{A}_{\mathrm{s}} / \mathrm{bd}=0.01111 \\
& \rho(\min)<A s / b d<\rho(\max)-O K \\
& \begin{array}{llll}
\mathrm{A}_{\mathrm{s}(\text { min })} & =0.32 & \mathrm{in}^{2} & \rho_{\text {(min) }}=0.00180 \\
& =3.85 & \mathrm{in}^{2} & \rho(\text { na }
\end{array} \\
& \mathrm{A}_{\mathrm{s}(\max)}=3.85 \quad \mathrm{in}^{2} \quad \rho_{(\max)}=0.02138 \\
& \text { bending strength, } \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right) \\
& \phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.01111^{*} 60^{*} 12^{*} 15^{2} *\left(1-0.588^{*} 0.01111^{*} 60 / 4\right)^{*}(\mathrm{ft} / 12)=135.294 \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}
\end{aligned}
$$

BY: BS
DATE: Aug-21
CLIENT:
City of Wilsonville
SHEET:
CHKD: DESCRIPTION: Dividing Wall Strength for 12" Thick Wall (Hydrodynamic Loading Only) (BS-2E)
DESIGN TASK: \qquad

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

Compression width of wall, $\mathrm{b}=$	$\mathbf{1 2}$	inch
Thickness of wall, $\mathrm{h}=$	$\mathbf{1 2}$	inch
Depth to reinforcing, $\mathrm{d}=$	$\mathbf{9}$	inch
factored design moment, $\mathrm{M}_{\mathrm{u}}=$	$\mathbf{2 2 . 0 8}$	$\mathrm{ft-k}$
factored design shear, $\mathrm{V}_{\mathrm{u}}=$	4.50	kip

$$
\begin{aligned}
\mathrm{f}^{\prime} \mathrm{c}(\mathrm{psi}) & =4000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =60000 \\
\phi, \text { Bending } & =1 \\
\phi, \text { Shear } & =1 \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3122019 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =9.29 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 13.66 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

comment : existing 12" wall w/ \#7@12"
Area steel provided, $\mathrm{A}_{\mathrm{s}}=$ \square

$$
\rho=A_{s} / b d=0.00556
$$

$$
\rho(\min)<\mathrm{As} / \mathrm{bd}<\rho(\max)-\mathrm{OK}
$$

$$
\begin{array}{llll}
\mathrm{A}_{s_{(\text {min })}}= & 0.19 & \mathrm{in}^{2} & \rho_{(\text {min })}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)}=1.73 & \mathrm{in}^{2} & \rho_{(\max)}=0.01604
\end{array}
$$

$$
\text { bending strength, } \quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)
$$

$$
\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00556^{*} 60^{*} 12^{*} 9^{2} *\left(1-0.588^{*} 0.00556^{*} 60 / 3\right)^{*}(\mathrm{ft} / 12)=25.235 \quad \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}
$$

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity $=$ no roof $\&$ fixed at floor
tank unit width perpendicular to EQ., $\mathrm{B}=1 \mathrm{ft}$
tank inside length in direction of seismic, $\mathrm{L}=19.75 \mathrm{ft}$
tank wall thickness, $\mathrm{t}_{\mathrm{w}}=18$ inch
wall height, $\quad \mathrm{H}_{\mathrm{w}}=18.5 \mathrm{ft}$
liquid height, $H_{L}=15.82 \mathrm{ft}$
liquid specific gravity $=1$
liquid density, $\gamma_{\mathrm{L}}=(\mathrm{sp} . \mathrm{gr} .)^{*} \gamma_{\mathrm{w}}=0.0624 \mathrm{k} / \mathrm{ft}^{3}$
acceleration due to gravity, $\mathrm{g}=32.17 \mathrm{ft} / \mathrm{sec}^{2}$
liquid mass density, $\rho_{\mathrm{L}}=\gamma_{\mathrm{L}} / \mathrm{g}=0.00194 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}{ }^{4}$

Soil Data
The site has groundwater present.
soil height above top of foundation base $=\mathbf{0} \mathrm{ft}$

groundwater ht. above foundation base $=\mathbf{0} \mathrm{ft}$
dry soil lateral pressure $=0 \quad \mathbf{0} / \mathrm{ft}^{3}$ \qquad
saturated soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
dry soil unit weight $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=\mathbf{0 . 0 0 0} \mathrm{ksf}$
0
concrete strength, $\mathrm{f}^{\prime} \mathrm{c}=\mathbf{~ k s i}$
concrete density, $\gamma_{\mathrm{c}}=0.150 \mathrm{k} / \mathrm{ft}^{3}$
concrete modulus of elasticity, $\mathrm{E}_{\mathrm{c}}=3605.0 \mathrm{ksi}$
concrete mass density, $\rho_{c}=\gamma_{c} / g=0.004663 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{4}$
Seismic:
$\begin{aligned} \text { Deisgn, } 5 \% \text { damped, spectral response acceleration at the short period of } 0.2 \text {-second, } \mathrm{S}_{\mathrm{DS}}= & \mathbf{0 . 4 4 6} \quad{ }^{\mathrm{*} g} \mathrm{~g} \\ \text { Deisgn, } 5 \% \text { damped, spectral response acceleration at a period of } 1-\text { second, } \mathrm{S}_{\mathrm{D} 1}= & \mathbf{0 . 3 3 2} \quad{ }^{*} \mathrm{~g}\end{aligned}$

Engineers...Working Wonders With Water '"

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$
$(18 / 12) *(18.5) * 0.15=4.16$ kip
$18.5 / 2=9.250 \mathrm{ft}$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=(19.75)^{*}(1) *(15.82) * 32.17=19.50$ kip

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \rho_{\mathrm{c}}=0.12939 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}^{*} \rho_{L}=0.22237 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
centroidal distance of masses, $\mathrm{h}=\left(\mathrm{h}_{\mathrm{w}}{ }^{*} \mathrm{~m}_{\mathrm{w}}+\mathrm{h}_{\mathrm{i}}{ }^{*} \mathrm{~m}_{\mathrm{i}}\right) /\left(\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{i}}\right)=7.232 \mathrm{ft}$
wall fixity condition is no roof \& fixed at floor:
wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $\mathrm{k}=\mathrm{Ec}{ }^{*}(\mathrm{tw} / \mathrm{h})^{3} / 48=1157.99 \mathrm{k} / \mathrm{ft} / \mathrm{ft}$

$(1157.99 /(0.1294+0.2224))^{\wedge 11 / 2}=57.3756 \mathrm{rad} / \mathrm{sec}$
period of tank plus impulsive mass, $\mathrm{T}_{\mathrm{i}}=2 \pi / \omega_{\mathrm{i}}=2 \pi / 57.3756=0.1095 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{a i}=S_{D S}=0.446 \quad g$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

Engineers...Working Wonders With Water 'u

3). lateral fluid impulsive force: Dynamic Model
4). lateral fluid convective force:

$$
\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{L}}\left(0.264\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right) \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)\right)=
$$

$\mathrm{Wc}=$ e equivalent mass of the convective component of liquid.

$$
19.5^{*}\left(0.264^{*}(1.2484)^{*} \tanh \left(3.16^{*}(0.801)\right)\right)=6.35 \quad \text { kip }
$$

$$
h_{c(\text { EEP })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{L}\right)\right)-1}{3.16\left(\frac{H_{L}}{L}\right) \sinh \left(3.16\left(\frac{H_{L}}{L}\right)\right)}\right)=10.491 \mathrm{ft}
$$

$$
h_{c(B P)}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{L}\right)\right)-2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)}\right)=11.502 \mathrm{ft}
$$

$$
\text { convective force, } P_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{a}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=\quad(0.1787 * 1.25 / 1) * 6.35=1.4 \quad \text { kip }
$$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{i}}=\mathrm{W}_{\mathrm{L}}\left(\frac{\tanh \left(0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right)}{0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}}\right)= \\
& \mathrm{Wi}=\text { equivalent mass of the impulsive component of liquid. } \\
& \text { hi }(E B P)=\mathrm{HL}^{*}\left(0.5-0.09375^{*}(\mathrm{~L} / \mathrm{HL})\right)=15.82^{*}\left(0.5-0.09375^{*}(1.2484)\right)=6.058 \mathrm{ft} \\
& \text { hi } \left.(\mathrm{IBP})=\mathrm{HL} *\left\{\left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right) /\left(2^{*} \tanh \left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right)\right)\right\}-1 / 8\right\}=8.798 \mathrm{ft} \\
& \text { impulsive force, } P_{i}=\left(\frac{S_{\mathrm{ai}} \mathrm{I}}{\mathrm{R}_{\mathrm{wi}}}\right) \mathrm{W}_{\mathrm{i}}=(0.446 * 1.25 / 3) * 14.31=2.7 \quad \mathrm{kip}
\end{aligned}
$$

Engineers...Working Wonders With Water '"

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCR	ON:		Aeration Basins	JOB NO:	11962A. 00

DESIGN TASK:
Aeration Basin Transverse Hydrodynamic Pressures (CSZ Seismic Level)
5). lateral inertia force of the accelerating wall:
unit width wall mass, $\mathrm{W}_{\mathrm{w}}=4.16$ kip
wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=9.250 \mathrm{ft}$
wall inertia force, $P_{w}=\left(\frac{S_{a i} I \varepsilon}{R_{w i}}\right) W_{w}=\quad\left(0.446^{*} 1.25^{*} 0.8063 / 3\right)^{*} 4.16=0.62 \quad$ kip
6). maximum wave slosh height displacement:

$$
\mathrm{d}_{(\max)}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.4} \mathrm{I}\right)=(19.75 / 2) *(0.1787 / 1.0 * 1.25)=2.20 \mathrm{ft}
$$

7). vertical acceleration:

$$
\begin{aligned}
\text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}= & 0.446
\end{aligned} \quad \text { *g }
$$

$$
\text { Design vertical acceleration, ü }=\frac{\mathrm{S}_{\mathrm{av}} \mathrm{I} \mathrm{~b}}{\mathrm{R}_{\mathrm{i}}}=0.1784^{* 1 * 1 / 1}=0.1784 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3 :

convective

hydrostatic

impulsive:

$$
p_{\text {iy }}=\frac{P_{i}\left[4 H_{L}-6 h_{i}-\left(6 H_{L}-12 h_{i}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

convective:

$$
p_{o y}=\frac{P_{c}\left[4 H_{L}-6 h_{c}-\left(6 H_{L}-12 h_{c}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

$$
\begin{array}{rll}
\mathrm{P}_{\mathrm{i}} & = & 2.70 \\
\mathrm{~h}_{\mathrm{i}} & =6 \mathrm{kip} \\
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{iy}} & =0.058 & \mathrm{ft} \\
\text { at base } \mathrm{y}=0,025 & \mathrm{ksf} \\
\mathrm{p}_{\mathrm{i} y} & =0.145 & \mathrm{ksf} \\
\mathrm{P}_{\mathrm{c}} & = & 1.40 \\
\mathrm{~h}_{\mathrm{c}} & =10.491 & \mathrm{kip} \\
\text { ft } \\
\text { at } y=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{cy}} & =0.088 & \mathrm{ksf} \\
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{cy}} & =0.001 & \mathrm{ksf}
\end{array}
$$

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESC	N:		Aeration Basins	JOB NO:	11962A. 00

DESIGN TASK:
Aeration Basin Transverse Hydrodynamic Pressures (CSZ Seismic Level)
vertical acceleration:

$$
p_{\mathrm{wy}}=\ddot{u} \gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

$$
\begin{array}{rlrl}
u ̈ & =0.1784 \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } y=0, p_{v y} & =0.176 & \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
p_{w y}=\frac{S_{a i} \text { I } \varepsilon \gamma_{c}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{R_{\mathrm{wi}}}=
$$

$$
p_{w y}=0.1498 * \gamma_{c} *\left(t_{w} / 12\right)
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.034 \mathrm{ksf}
$$ at base $\mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.034 \mathrm{ksf}$

hydrostatic:

$$
q_{h y}=\gamma_{L}\left(H_{L}-y\right)=
$$

combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{q}_{\mathrm{hy}}=0.000 \mathrm{ksf}$ at base $y=0, q_{\mathrm{hy}}=0.987 \mathrm{ksf}$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{y}}=0.106 \mathrm{ksf}
$$

$$
\text { at base } y=0, p_{y}=0.251 \mathrm{ksf}
$$

9). wall design pressures for hydrostatic + dynamic:
wall height, $\mathrm{H}_{\mathrm{w}}=18.5 \mathrm{ft}$ liquid height, $H_{L}=15.82 \mathrm{ft}$

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

The site has groundwater present.
wall height $=18.5 \mathrm{ft}$ soil height above top of base $=0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$
dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
sat. soil lateral pressure $=0.000 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000$ ksf unfactored soil, q3 $=0.0000 \mathrm{ksf}$ unfactored soil, q4 $=0.000$ ksf equivalent soil loadings:

unfactored q5	$=0.0000$	ksf
unfactored q6	$=0.0000$	ksf

soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq)}}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:


```
                                    Load Cases:
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic
```

a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

c). load case 3: static soil + LL surcharge:
wall height $=18.5 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$ groundwater height $=0 \mathrm{ft}$
equivalent static soil \& surcharge loadings...

LL lateral surcharge, q1 $=0.000 \mathrm{ksf}$
unfactored soil, q2 $=0.000 \mathrm{ksf}$
unfactored soil, q3 $=0.000 \mathrm{ksf}$
unfactored soil, q4 $=0.000 \mathrm{ksf}$
equivalent soil loadings:
unfactored $\mathrm{q} 5=0.000 \mathrm{ksf}$
unfactored $\mathrm{q} 6=0.000 \mathrm{ksf}$
unfactored $\mathrm{q} 7=0.000 \mathrm{ksf}$
d). load case 4: soil seismic: (*note: add static soil pressure $\mathrm{q} 6 \& \mathrm{q} 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...

wall height $=18.5 \mathrm{ft}$
soil height on wall $=0 \mathrm{ft}$

Engineers...Working Wonders With Water '"

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEE	
CHKD:		DESC	N:		Aeration Basins	JOB NO:	11962A. 00
DESIGN	ASK:		n Bas		Pressures (CSZ Seism	- Longit	Direction)

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity $=$ no roof $\&$ fixed at floor
tank unit width perpendicular to EQ., $B=1 \mathrm{ft}$
tank inside length in direction of seismic, $\mathrm{L}=175 \mathrm{ft}$
tank wall thickness, $\mathrm{t}_{\mathrm{w}}=18$ inch
wall height, $\quad \mathrm{H}_{\mathrm{w}}=18.5 \mathrm{ft}$
liquid height, $\mathrm{H}_{\mathrm{L}}=15.82 \mathrm{ft}$
liquid specific gravity $=1$
liquid density, $\gamma_{\mathrm{L}}=(\mathrm{sp} . \mathrm{gr} .)^{*} \gamma_{\mathrm{w}}=0.0624 \mathrm{k} / \mathrm{ft}^{3}$
acceleration due to gravity, $\mathrm{g}=32.17 \mathrm{ft} / \mathrm{sec}^{2}$
liquid mass density, $\rho_{\mathrm{L}}=\gamma_{\mathrm{L}} / \mathrm{g}=0.00194 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}{ }^{4}$

Soil Data
The site has groundwater present.
soil height above top of foundation base $=\mathbf{0} \mathrm{ft}$
groundwater ht. above foundation base $=\mathbf{0} \mathrm{ft}$
dry soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$

\qquad
saturated soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
dry soil unit weight $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \quad \mathrm{ksf}$
ALL SECTION

Seismic:

Engineers...Working Wonders With Water '"

BY:	BS	DATE:	Aug-21	NT:	City of Wilsonville	SHEET:	
CHKD:		DESCR			Aeration Basins	JOB NO:	11962A. 00
DESIGN	ASK:		on Basin	Hydrod	Pressures (CSZ Seism	- Longitu	Direction)

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$
$(18 / 12) *(18.5) * 0.15=4.16$ kip
$18.5 / 2=9.250 \mathrm{ft}$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=(175)^{*}(1) *(15.82) * 32.17=172.75$ kip

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \rho_{\mathrm{c}}=0.12939 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}^{*} \rho_{L}=0.28024 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
centroidal distance of masses, $\mathrm{h}=\left(\mathrm{h}_{\mathrm{w}}{ }^{*} \mathrm{~m}_{\mathrm{w}}+\mathrm{h}_{\mathrm{i}}{ }^{*} \mathrm{~m}_{\mathrm{i}}\right) /\left(\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{i}}\right)=6.981 \mathrm{ft}$

period of tank plus impulsive mass, $T_{i}=2 \pi / \omega_{i}=2 \pi / 56.0621=0.1121 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{a i}=S_{D S}=0.446 \quad g$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:
$\lambda=\sqrt{3.16 \mathrm{~g} \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{L}}\right)\right)}=\quad\left(3.16^{*} 32.2^{*} \tanh \left(3.16^{*}(0.0904)\right)\right)^{\wedge} 1 / 2=5.3174$
$\omega_{\mathrm{c}}=\frac{\lambda}{\sqrt{\mathrm{L}}}=\quad 5.3174 /(175)^{\wedge 1 / 2}=0.4020 \mathrm{rad} / \mathrm{sec}$,

$$
\text { effective mass coeff., } \varepsilon=0.0151\left(\frac{L}{H_{L}}\right)^{2}-0.1908\left(\frac{L}{H_{L}}\right)+1.021 \text {, but } \leq 1.0=0.7581
$$

BY:	BS	$\begin{aligned} & \text { DATE: } \\ & \text { DESC } \end{aligned}$	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:					Aeration Basins	JOB NO:	11962A. 00
DESIGN	ASK:		on Basin	rody	Pressures (CSZ Seism	- Longitu	Direction)

$L / H_{L}=11.06195$
$H_{L} / L=0.09040$
3). lateral fluid impulsive force: Dynamic Model
4). lateral fluid convective force: $W c=$ equivalent mass of the convective component of liquid.

$$
\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{L}}\left(0.264\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right) \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)\right)=172.75^{\star}\left(0.264^{\star}(11.0619)^{\star} \tanh \left(3.16^{\star}(0.0904)\right)\right)=140.32 \mathrm{kip}
$$

$$
h_{c(\text { EEP })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{L}\right)\right)-1}{3.16\left(\frac{H_{L}}{L}\right) \sinh \left(3.16\left(\frac{H_{L}}{L}\right)\right)}\right)=7.963 \quad f t
$$

$$
h_{c(\mathbb{B P)})}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)-2.01}{3.16\left(\frac{H_{L}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=201.127 \mathrm{ft}
$$

convective force, $P_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{a}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=\quad(0.0319 * 1.25 / 1) * 140.32=\quad 5.6 \quad$ kip

$$
\begin{aligned}
& \left(\tanh \left(0.866 \frac{L}{L}\right)\right) \quad \mathrm{Wi} \text { equivalent mass of the impulsive component of liquid. } \\
& W_{i}=W_{L}\left(\frac{\tanh \left(0.866 \frac{L}{H_{L}}\right.}{0.866 \frac{\mathrm{~L}}{H_{L}}}\right)=172.75^{*}\left(\tanh \left(0.866^{*}(11.0619)\right) / 0.866^{*}(11.0619)\right)=18.03 \mathrm{kip} \\
& \text { hi (EBP) }=\mathrm{HL} \text { * } 0.375=15.82 \text { * } 0.375=5.933 \mathrm{ft} \\
& \text { hi }(\text { IBP })=H L *\left\{\left\{\left(0.866^{*} L / H L\right) /\left(2^{*} \tanh \left(0.866^{*} L / H L\right)\right)\right\}-1 / 8\right\}=73.798 \mathrm{ft} \\
& \text { impulsive force, } P_{i}=\left(\frac{S_{\text {ai }} I}{R_{\text {wi }}}\right) W_{i}=(0.446 * 1.25 / 3) * 18.03=3.4 \quad \mathrm{kip}
\end{aligned}
$$

Engineers...Working Wonders With Water '"

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN TASK:	Aeration Basin	ydrodyna	Pressures (CSZ Seism	- Longit	Direction)

5). lateral inertia force of the accelerating wall:
unit width wall mass, $\mathrm{W}_{\mathrm{w}}=4.16$ kip
wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=9.250 \mathrm{ft}$
wall inertia force, $P_{w}=\left(\frac{S_{a i} I \varepsilon}{R_{w i}}\right) W_{w}=\quad\left(0.446^{*} 1.25^{*} 0.7581 / 3\right)^{*} 4.16=0.59 \quad$ kip
6). maximum wave slosh height displacement:

$$
d_{(\max)}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.4} \mathrm{I}\right)=(175 / 2) *(0.0319 / 1.0 * 1.25)=3.49 \mathrm{ft}
$$

7). vertical acceleration:

$$
\begin{aligned}
\text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}= & 0.446
\end{aligned} \quad \text { *g }
$$

$$
\text { Design vertical acceleration, ü }=\frac{S_{a v} I \text { b }}{R_{i}}=0.1784^{*} 1 * 1 / 1=0.1784 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of $\mathrm{ACl} 350 \sec 5.3$:

convective

vertical acceleration

wall

hydrostatic
impulsive:

$$
p_{\text {iy }}=\frac{P_{i}\left[4 H_{L}-6 h_{i}-\left(6 H_{L}-12 h_{i}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

convective:

$$
p_{o y}=\frac{P_{c}\left[4 H_{L}-6 h_{c}-\left(6 H_{L}-12 h_{c}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

$$
\begin{array}{rll}
\mathrm{P}_{\mathrm{i}} & =3.40 & \mathrm{kip} \\
\mathrm{~h}_{\mathrm{i}} & =5.933 & \mathrm{ft} \\
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{iy}} & = & 0.027 \\
\mathrm{ksf} \\
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{iy}} & =0.188 & \mathrm{ksf} \\
& & \\
\mathrm{P}_{\mathrm{c}} & = & 5.60 \\
\mathrm{~h}_{\mathrm{c}} & \mathrm{kip} \\
& 7.963 & \mathrm{ft} \\
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{cy}} & =0.181 & \mathrm{ksf} \\
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{cy}} & =0.173 & \mathrm{ksf}
\end{array}
$$

vertical acceleration:

$$
p_{v y}=\ddot{u} \gamma_{L}\left(H_{L}-y\right)=
$$

$$
\begin{array}{rlrl}
u ̈ & =0.1784 \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } y=0, p_{v y} & =0.176 & \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
\mathrm{p}_{\mathrm{wy}}=\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon \gamma_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{\mathrm{R}_{\mathrm{wi}}}=
$$

$$
p_{w y}=0.1409 * \gamma_{c} *\left(t_{w} / 12\right)
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.032 \mathrm{ksf}
$$ at base $\mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.032 \mathrm{ksf}$

hydrostatic:

$$
\mathrm{q}_{\mathrm{hy}}=\gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{q}_{\mathrm{hy}}=0.000 \mathrm{ksf}$ at base $\mathrm{y}=0, \mathrm{q}_{\mathrm{hy}}=0.987 \mathrm{ksf}$
combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{y y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{y}}=0.190 \mathrm{ksf}$ at base $y=0, p_{y}=0.331 \mathrm{ksf}$

9). wall design pressures for hydrostatic + dynamic:

wall height, $\mathrm{H}_{\mathrm{w}}=18.5 \mathrm{ft}$
liquid height, $H_{L}=15.82 \mathrm{ft}$

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:			Aeration Basins	JOB NO:	11962A. 00
DESIGN	ASK:	Aeration Basin Hydrodynamic Pressures (CSZ Seismic Level - Longitudinal Direction)					

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

The site has groundwater present.
wall height $=18.5 \mathrm{ft}$ soil height above top of base $=0 \quad 0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$
dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
sat. soil lateral pressure $=0.000 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000$ ksf unfactored soil, q3 $=0.0000$ ksf unfactored soil, q4 $=0.000$ ksf equivalent soil loadings:

unfactored q5	$=0.0000$	ksf
unfactored q6	$=0.0000$	ksf

soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq)}}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN TASK:	Aeration Basin	ydrodyn	Pressures (CSZ Seism	- Longitu	Direction)

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:


```
                                    Load Cases:
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic
```

a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

c). load case 3: static soil + LL surcharge:
wall height $=18.5 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$ groundwater height $=0 \mathrm{ft}$
equivalent static soil \& surcharge loadings...

LL lateral surcharge, q1 $=0.000 \quad \mathrm{ksf}$
unfactored soil, q2 $=0.000$ ksf
unfactored soil, q3 $=0.000$ ksf
unfactored soil, q4 $=0.000$ ksf
equivalent soil loadings:
unfactored q5 $=0.000$ ksf
unfactored q6 $=0.000 \mathrm{ksf}$
unfactored q7 $=0.000$ ksf
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...

wall height $=18.5 \mathrm{ft}$
soil height on wall $=0 \mathrm{ft}$
unfactored equivalent soil seismic, q8 $=0.000$ ksf unfactored equivalent soil seismic, $q 9=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, q10 $=0.023$ ksf unfactored equivalent soil seismic, q11 $=0.000$ ksf unfactored equivalent soil seismic, q12 $=0.000$ ksf
(1)

CHKD:
DATE:
Aug-21
CLIENT:
City of Wilsonville
SHEET:
DESIGN TASK: DESCRIPTION: Aeration Basins JOB NO:
$\frac{11962 A .00}{O n l y)(C S Z)}$

Wall Data:

Wall Loadings:

Design for a slab or a wall?	Wall		
Wall Support Fixity $=$ Cantilever			
Span, $\mathrm{L}=$	18.5	ft	(design width)
Wall width, b	$=$	12	in

$$
\frac{(k+1)}{(0.21)}
$$

(0)

$\frac{(\mathrm{k} / \mathrm{ft})}{(0)}$	$\frac{(\mathrm{k} / \mathrm{ft})}{(0.21)}$
(0)	(0)

trial moment of Inertia, $\mathrm{I}_{\mathrm{x}}=0.5 \mathrm{I}_{\mathrm{g}}=2916 \quad \mathrm{in}^{4}$

Externally Applied Service Loads to a Wall with Cantilever Support									
Uniform	Trapezoidal Loads				Point Loads		Moment Loads		Concrete Load Factors
	Begin		End		$\begin{gathered} a \\ (\mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} \text { P } \\ (\mathrm{kip}) \\ \hline \hline \end{gathered}$	$\begin{gathered} c \\ (\mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{ft-k}) \end{gathered}$	
$\begin{gathered} \text { w } \\ (\mathrm{k} / \mathrm{ft}) \end{gathered}$	$\begin{gathered} \hline \mathrm{b} \\ (\mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{w}_{\mathrm{b}} \\ (\mathrm{k} / \mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{e} \\ (\mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{w}_{\mathrm{e}} \\ (\mathrm{k} / \mathrm{ft}) \\ \hline \end{gathered}$					
	2.68	0.212	18.5	0.502					1
				optiona	ronm	ad fac	mom	(ACl 350)	1

Results:

Calculated Reactions, Moments, and Deflections for the Wall with Cantilever Support										
Load Type	Reactions, R or R_{u}		Maximum Moments, $\mathrm{M}^{\text {or }} \mathrm{M}_{\mathrm{u}}$				* Maximum Short Term Deflections			
	Left End	Right End	Max Positive		Max Negative		downward		upward	
	$\begin{gathered} \mathrm{R}_{\mathrm{L}} \\ \text { (kip) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{R}} \\ \text { (kip) } \\ \hline \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \mathrm{x} \text { distance } \\ (\mathrm{ft}) \end{array}$	$\begin{gathered} +\mathrm{M} \\ (\mathrm{ft}-\mathrm{k}) \\ \hline \end{gathered}$	x distance (ft)	$\begin{gathered} -\mathrm{M} \\ (\mathrm{ft-k}) \\ \hline \hline \end{gathered}$	$\begin{array}{\|c\|} \hline x \text { distance } \\ (\mathrm{ft}) \end{array}$	$\begin{gathered} \Delta \\ \hline \text { (in) } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline x \text { distance } \\ (\mathrm{ft}) \end{array}$	$\begin{gathered} \hline \Delta \\ \text { (in) } \end{gathered}$
service loads	0.00	5.65	0.000	0.00	18.500	-38.63	0.000	-0.455	18.500	0.000
factored loads	0.00	5.65	0.000	0.00	18.500	-38.63 -38.63	$\begin{gathered} \Delta \leq \mathrm{L} / 240 \text {,Okay } \quad \Delta \leq \mathrm{L} / 240 \text {, Okay } \\ \Delta \max =\mathrm{L} / 240=0.925^{\prime \prime} \end{gathered}$			

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN	ASK:	Dividing	ll betwee	ation Basins 1\&2 (Hydr	ic Loading	CSZ)

Wall Shear Capacity (Based on ACI 318, 11.2.1.1):

Maximum Shear, $\mathrm{V}_{\mathrm{u}}=$	5.65	kip	concrete, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=$	4	ksi
Wall width, $\mathrm{b}=$	12	in	reinforcing, $\mathrm{f}_{\mathrm{y}}=$	60	ksi
Depth to reinforcing, $\mathrm{d}=$	15	in	concrete modulus, $\mathrm{E}_{\mathrm{c}}=57^{*}\left(\mathrm{f}_{\mathrm{c}}{ }^{\prime}\right)^{1 / 2}=$	3605	ksi

Factored Shear Diagram

factored shear force, $\mathrm{V}_{\mathrm{u}}=5.650$ kip
Concrete Shear Capacity, $\quad \phi \mathrm{V}_{\mathrm{c}}=\phi * 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}^{\prime}{ }_{\mathrm{c}}\right)^{1 / 2}=\quad 22.768$ kip

$$
ø \mathrm{Vc}>\mathrm{Vu}, \mathrm{OK}
$$

Minimum shrinkage-temperature requirement in the flexure direction:
wall minimum temperature $/$ shrinkage steel ratio $=\mathbf{0 . 0 0 5 0 0}$
number of layers of reinforcement in the wall (1 or 2?) = 2

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN	TASK:	Dividing	all betwe	ration Basins 1\&2 (Hydr	ic Loading	CSZ)

Wall Bending:

Service Moment, $\mathrm{M}(+)=$	0.00	ft-k	concrete strength, $\mathrm{f}^{\prime} \mathrm{c}=$	4
Service Moment, M(-) =	38.63	ft-k	reinforcing yield strength, $\mathrm{f}_{\mathrm{y}}=$	60
Factored Moment, $\mathrm{M}_{\mathrm{u}}(+)=$	0.00	ft-k	concrete modulus, $\mathrm{E}_{\mathrm{c}}=57$ * $\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}=$	3605
Factored Moment, $\mathrm{M}_{\mathrm{u}}(-)=$	38.63	ft-k	reinforcement modulus, $\mathrm{E}_{\mathrm{s}}=$	29000
Wall width, $\mathrm{b}=$	12	in	$\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}=$	8.044
Depth to reinforcing, $\mathrm{d}=$	15	in	$\beta_{1}=$	0.85
Thickness of wall, $\mathrm{h}=$	18	in	ϕ, Bending =	0.9

1). Negative Steel: (location at $x=18.5 \mathrm{ft}$)

Depth to negative reinforcing, $\mathrm{d} 1=2.5$ in

$$
M_{u}(-)=38.63 \quad \mathrm{ft}-\mathrm{k}
$$

Wall width, $\mathrm{b}=12$ in Depth to reinforcing, $\mathrm{d}=\mathrm{h}-\mathrm{d} 1=15.5$ in Area steel required, $\mathrm{A}_{\mathrm{s}(\text { req'd })}^{\prime}=0.569 \mathrm{in}^{2}$

Bar number size $=\quad \# 9$
Spacing of negative bars $=6 \quad$ in
Area of steel provided, $\mathrm{A}_{\mathrm{s}}=2.00 \mathrm{in}^{2}$
Min area steel req'd, $\mathrm{A}_{\mathrm{s}(\text { min })}=0.62 \mathrm{in}^{2}$
Max area allowed, $\mathrm{A}_{\mathrm{s}(\max)}^{\prime}=3.98 \mathrm{in}^{2}$
2). Positive Steel: (location at $x=0 \mathrm{ft}$)
concrete clear cover to positive steel = 2 in
$\mathrm{M}_{\mathrm{u}}(+)=0 \quad \mathrm{ft}-\mathrm{k}$

Wall width, $\mathrm{b}=12$ in
Depth to reinforcing, $d=15$ in
Area steel required, $\mathrm{A}_{\mathrm{s}(\text { req'd })}=0.000 \mathrm{in}^{2}$
Bar number size = \# 9
Spacing of positive bars = 6
Area of bottom steel provided, $\mathrm{A}_{\mathrm{s}}=2.00 \mathrm{in}^{2}$
Min area steel req'd, $\mathrm{A}_{\mathrm{s}(\mathrm{min})}=0.54 \mathrm{in}^{2}$
, $\rho=\mathrm{A}_{\mathrm{s}} / \mathrm{bd}=0.01111$

Max area allowed, $\mathrm{A}_{\mathrm{s}_{(\max)}}=3.85 \quad \mathrm{in}^{2} \quad, \rho_{(\max)}=0.02138$

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN TASK:	Dividing Wall Strength for 18" Thick Wall (Hydrodynamic Loading Only) (CSZ)				

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

Compression width of wall, $\mathrm{b}=$	12	inch
Thickness of wall, $\mathrm{h}=$	18	inch
Depth to reinforcing, $\mathrm{d}=$	15	inch
factored design moment, $\mathrm{M}_{\mathrm{u}}=$	38.63	ft-k
factored design shear, $\mathrm{V}_{\mathrm{u}}=$	5.65	kip

$$
\begin{aligned}
\mathrm{f}^{\prime}{ }_{\mathrm{c}}(\mathrm{psi}) & =4000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =\mathbf{6 0 0 0 0} \\
\phi, \text { Bending } & =1 \\
\phi, \text { Shear } & =1 \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3604997 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =8.04 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2} & = & 22.77 \\
\text { stirrup spacing, } \mathrm{s}= & \mathbf{0} & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

comment : Existing 18" wall w/ \#9@6"

$$
\begin{aligned}
& \text { Area steel provided, } A_{s}=2 \quad i n^{2} \quad \rho=A_{s} / b d=0.01111 \\
& \rho(\min)<A s / b d<\rho(\max)-O K \\
& \begin{array}{llll}
\mathrm{A}_{\mathrm{s}(\text { min })} & =0.32 & \mathrm{in}^{2} & \rho_{\text {(min) }}=0.00180 \\
& =3.85 & \mathrm{in}^{2} & \rho(\text { na }
\end{array} \\
& \mathrm{A}_{\mathrm{s}(\max)}=3.85 \mathrm{in}^{2} \quad \rho_{(\max)}=0.02138 \\
& \text { bending strength, } \quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right) \\
& \phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.01111^{*} 60^{*} 12^{*} 15^{2} *\left(1-0.588^{*} 0.01111^{*} 60 / 4\right)^{*}(\mathrm{ft} / 12)=135.294 \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}
\end{aligned}
$$

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN TASK:	Dividing Wall Strength for 12" Thick Wall (Hydrodynamic Loading Only) (CSZ)				

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

| Compression width of wall, $\mathrm{b}=$ | 12 | inch |
| ---: | :---: | :--- | :--- |
| Thickness of wall, $\mathrm{h}=$ | 12 | inch |
| Depth to reinforcing, $\mathrm{d}=$ | 9 | inch |
| factored design moment, $\mathrm{M}_{\mathrm{u}}=$ | 17.1 | ft-k |
| factored design shear, $\mathrm{V}_{\mathrm{u}}=$ | 3.50 | kip |

$$
\begin{aligned}
\mathrm{f}^{\prime}{ }_{\mathrm{c}}(\mathrm{psi}) & =4000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =\mathbf{6 0 0 0 0} \\
\phi, \text { Bending } & =1 \\
\phi, \text { Shear } & =1 \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3122019 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =9.29 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 13.66 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

comment : existing 12" wall w/ \#7@12"
Area steel provided, $\mathrm{A}_{\mathrm{s}}=$ \square

$$
\rho=A_{s} / b d=0.00556
$$

$$
\rho(\min)<\mathrm{As} / \mathrm{bd}<\rho(\max)-\mathrm{OK}
$$

$$
\begin{array}{llll}
\mathrm{A}_{\mathrm{s}(\min)}= & 0.19 & \mathrm{in}^{2} & \rho_{(\min)}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)}=1.73 & \mathrm{in}^{2} & \rho_{(\max)}=0.01604
\end{array}
$$

bending strength, $\quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)$
$\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00556^{*} 60^{*} 12^{*} 9^{2} *\left(1-0.588^{*} 0.00556^{*} 60 / 3\right)^{*}(\mathrm{ft} / 12)=25.235 \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}$
Moment strength \geq design moment, Okay

BY BS DATE $7 / 9 / 21$ SUBJECT City of wilsonville SHEET NO. \qquad OF CHKD. BY \qquad DATE \qquad Aeration Basins JOB NO. 11962 A. 00

Aeration Basins Area C. Perimeter Basin Wall The existing stabilization perimeter walls along the north and south elevations will be checked for the seismic loads Since the basin is partially buried, there will be soil pressures present to cerist the seismic effects. The perimeter walls are $12^{\prime \prime}$ thick with $118 \mathrm{e} 12^{\prime \prime}$ vertical reinforcing
 and $4.7 \mathrm{e} 12^{\prime \prime}$ horrzontal reinforcing inside face and \#8c12" horizontal reinforcing outside fine.

For soil pressure on wall, asswine a land of yopcf triangular. See affached spreadsheet for hydrostatic $\frac{1}{\text { F }}$ hydrodynamic loads on wall.

Checking wall strength vertically (48 © $\left(2^{\prime \prime}\right.$ vert rein). Fires are at BSEF-2E:

$$
\begin{aligned}
& M_{w y}=18.35 \mathrm{l} \cdot \mathrm{ft} / \mathrm{ff} \quad \quad \phi M_{m}=33.26 \mathrm{k} \cdot \mathrm{fl} / \mathrm{ft} \\
& V_{u y}=7.26 \mathrm{k} / \mathrm{f} \quad \mathrm{f}_{n}=13.66 \mathrm{k} / \mathrm{ft} \\
& \text { Moment DCR }=\frac{18.35}{33.26}=0.55 \text { (ok) } \\
& \text { Sher } D C R=\frac{7.26}{13.66}=0.53(06)
\end{aligned}
$$

$$
\begin{aligned}
& M_{u x t}=14.45 \mathrm{k} \cdot \mathrm{ft} \mathrm{IF}_{\mathrm{f}} \quad \phi \mathrm{Mn}_{\mathrm{n}}=33.26 \mathrm{k} \cdot \mathrm{f}_{4} / \mathrm{ff}_{4} \\
& M_{0 x}=-7.03 \mathrm{k} \cdot \mathrm{ft} / \mathrm{ft} \quad \phi M_{m}=25.68 \mathrm{k} \cdot \mathrm{ff}_{\mathrm{H}} / \mathrm{ft} \\
& V_{J_{x}}=4.61 \mathrm{k} / \mathrm{ft}_{t} \quad \phi V_{n}=13.66 \mathrm{k} / \mathrm{f}_{t} \\
& + \text { ManantDCE }=\frac{14.45}{33.76}=0.43(0 \mathrm{C}) \\
& \text { - Mordant DCR }=\frac{7.03}{25.685}=0.27 \text { (ob) } \\
& \text { Shear } D C R=\frac{4.61}{18.66}=0.34(0 k)
\end{aligned}
$$

Checking free board height in basin. For Disk, Category III, $S=0.7 * d_{\text {max }}$.

$$
f_{l a n g i t h} \text { final }-0.7(3.17 f)=2.22 \mathrm{ff}
$$

free board height $=2.00 \mathrm{ft}$
2.00 ft 71.68 A (ok) Free band is sufficient.
2.00 ft 22.2 Zf (NG) Fie board is not sufficient.
\qquad BS DATE \qquad $719 / 21$ SUBJECT
city of Wilsonville A SHEETNO. \qquad OF \qquad $\mathrm{CHKO} . \mathrm{BY}$ \qquad DATE \qquad JOB NO. $11962 A .00$

Checking wall strength vertically. Forces are at CSE seistmic level.

$$
\begin{aligned}
& M_{u y}=20.22 \text { k.fiff } \Delta M_{A}=33.26 \mathrm{k} \cdot \mathrm{ffft} \\
& V_{u y}=7.92 \mathrm{k} / f+\quad \phi V_{u}=13.66 \mathrm{kff} \\
& M_{\text {oment }} D C R=\frac{20.22 k+1 f+}{33.26 k+1 f t}=0.61(d) \\
& \text { Shear DCR }=\frac{3.926 \text { ift }}{1566 \text { lift }}=0.58 \text { (sle) }
\end{aligned}
$$

Cheking wall strenget horizontally.

$$
\begin{aligned}
& M_{u y}=16.25 \mathrm{k} \cdot \mathrm{ff} \text { ift } \quad \text { क14n }=3326 \mathrm{k} \cdot \mathrm{ft} / \mathrm{ft} \\
& V_{u x}=5.18 \mathrm{k} / \mathrm{ft} \quad \phi v_{A}=13.66 \mathrm{k} / \mathrm{f}_{7} \\
& \text { Monant DCR }=\frac{16.254 \cdot 6+1 f^{2}}{33.26 \cdot 4 \cdot+4}=0.49 \text { (de) } \\
& \text { Shear DCQ }=\frac{33.26616}{13.66 \mathrm{kta}}=0.38 \text { lok }
\end{aligned}
$$

Engineers...Working Wonders With Water '"

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN	ASK:		Stabilizatin Basins (Transverse Direction) (BSE-2E)			

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity $=$ no roof $\&$ fixed at floor
tank unit width perpendicular to EQ., $B=1 \mathrm{ft}$
tank inside length in direction of seismic, $\mathrm{L}=25 \mathrm{ft}$
tank wall thickness, $\mathrm{t}_{\mathrm{w}}=18$ inch
wall height, $\quad \mathrm{H}_{\mathrm{w}}=18.67 \mathrm{ft}$
liquid height, $\mathrm{H}_{\mathrm{L}}=16.67 \mathrm{ft}$
liquid specific gravity $=1$
liquid density, $\gamma_{\mathrm{L}}=(\mathrm{sp} . \mathrm{gr} .)^{*} \gamma_{\mathrm{w}}=0.0624 \mathrm{k} / \mathrm{ft}^{3}$
acceleration due to gravity, $\mathrm{g}=32.17 \mathrm{ft} / \mathrm{sec}^{2}$
liquid mass density, $\rho_{\mathrm{L}}=\gamma_{\mathrm{L}} / \mathrm{g}=0.00194 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}$

Soil Data
The site has no groundwater.
soil height above top of foundation base $=\mathbf{0} \mathrm{ft}$

groundwater ht. above foundation base $=\mathbf{0} \mathrm{ft}$
dry soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$ \qquad
saturated soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
dry soil unit weight $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
0
concrete strength, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4 \mathrm{ksi}$
concrete density, $\gamma_{\mathrm{c}}=0.150 \mathrm{k} / \mathrm{ft}^{3}$
concrete modulus of elasticity, $\mathrm{E}_{\mathrm{c}}=3605.0 \mathrm{ksi}$
concrete mass density, $\rho_{c}=\gamma_{c} / \mathrm{g}=0.004663 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{4}$
Seismic:
Deisgn, 5% damped, spectral response acceleration at the short period of 0.2-second, $\mathrm{S}_{\mathrm{DS}}=$
Deisgn, 5% damped, spectral response acceleration at a period of 1 -second, $\mathrm{S}_{\mathrm{D} 1}=\begin{aligned} & \mathbf{0 . 7 4 4} \\ & \mathbf{0 . 4 0 5}\end{aligned} \quad{ }^{\mathrm{*} g} \mathrm{~g} g$

Structure Risk Category $=$	$\mathbf{2}$
Importance factor, $\mathrm{I}=$	$\mathbf{1}$
Response modification factor, $\mathrm{R}_{\mathrm{wi}}=$	$\mathbf{3}$
Response modification factor, $\mathrm{R}_{\mathrm{wc}}=$	$\mathbf{1}$

Load Cases:

case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case $4=$ soil + soil seismic + wall seismic

Engineers...Working Wonders With Water '"

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN	ASK:		Stabilizatin Basins (Transverse Direction) (BSE-2E)			

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$
$(18 / 12) *(18.67) * 0.15=4.20$ kip
$18.67 / 2=9.335 \mathrm{ft}$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=$
(25) * (1) * (16.67) * $32.17=26.01$ kip

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \rho_{\mathrm{c}}=0.13058 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}^{*} \rho_{L}=0.26806 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
centroidal distance of masses, $\mathrm{h}=\left(\mathrm{h}_{\mathrm{w}}{ }^{*} \mathrm{~m}_{\mathrm{w}}+\mathrm{h}_{\mathrm{i}}{ }^{\star} \mathrm{m}_{\mathrm{i}}\right) /\left(\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{i}}\right)=7.261 \mathrm{ft}$
wall fixity condition is no roof \& fixed at floor:
wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k=E c^{*}(t w / h)^{3} / 48=1144.17 \mathrm{k} / \mathrm{ft} / \mathrm{ft}$

$(1144.17 /(0.1306+0.2681))^{\wedge} 1 / 2=53.5744 \mathrm{rad} / \mathrm{sec}$
period of tank plus impulsive mass, $\mathrm{T}_{\mathrm{i}}=2 \pi / \omega_{\mathrm{i}}=2 \pi / 53.5744=0.1173 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{a i}=S_{D S}=0.744 \quad g$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

$\mathrm{L}=$	25	ft
B	$=1$	ft
H_{L}	$=16.67$	ft
W_{L}	$=26.01$	kip

$L / H_{L}=1.49970$
$H_{L} / L=0.66680$
3). lateral fluid impulsive force: Dynamic Model

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{i}}=\mathrm{W}_{\mathrm{L}}\left(\frac{\tanh \left(0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right)}{0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}}\right)=\quad 26.01^{*}\left(\tanh \left(0.866^{*}(1.4997)\right) / 0.866^{*}(1.4997)\right)=17.25 \mathrm{kip} \\
& \mathrm{hi}(\mathrm{EBP})=\mathrm{HL} * 0.375=16.67 \text { * } 0.375=6.251 \mathrm{ft} \\
& \text { hi }(\mathrm{IBP})=\mathrm{HL} *\left\{\left\{\left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right) /\left(2^{*} \tanh \left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right)\right)\right\}-1 / 8\right\}=10.483 \mathrm{ft} \\
& \text { impulsive force, } P_{i}=\left(\frac{S_{a i} I}{R_{\text {wi }}}\right) W_{i}= \\
& (0.744 * 1 / 3) * 17.25=4.3 \text { kip }
\end{aligned}
$$

4). Lateral fluid convective force:
$\mathrm{Wc}=$ e equivalent mass of the convective component of liquid.

$$
W_{c}=W_{L}\left(0.264\left(\frac{L}{H_{L}}\right) \tanh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)\right)=\quad 26.01^{*}\left(0.264^{*}(1.4997)^{\star} \tanh \left(3.16^{*}(0.6668)\right)\right)=\quad 10 \quad \text { kip }
$$

$$
\begin{gathered}
h_{c(\text { EBP) })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)-1}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=10.474 \mathrm{ft} \\
\mathrm{~h}_{\mathrm{c} \text { (IBP) })}=\mathrm{H}_{\mathrm{L}}\left(1-\frac{\cosh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)-2.01}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=12.446 \mathrm{ft}
\end{gathered}
$$

convective force, $P_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{a}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=\quad(0.1921 * 1 / 1) * 10=1.9 \quad$ kip

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET: JOB NO	
CHKD:		DESCRIPTION:		Aeration Basins		11962A. 00
DESIGN	ASK:		Stabiliza	asins (Transverse Dire	(BSE-2E)	

5). lateral inertia force of the accelerating wall:

$$
\begin{array}{rll}
\text { unit width wall mass, } W_{w} & =4.20 & \mathrm{kip} \\
\text { wall } \mathrm{c} \text {.g. relative to base, } \mathrm{h}_{\mathrm{w}} & = & 9.335
\end{array} \mathrm{ft}
$$

wall inertia force, $P_{w}=\left(\frac{S_{a i} I \varepsilon}{R_{w i}}\right) W_{w}=\quad\left(0.744^{*} 1^{*} 0.7688 / 3\right)^{*} 4.2=0.80 \quad$ kip
6). maximum wave slosh height displacement:

$$
d_{(\text {max })}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.4} \mathrm{I}\right)=(25 / 2)^{*}(0.1921 / 1.0 * 1)=2.40 \mathrm{ft}
$$

7). vertical acceleration:

$$
\begin{array}{r}
\text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}= \\
\text { vertical spectral response acceleration (per ACI } 350 \text { para 9.4.3), } \mathrm{S}_{\mathrm{av}}=\mathrm{C}_{\mathrm{t}}=0.744 \mathrm{~A} \mathrm{~S}_{\mathrm{DS}}=\begin{array}{ll}
& \text { *g } \\
0.2976 & \mathrm{~g}
\end{array} \\
\text { per ASCE 7-10 para. 15.7.7.2(b), use } \mathrm{I}=\mathrm{R}_{\mathrm{i}}=\mathrm{b}=1.0
\end{array}
$$

$$
\text { Design vertical acceleration, } \ddot{u}=\frac{\mathrm{S}_{\mathrm{av}} \mathrm{I} \quad \mathrm{~b}}{\mathrm{R}_{\mathrm{i}}}=0.2976^{* 1 * 1 / 1}=0.2976 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of ACl 350 sec 5.3 :

impulsive:

$$
p_{\mathrm{iy}}=\frac{P_{i}\left[4 H_{L}-6 h_{\mathrm{i}}-\left(6 \mathrm{H}_{\mathrm{L}}-12 h_{i}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

convective:

$$
p_{o y}=\frac{P_{c}\left[4 H_{L}-6 h_{c}-\left(6 H_{L}-12 h_{c}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

$$
\begin{array}{rll}
\mathrm{P}_{\mathrm{i}} & =4.30 & \mathrm{kip} \\
\mathrm{~h}_{\mathrm{i}} & =6.251 & \mathrm{ft} \\
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{iy}} & =0.032 & \mathrm{ksf} \\
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{iy}} & =0.226 & \mathrm{ksf}
\end{array}
$$

$$
P_{c}=1.90 \quad \text { kip }
$$

$$
\mathrm{h}_{\mathrm{c}}=10.474 \mathrm{ft}
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{cy}}=0.101 \mathrm{ksf}$ at base $y=0, p_{c y}=0.013 \mathrm{ksf}$

vertical acceleration:

$$
p_{\mathrm{wy}}=\ddot{u} \gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

$$
\begin{array}{rlrl}
u ̈ & =0.2976 \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } y=0, p_{v y} & =0.310 & \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
\mathrm{p}_{\mathrm{wy}}=\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon \gamma_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{\mathrm{R}_{\mathrm{wi}}}=
$$

$$
p_{w y}=0.1907 * \gamma_{c} *\left(t_{w} / 12\right)
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.043 \mathrm{ksf}
$$

hydrostatic:

$$
\mathrm{a}_{\mathrm{hy}}=\gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$ at base $\mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.043 \mathrm{ksf}$

at $y=H_{L}, q_{h y}=0.000 \mathrm{ksf}$ at base $\mathrm{y}=0, \mathrm{q}_{\mathrm{hy}}=1.040 \mathrm{ksf}$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{y}}=0.126 \mathrm{ksf}
$$

$$
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{y}}=0.410 \mathrm{ksf}
$$

9). wall design pressures for hydrostatic + dynamic:

$\begin{array}{rlr}\text { wall height, } H_{w} & =18.67 & \mathrm{ft} \\ \text { liquid height, } H_{L} & =16.67 & \mathrm{ft}\end{array}$

unfactored load $=0.293 \mathrm{ksf}$ resultant dynamic pressures

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

$=$

The site has no groundwater. wall height $=18.67 \mathrm{ft}$ soil height above top of base $=0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$ dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$ sat. soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000$ ksf unfactored soil, q3 $=0.0000$ ksf
equivalent soil loadings:
unfactored q5 $=0.0000 \mathrm{ksf}$ unfactored q6 $=0.0000 \mathrm{ksf}$
soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq})}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf unfactored equivalent soil seismic, $q 9=0 / 1.4=0.0000 \mathrm{ksf}$
unfactored wall seismic, q10 $=0.0429 / 1.4=0.0306 \mathrm{ksf}$
unfactored equivalent soil seismic, q11 $=0 / 1.4=0.0000 \mathrm{ksf}$ unfactored equivalent soil seismic, q12 $=0 / 1.4=0.0000 \mathrm{ksf}$

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:

Load Cases:

case 1 = water
case $2=$ water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case $4=$ soil + soil seismic + wall seismic
a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

equivalent static soil \& surcharge loadings...
 $=$

$\begin{array}{rll}\text { LL lateral surcharge, q1 }= & 0.000 & \mathrm{ksf} \\ \text { unfactored soil, q2 }= & 0.000 & \mathrm{ksf} \\ \text { unfactored soil, q3 }= & 0.000 & \mathrm{ksf}\end{array}$
equivalent soil loadings:
unfactored q5 $=0.000$ ksf
unfactored q6 $=0.000$ ksf
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...

wall height $=18.67 \mathrm{ft}$
soil height on wall $=0 \mathrm{ft}$
unfactored equivalent soil seismic, q8 = 0.000 ksf unfactored equivalent soil seismic, $q 9=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, q10 $=0.031$ ksf unfactored equivalent soil seismic, q11 $=0.000$ ksf unfactored equivalent soil seismic, q12 $=0.000$ ksf

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIG	ASK:		Stabilizatin Basins (Longitudinal Direction) (BSE-2E)			

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity $=$ no roof $\&$ fixed at floor
tank unit width perpendicular to EQ., $B=1 \mathrm{ft}$
tank inside length in direction of seismic, $L=60 \quad \mathrm{ft}$
tank wall thickness, $\mathrm{t}_{\mathrm{w}}=12$ inch
wall height, $\quad \mathrm{H}_{\mathrm{w}}=18.67 \mathrm{ft}$
liquid height, $\mathrm{H}_{\mathrm{L}}=16.67 \mathrm{ft}$
liquid specific gravity $=1$
liquid density, $\gamma_{L}=(\mathrm{sp} . \mathrm{gr} .)^{*} \gamma_{\mathrm{w}}=0.0624 \mathrm{k} / \mathrm{ft}^{3}$
acceleration due to gravity, $g=32.17 \mathrm{ft} / \mathrm{sec}^{2}$
liquid mass density, $\rho_{\mathrm{L}}=\gamma_{\mathrm{L}} / \mathrm{g}=0.00194 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}{ }^{4}$

Soil Data
The site has no groundwater.
soil height above top of foundation base $=\mathbf{0} \mathrm{ft}$
groundwater ht. above foundation base $=\mathbf{0} \mathrm{ft}$
dry soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$

\qquad
saturated soil lateral pressure $=\mathbf{0} \quad \mathrm{k} / \mathrm{ft}^{3}$
dry soil unit weight $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=\mathbf{0 . 0 0 0} \mathrm{ksf}$
0
concrete strength, $\mathrm{f}^{\prime} \mathrm{c}=\mathbf{~ k s i}$ concrete density, $\gamma_{\mathrm{c}}=0.150 \mathrm{k} / \mathrm{ft}^{3}$
concrete modulus of elasticity, $\mathrm{E}_{\mathrm{c}}=3605.0 \mathrm{ksi}$ concrete mass density, $\rho_{c}=\gamma_{c} / g=0.004663 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{4}$

Seismic:

Structure Risk Category $=$	$\mathbf{2}$
Importance factor, $\mathrm{I}=$	$\mathbf{1}$
Response modification factor, $\mathrm{R}_{\mathrm{wi}}=$	$\mathbf{3}$
Response modification factor, $\mathrm{R}_{\mathrm{wc}}=$	$\mathbf{1}$

Load Cases:

```
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
```

case $4=$ soil + soil seismic + wall seismic

Engineers...Working Wonders With Water '"

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIG	ASK:		Stabilizatin Basins (Longitudinal Direction) (BSE-2E)			

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$
$(12 / 12)$ * 18.67$)^{*} 0.15=2.80$ kip
$18.67 / 2=9.335 \mathrm{ft}$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=$
(60) * (1) * (16.67) * $32.17=62.41$ kip

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \rho_{\mathrm{c}}=0.08705 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}^{*} \rho_{L}=0.30993 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
centroidal distance of masses, $h=\left(h_{w}^{*} m_{w}+h_{i}{ }^{*} m_{i}\right) /\left(m_{w}+m_{i}\right)=6.927 \mathrm{ft}$
wall fixity condition is no roof \& fixed at floor:
wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k=E c^{*}(t w / h)^{3} / 48=390.46 \mathrm{k} / \mathrm{ft} / \mathrm{ft}$

$(390.46 /(0.0871+0.3099))^{\wedge 11 / 2}=31.3618 \mathrm{rad} / \mathrm{sec}$
period of tank plus impulsive mass, $\mathrm{T}_{\mathrm{i}}=2 \pi / \omega_{\mathrm{i}}=2 \pi / 31.3618=0.2003 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{a i}=S_{D S}=0.744 \quad g$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

3). lateral fluid impulsive force: Dynamic Model

$$
\mathrm{W}_{\mathrm{i}}=\mathrm{W}_{\mathrm{L}}\left(\frac{\tanh \left(0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right)}{0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}}\right)=\quad 62.41^{*}\left(\tanh \left(0.866^{*}(3.5993)\right) / 0.866^{*}(3.5993)\right)=19.94 \quad \mathrm{kip}
$$

4). lateral fluid convective force:
$\mathrm{Wc}=$ e equivalent mass of the convective component of liquid.

$$
\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{L}}\left(0.264\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right) \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)\right)=\quad 62.41^{*}\left(0.264^{*}(3.5993)^{*} \tanh \left(3.16^{*}(0.2778)\right)\right)=41.83 \mathrm{kip}
$$

$$
\begin{gathered}
h_{c(\text { EBP) }}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)-1}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=8.832 \mathrm{ft} \\
\mathrm{~h}_{\mathrm{c} \text { (IBP) })}=\mathrm{H}_{\mathrm{L}}\left(1-\frac{\cosh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)-2.01}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=28.102 \mathrm{ft}
\end{gathered}
$$

$$
\text { convective force, } P_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{a}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=\quad(0.1057 * 1 / 1)^{*} 41.83=4.4 \quad \text { kip }
$$

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET: JOB NO:	
CHKD:	DESCRIPTION:		Aeration Basins		11962A. 00
DESIGN TASK:		Stabilizati	Basins (Longitudinal Direction	(BSE-2E)	

5). lateral inertia force of the accelerating wall:

$$
\begin{array}{rrl}
\text { unit width wall mass, } \mathrm{W}_{\mathrm{w}} & =2.80 & \mathrm{kip} \\
\text { wall c.g. relative to base, } \mathrm{h}_{\mathrm{w}} & =9.335 & \mathrm{ft}
\end{array}
$$

wall inertia force, $\mathrm{P}_{\mathrm{w}}=\left(\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon}{\mathrm{R}_{\mathrm{wi}}}\right) \mathrm{W}_{\mathrm{w}}=\quad\left(0.744^{*} 1^{*} 0.5299 / 3\right)^{*} 2.8=0.37$ kip
6). maximum wave slosh height displacement:

$$
d_{(\max)}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.4} \mathrm{I}\right)=(60 / 2) *(0.1057 / 1.0 * 1)=3.17 \mathrm{ft}
$$

Wave height is greater than the freeboard of 2-ft. Check effects of wave spillage.
7). vertical acceleration:

$$
\begin{array}{r}
\text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}=\begin{array}{lll}
& 0.744 & { }^{*} \mathrm{~g} \\
\text { vertical spectral response acceleration (per ACl } 350 \text { para 9.4.3), } \mathrm{S}_{\mathrm{av}}=\mathrm{C}_{\mathrm{t}}=0.4 \mathrm{~S}_{\mathrm{DS}}= & 0.2976 \mathrm{~g}
\end{array} \\
\text { per ASCE 7-10 para. 15.7.7.2(b), use } \mathrm{I}=\mathrm{R}_{\mathrm{i}}=\mathrm{b}=1.0
\end{array}
$$

$$
\text { Design vertical acceleration, ü }=\frac{\mathrm{S}_{\mathrm{av}} \mathrm{I} \mathrm{~b}}{\mathrm{R}_{\mathrm{i}}}=0.2976^{* 1 * 1 / 1}=0.2976 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of ACl 350 sec 5.3 :

convective

impulsive:

$$
p_{\text {iy }}=\frac{P_{i}\left[4 H_{L}-6 h_{i}-\left(6 H_{L}-12 h_{i}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

convective:

$$
p_{o y}=\frac{P_{c}\left[4 H_{L}-6 h_{c}-\left(6 H_{L}-12 h_{c}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

$$
\begin{array}{rll}
\mathrm{P}_{\mathrm{i}} & =4.90 & \mathrm{kip} \\
\mathrm{~h}_{\mathrm{i}} & =6.251 & \mathrm{ft} \\
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{iy}} & = & 0.037 \\
\mathrm{ksf} \\
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{iy}} & =0.257 & \mathrm{ksf} \\
\mathrm{P}_{\mathrm{c}} & = & 4.40 \\
\mathrm{~h}_{\mathrm{C}} & =8.832 & \mathrm{kip} \\
\mathrm{ft} \\
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{cy}} & =0.156 & \mathrm{ksf} \\
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{cy}} & =0.108 & \mathrm{ksf}
\end{array}
$$

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET: JOB NO:	
CHKD:	DESCRIPTION:		Aeration Basins		11962A. 00
DESIGN TASK:		Stabilizati	Basins (Longitudinal Direction	(BSE-2E)	

vertical acceleration:

$$
p_{v y}=\ddot{u} \gamma_{L}\left(H_{L}-y\right)=
$$

$$
\begin{array}{rlr}
\text { ü } & =0.2976 \\
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{vy}} & =0.000 \mathrm{ksf} \\
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{vy}} & =0.310 \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
p_{w y}=\frac{S_{a i} I \varepsilon \gamma_{c}\left(t_{w} / 12\right)}{R_{w i}}=
$$

$$
\mathrm{p}_{\mathrm{wy}}=0.1314 * \gamma_{\mathrm{c}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.020 \mathrm{ksf}
$$

hydrostatic:

$$
q_{h y}=\gamma_{L}\left(H_{L}-y\right)=
$$

combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{1 y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$ at base $\mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.020 \mathrm{ksf}$

at $y=H_{L}, q_{h y}=0.000$ ksf at base $y=0, q_{\mathrm{hy}}=1.040 \mathrm{ksf}$
at $y=H_{w}, p_{y}=0.166$ ksf at base $y=0, p_{y}=0.429 \mathrm{ksf}$

9). wall design pressure for hydrostatic + dynamic:
wall height, $\mathrm{H}_{\mathrm{w}}=18.67 \mathrm{ft}$
liquid height, $H_{L}=16.67 \mathrm{ft}$

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET: JOB NO	
CHKD:		DESCRIPTION:		Aeration Basins		11962A. 00
DESIGN	ASK:		Stabilizati	asins (Longitudinal Direc	(BSE-2E)	

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

=

The site has no groundwater. wall height $=18.67 \mathrm{ft}$ soil height above top of base $=00 \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$ dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$ sat. soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000$ ksf
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000$ ksf unfactored soil, q3 $=0.0000$ ksf
equivalent soil loadings:
unfactored q5 $=0.0000 \mathrm{ksf}$ unfactored $\mathrm{q} 6=0.0000 \mathrm{ksf}$
soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq})}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf unfactored equivalent soil seismic, $q 9=0 / 1.4=0.0000$ ksf
unfactored wall seismic, q10 $=0.0197 / 1.4=0.0141 \mathrm{ksf}$
unfactored equivalent soil seismic, q11 =0/1.4 = 0.0000 ksf unfactored equivalent soil seismic, q12 $=0 / 1.4=0.0000 \mathrm{ksf}$

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET: JOB NO:	
CHKD:		DESCRIPTION:		Aeration Basins		11962A. 00
DESIGN	ASK:		Stabilizat	Asins (Longitudinal Dire	(BSE-2E)	

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:


```
                                    Load Cases:
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic
```

a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

(unfactored) hydrostatic

wall height $=18.67 \mathrm{ft}$ water depth $=16.67 \mathrm{ft}$
c). load case 3: static soil + LL surcharge:
wall height $=18.67 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$
equivalent static soil \& surcharge loadings...
 $=$

LL lateral surcharge, q1 $=0.000 \quad \mathrm{ksf}$ unfactored soil, q2 $=0.000$ ksf unfactored soil, q3 $=0.000$ ksf
equivalent soil loadings:
unfactored q5 $=0.000$ ksf
unfactored q6 $=0.000$ ksf
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...
wall height $=18.67 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$

unfactored equivalent soil seismic, q8 $=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, $q 9=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, q10 $=0.014$ ksf unfactored equivalent soil seismic, q11 $=0.000$ ksf unfactored equivalent soil seismic, q12 $=0.000$ ksf

Choice of Available Loadings					
load conditions (4 max)	load type	$\begin{aligned} & \hline \hline \text { load height, (ft) } \\ & \text {...only for custom } \\ & \text { loads } 100 \text { or } 400 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { unfactored loads: } \\ q, M, \text { or } F \\ (\mathrm{ksf}, \mathrm{ft}-\mathrm{k} / \mathrm{ft}, \mathrm{k} / \mathrm{ft}) \end{gathered}$	concrete load factors	
	Loading Selection Number			$\begin{gathered} \text { for } \\ \text { moment } \end{gathered}$	for shear
A	100	16.670	0.166	1	1
B	400	16.670	0.263	1	1
C	400	16.670	1.040	1	1
D	400	10.280	-0.411	0.9	0.9

Notes: 1). Load $100=$ uniform load of any load height $\geq b / 3 ;$ Load $400=$ triangular load of any load height $\geq b / 6$.
2). load height must be less than or equal to "b", and uniform load height \geq " $\mathrm{b} / 3$ ", and triangular load height \geq " $\mathrm{b} / 6$ " .
3). loads may be positive or negative.

plate thickness, $\mathrm{h}=$	12	in
concrete strength, $\mathrm{f}^{\prime} \mathrm{c}=$	4	ksi
reinforcing steel strength, fy	$=$	60
ksi		
lear cover to face of concrete	$=$	2

bar locations	d (in)	d^{\prime} (in)
Mx bending	$9^{\prime \prime}$	$3^{\prime \prime}$
My bending	$9.5^{\prime \prime}$	$2.5^{\prime \prime}$

reinforcing clear cover to face of concrete $=\mathbf{2}$ in number of curtains of reinforcing, $(1$ or 2$)=2$
Are bars in "x" or "y" direction closest to face of concrete? y minimum ratio of horizontal shrinkage-temperature steel $=\mathbf{0 . 0 0 5 0 0}$ minimum ratio of vertical shrinkage-temperature steel $=\mathbf{0 . 0 0 5 0 0}$

Engineers...Working Wonders With Water ${ }^{\text {sw }}$

BY: BS	DATE: Aug-21 CLIENT	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:	Aeration Basins	JOB NO:	11962A. 00
DESIGN TASK:	Stabilization Basin Perimieter Wall w/ Seismic Loads \& Soil Backfill (BSE-2E)			

Engineers...Working Wonders With Water ${ }^{51}$

BY: BS	DATE: Aug-21 CLIENT	City of Wilsonville	SHEET:
CHKD:	DESCRIPTION:	Aeration Basins	JOB NO: 11962A.00
DESIGN TASK:	Stabilization	ieter Wall w/ Seismic L	fill (BSE-2E)

BY:	BS	DATE:	Aug-21	CLIENT
CHKD:		City of Wilsonville	SHEET:	
DESIGN TASK:	DESCRIPTION:	Stabilization Basin Perimieter Wall w/ Seismic Loads \& Soil Backfill (BSE-2E)		

Concrete strength reduction factor for shear, $\phi=0.75$

$$
\begin{array}{rlrll}
\mathrm{d} & = & 9.5 & \text { in } & \\
\phi \mathrm{V}_{\mathrm{c}}=\phi^{*} 2^{*}\left(\mathrm{f}^{\prime} \mathrm{c}\right)^{1 / 2 *} \mathrm{~b}^{*} \mathrm{~d}= & \text { maximum shear, } \mathrm{V}_{\mathrm{u}} & = & 8.78 & \mathrm{k} / \mathrm{ft}
\end{array} \quad \text { OK }
$$

Reference:
"Moments and Reactions for Rectangular Plates"
Engineering Monograph No. 27
By: W. T. Moody, United States Bureau of Reclamation

Notes:
Quadratic interpolation is used for intermediate values within the Moody tables and between Moody figures.
The positive sign convention for moments M_{x} and M_{y} is tension on the loaded face of the plate.
The M_{x} moment is in the direction of the x-axis and the M_{y} moment is in the direction of the y-axis by plate sign convention.

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:
CHKD:	DESCRIPTION:		Aeration Basins	JOB NO:	$11962 A .00$	
DESIGN TASK:			Stabilization Basins Perimeter Wall Strength (Vertical Reinforcing) (BSE-2E)			

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

| | | |
| ---: | :---: | :--- | :--- |
| Compression width of wall, $b=$ | 12 | inch |
| Thickness of wall, $h=$ | 12 | inch |
| Depth to reinforcing, $\mathrm{d}=$ | 9 | inch |
| factored design moment, $\mathrm{M}_{\mathrm{u}}=$ | 22.22 | ft-k |
| factored design shear, $\mathrm{V}_{\mathrm{u}}=$ | 8.78 | kip |

$$
\begin{aligned}
\mathrm{f}^{\prime}{ }_{\mathrm{c}}(\mathrm{psi}) & =4000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =\mathbf{6 0 0 0 0} \\
\phi, \text { Bending } & =1 \\
\phi, \text { Shear } & =1 \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3604997 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =8.04 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 13.66 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

comment : existing 12" wall w/ \#8@12" vert reinf
 Moment strength \geq design moment, Okay
BY: BS
DATE: Aug-21
CLIENT:
City of Wilsonville
SHEET:
CHKD: DESCRIPTION: Aeration Basins
JOB NO: 11962A. 00

DESIGN TASK:
Stabilization Basins Perimeter Wall Strength (Horizontal Reinforcing) (BSE-2E)

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

Compression width of wall, $\mathrm{b}=$	12	inch
Thickness of wall, $\mathrm{h}=$	12	inch
Depth to reinforcing, $\mathrm{d}=$	9	inch
factored design moment, $\mathrm{M}_{\mathrm{u}}=$	17.62	$\mathrm{ft}-\mathrm{k}$
factored design shear, $\mathrm{V}_{\mathrm{u}}=$	5.62	kip

$$
\begin{aligned}
\mathrm{f}^{\prime} \mathrm{c}(\mathrm{psi}) & =4000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =60000 \\
\phi, \text { Bending } & =1 \\
\phi, \text { Shear } & =1 \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3604997 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =8.04 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 13.66 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

comment : existing 12" wall w/ \#8@12" horiz reinf outside face
Area steel provided, A_{s} $0.79 \mathrm{in}^{2}$

$$
\begin{aligned}
& \rho=A_{s} / b d=0.00731 \\
& \quad \rho(\min)<A s / b d<\rho(\max)-\text { OK }
\end{aligned}
$$

$$
\begin{array}{llll}
\mathrm{A}_{\mathrm{s}(\min)}= & 0.19 & \mathrm{in}^{2} & \rho_{(\min)}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)}=2.31 & \mathrm{in}^{2} & \rho_{(\max)}=0.02138
\end{array}
$$

bending strength, $\phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)$

$$
\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00731^{*} 60^{*} 12^{*} 9^{2 *}\left(1-0.588^{*} 0.00731^{*} 60 / 4\right)^{*}(\mathrm{ft} / 12)=33.256 \quad \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}
$$

BY: BS
DATE: Aug-21
CLIENT:
City of Wilsonville
SHEET:
CHKD: \qquad DESCRIPTION: Aeration Basins JOB NO: 11962A. 00

DESIGN TASK: Stabilization Basins Perimeter Wall Strength (Horizontal Reinforcing) (BSE-2E)

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

Compression width of wall, $b=$	$\mathbf{1 2}$	inch
Thickness of wall, $h=$	12	inch
Depth to reinforcing, $d=$	9	inch
factored design moment, $M_{u}=$	8.66	ft-k
factored design shear, $\mathrm{V}_{\mathrm{u}}=$	$\mathbf{5 . 6 2}$	kip

$$
\begin{aligned}
\mathrm{f}^{\prime} \mathrm{c}(\mathrm{psi}) & =4000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =60000 \\
\phi, \text { Bending } & =\mathbf{1} \\
\phi, \text { Shear } & =1 \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3604997 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =8.04 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 13.66 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

Bending Strength (ACI 318-10.2.1 thru 10.2.7)

comment : existing 12" wall w/ \#7@12" horiz reinf inside face
Area steel provided, $\mathrm{A}_{\mathrm{s}}=$
$0.6 \mathrm{in}^{2}$

$$
\begin{aligned}
& \rho=A_{s} / b d=0.00556 \\
& \quad \rho(\min)<A s / b d<\rho(\max)-\text { OK }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}(\min)} & =0.19 & \mathrm{in}^{2} & \rho_{(\min)}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)} & =2.31 & \mathrm{in}^{2} & \rho_{(\max)}=0.02138
\end{aligned}
$$

bending strength, $\phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)$
$\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00556^{*} 60^{*} 12^{*} 9^{2} *\left(1-0.588^{*} 0.00556 * 60 / 4\right)^{*}(\mathrm{ft} / 12)=25.676 \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}$

Moment strength \geq design moment, Okay

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity $=$ no roof $\&$ fixed at floor
tank unit width perpendicular to EQ., $B=1 \mathrm{ft}$
tank inside length in direction of seismic, $\mathrm{L}=25 \mathrm{ft}$
tank wall thickness, $\mathrm{t}_{\mathrm{w}}=18$ inch
wall height, $\quad \mathrm{H}_{\mathrm{w}}=18.67 \mathrm{ft}$
liquid height, $H_{L}=16.67 \mathrm{ft}$
liquid specific gravity $=1$
liquid density, $\gamma_{\mathrm{L}}=(\mathrm{sp} . \mathrm{gr} \text {. })^{*} \gamma_{\mathrm{w}}=0.0624 \mathrm{k} / \mathrm{ft}^{3}$
acceleration due to gravity, $\mathrm{g}=32.17 \mathrm{ft} / \mathrm{sec}^{2}$
liquid mass density, $\rho_{\mathrm{L}}=\gamma_{\mathrm{L}} / \mathrm{g}=0.00194 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}$

Soil Data
The site has no groundwater.
soil height above top of foundation base $=\mathbf{0} \mathrm{ft}$
groundwater ht. above foundation base $=\mathbf{0} \mathrm{ft}$
dry soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$

\qquad
saturated soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
dry soil unit weight $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \quad \mathrm{ksf}$
0
concrete strength, $\mathrm{f}^{\prime} \mathrm{c}=\mathbf{~ k s i}$ concrete density, $\gamma_{\mathrm{c}}=0.150 \mathrm{k} / \mathrm{ft}^{3}$
concrete modulus of elasticity, $\mathrm{E}_{\mathrm{c}}=3605.0 \mathrm{ksi}$ concrete mass density, $\rho_{c}=\gamma_{c} / g=0.004663 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{4}$

Seismic:

Structure Risk Category $=$	$\mathbf{3}$
Importance factor, $\mathrm{I}=$	$\mathbf{1 . 2 5}$
Response modification factor, $\mathrm{R}_{\mathrm{wi}}=$	$\mathbf{3}$
Response modification factor, $\mathrm{R}_{\mathrm{wc}}=$	$\mathbf{1}$

Load Cases:

```
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
```

case $4=$ soil + soil seismic + wall seismic

Engineers...Working Wonders With Water '"

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $h_{w}=$
$(18 / 12) *(18.67) * 0.15=4.20$ kip
$18.67 / 2=9.335 \mathrm{ft}$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=$
(25) * (1) * (16.67) * $32.17=26.01$ kip

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \rho_{\mathrm{c}}=0.13058 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}^{*} \rho_{L}=0.26806 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
centroidal distance of masses, $\mathrm{h}=\left(\mathrm{h}_{\mathrm{w}}{ }^{*} \mathrm{~m}_{\mathrm{w}}+\mathrm{h}_{\mathrm{i}}{ }^{*} \mathrm{~m}_{\mathrm{i}}\right) /\left(\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{i}}\right)=7.261 \mathrm{ft}$
wall fixity condition is no roof \& fixed at floor:
wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k=E c^{*}(\mathrm{tw} / \mathrm{h})^{3} / 48=1144.17 \mathrm{k} / \mathrm{ft} / \mathrm{ft}$

$(1144.17 /(0.1306+0.2681))^{\wedge} 1 / 2=53.5744 \mathrm{rad} / \mathrm{sec}$
period of tank plus impulsive mass, $\mathrm{T}_{\mathrm{i}}=2 \pi / \omega_{\mathrm{i}}=2 \pi / 53.5744=0.1173 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{a i}=S_{D S}=0.446 \quad g$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

3). lateral fluid impulsive force: Dynamic Model

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{i}}=\mathrm{W}_{\mathrm{L}}\left(\frac{\tanh \left(0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right)}{0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}}\right)=\quad 26.01^{*}\left(\tanh \left(0.866^{*}(1.4997)\right) / 0.866^{*}(1.4997)\right)=17.25 \mathrm{kip} \\
& \text { hi (EBP) }=\mathrm{HL} \text { * } 0.375=16.67 \text { * } 0.375=6.251 \mathrm{ft} \\
& \text { hi }(\mathrm{IBP})=\mathrm{HL} *\left\{\left\{\left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right) /\left(2^{*} \tanh \left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right)\right)\right\}-1 / 8\right\}=10.483 \mathrm{ft} \\
& \text { impulsive force, } P_{i}=\left(\frac{S_{\mathrm{ai}} I}{R_{\mathrm{wi}}}\right) \mathrm{W}_{\mathrm{i}}=(0.446 * 1.25 / 3) * 17.25=3.2 \mathrm{kip}
\end{aligned}
$$

4). Lateral fluid convective force:
$\mathrm{Wc}=$ e equivalent mass of the convective component of liquid.

$$
\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{L}}\left(0.264\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right) \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)\right)=\quad 26.01^{*}\left(0.264^{*}(1.4997)^{*} \tanh \left(3.16^{*}(0.6668)\right)\right)=\quad 10 \quad \text { kip }
$$

$$
\begin{gathered}
h_{c(\text { EBP })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{L}\right)\right)-1}{3.16\left(\frac{H_{L}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)}\right)=10.474 \mathrm{ft} \\
\mathrm{~h}_{\mathrm{c}(\text { (BP) })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)-2.01}{3.16\left(\frac{H_{L}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=12.446 \mathrm{ft}
\end{gathered}
$$

convective force, $P_{c}=\left(\frac{S_{a c} I}{R_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=\quad(0.1575 * 1.25 / 1) * 10=2.0 \quad$ kip

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A.00
DESIGN	ASK:		Stab	sverse	(CSZ)	

5). lateral inertia force of the accelerating wall:

unit width wall mass, W_{w}	$=$	4.20
kip		
wall c.g. relative to base, h_{w}	$=$	9.335

wall inertia force, $P_{w}=\left(\frac{S_{a i} I \varepsilon}{R_{w i}}\right) W_{w}=\quad\left(0.446^{\star 1} 1.25^{*} 0.7688 / 3\right)^{*} 4.2=0.60 \quad$ kip
6). maximum wave slosh height displacement:

$$
d_{(\max)}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.4} \mathrm{I}\right)=(25 / 2) *(0.1575 / 1.0 * 1.25)=2.46 \mathrm{ft}
$$

7). vertical acceleration:

$$
\begin{array}{r}
\text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}= \\
\text { vertical spectral response acceleration (per ACI } 350 \text { para 9.4.3), } \mathrm{S}_{\mathrm{av}}=\mathrm{C}_{\mathrm{t}}=0.446 \mathrm{~A} \mathrm{~S}_{\mathrm{DS}}=\begin{array}{ll}
& \text { *g } \\
0.1784 \mathrm{~g}
\end{array} \\
\text { per ASCE 7-10 para. 15.7.7.2(b), use } \mathrm{I}=\mathrm{R}_{\mathrm{i}}=\mathrm{b}=1.0
\end{array}
$$

$$
\text { Design vertical acceleration, ü }=\frac{\mathrm{S}_{\mathrm{av}} \mathrm{I} \mathrm{~b}}{\mathrm{R}_{\mathrm{i}}}=0.1784^{* 1 * 1 / 1}=0.1784 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of ACl 350 sec 5.3 :

convective

hydrostatic
impulsive:

$$
p_{\text {iy }}=\frac{P_{i}\left[4 H_{L}-6 h_{i}-\left(6 H_{L}-12 h_{i}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

convective:

$$
p_{\mathrm{o}}=\frac{\mathrm{P}_{\mathrm{c}}\left[4 \mathrm{H}_{\mathrm{L}}-6 \mathrm{~h}_{\mathrm{c}}-\left(6 \mathrm{H}_{\mathrm{L}}-12 \mathrm{~h}_{\mathrm{c}}\right)\left(\frac{\mathrm{y}}{\mathrm{H}_{\mathrm{L}}}\right)\right]}{2 \mathrm{~B} \mathrm{H} \mathrm{H}_{\mathrm{L}}^{2}}=
$$

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A.00
DESIGN	ASK:		Stab	sverse	(CSZ)	

vertical acceleration:

$$
p_{\mathrm{wy}}=\ddot{u} \gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

$$
\begin{array}{rlrl}
u ̈ & =0.1784 \\
& \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{vy}} & =0.186 & \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
\mathrm{p}_{\mathrm{wy}}=\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon \gamma_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{\mathrm{R}_{\mathrm{wi}}}=
$$

$$
p_{w y}=0.1429 * \gamma_{c}{ }^{*}\left(t_{w} / 12\right)
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.032 \mathrm{ksf}
$$

hydrostatic:

$$
\mathrm{a}_{\mathrm{hy}}=\gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{1 y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$ at base $\mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.032 \mathrm{ksf}$

at $y=H_{L}, q_{h y}=0.000 \mathrm{ksf}$ at base $\mathrm{y}=0, \mathrm{q}_{\mathrm{hy}}=1.040 \mathrm{ksf}$
at $y=H_{w}, p_{y}=0.120 \mathrm{ksf}$ at base $y=0, p_{y}=0.273$ ksf

9). wall design pressures for hydrostatic + dynamic:

$\begin{array}{rlr}\text { wall height, } H_{w} & =18.67 & \mathrm{ft} \\ \text { liquid height, } H_{L} & =16.67 & \mathrm{ft}\end{array}$

unfactored load $=0.195 \mathrm{ksf}$ resultant dynamic pressures

BY:	BS	DATE: Aug-21DESCRIPTION:	CLIENT:	City of Wilsonville	SHEET: JOB NO	
CHKD:				Aeration Basins		11962A. 00
DESIGN	ASK:		Stab	asins (Transverse	(CSZ)	

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

$=$

The site has no groundwater. wall height $=18.67 \mathrm{ft}$
soil height above top of base $=0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$ dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$ sat. soil lateral pressure $=0.000 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000$ ksf unfactored soil, q3 $=0.0000$ ksf
equivalent soil loadings:
unfactored q5 $=0.0000 \mathrm{ksf}$ unfactored q6 $=0.0000 \mathrm{ksf}$
soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq)}}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf unfactored equivalent soil seismic, $q 9=0 / 1.4=0.0000 \mathrm{ksf}$
unfactored wall seismic, q10 $=0.0321 / 1.4=0.0230$ ksf
unfactored equivalent soil seismic, q11 =0/1.4 = 0.0000 ksf unfactored equivalent soil seismic, q12 $=0 / 1.4=0.0000 \mathrm{ksf}$

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN	ASK:		Stabilizatin Basins (Transverse Direction) (CSZ)			

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:


```
                                    Load Cases:
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic
```

a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

equivalent static soil \& surcharge loadings...
 $=$

$\begin{array}{rll}\text { LL lateral surcharge, q1 }= & 0.000 & \mathrm{ksf} \\ \text { unfactored soil, q2 } & =0.000 & \mathrm{ksf} \\ \text { unfactored soil, q3 } & =0.000 & \mathrm{ksf}\end{array}$
equivalent soil loadings:
unfactored q5 $=0.000 \mathrm{ksf}$
unfactored q6 $=0.000$ ksf
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...

wall height $=18.67 \mathrm{ft}$
soil height on wall $=0 \mathrm{ft}$
unfactored equivalent soil seismic, q8 $=0.000$ ksf unfactored equivalent soil seismic, q9 $=0.000$ ksf unfactored equivalent soil seismic, q10 $=0.023$ ksf unfactored equivalent soil seismic, q11 $=0.000$ ksf unfactored equivalent soil seismic, q12 $=0.000$ ksf

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIG	ASK:				(CSZ)	

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity $=$ no roof $\&$ fixed at floor
tank unit width perpendicular to EQ ., $\mathrm{B}=1 \mathrm{ft}$
tank inside length in direction of seismic, $\mathrm{L}=\mathbf{6 0} \mathrm{ft}$
tank wall thickness, $\mathrm{t}_{\mathrm{w}}=12$ inch
wall height, $\quad \mathrm{H}_{\mathrm{w}}=18.67 \mathrm{ft}$
liquid height, $\mathrm{H}_{\mathrm{L}}=16.67 \mathrm{ft}$
liquid specific gravity $=1$
liquid density, $\gamma_{\mathrm{L}}=(\mathrm{sp} . \mathrm{gr} \text {. })^{*} \gamma_{\mathrm{w}}=0.0624 \mathrm{k} / \mathrm{ft}^{3}$
acceleration due to gravity, $\mathrm{g}=32.17 \mathrm{ft} / \mathrm{sec}^{2}$
liquid mass density, $\rho_{\mathrm{L}}=\gamma_{\mathrm{L}} / \mathrm{g}=0.00194 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}{ }^{4}$

Soil Data
The site has no groundwater.
soil height above top of foundation base $=\mathbf{0} \mathrm{ft}$
groundwater ht. above foundation base $=\mathbf{0} \mathrm{ft}$
dry soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$

\qquad
saturated soil lateral pressure $=\mathbf{0} \quad \mathrm{k} / \mathrm{ft}^{3}$
dry soil unit weight $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=\mathbf{0 . 0 0 0} \mathrm{ksf}$
0
concrete strength, $\mathrm{f}^{\prime} \mathrm{c}=\mathbf{~ k s i}$ concrete density, $\gamma_{\mathrm{c}}=0.150 \mathrm{k} / \mathrm{ft}^{3}$
concrete modulus of elasticity, $\mathrm{E}_{\mathrm{c}}=3605.0 \mathrm{ksi}$ concrete mass density, $\rho_{c}=\gamma_{c} / g=0.004663 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{4}$

Seismic:
$\begin{aligned} \text { Deisgn, } 5 \% \text { damped, spectral response acceleration at the short period of } 0.2 \text {-second, } \mathrm{S}_{\mathrm{DS}}= & \mathbf{0 . 4 4 6} \quad{ }^{\mathrm{*} g} \mathrm{~g} \\ \text { Deisgn, } 5 \% \text { damped, spectral response acceleration at a period of } 1-\text { second, } \mathrm{S}_{\mathrm{D} 1}= & \mathbf{0 . 3 3 2} \quad{ }^{*} \mathrm{~g}\end{aligned}$

Engineers...Working Wonders With Water '"

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET: JOB NO	
CHKD:		DESCRIPTION:		Aeration Basins		11962A. 00
DESIGN	ASK:		Stabiliz	Basins (Longitudinal D	(CSZ)	

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$

$$
\begin{array}{rll}
(12 / 12) *(18.67) * 0.15 & = & 2.80 \\
18.67 / 2 & = & \mathrm{kip} \\
\mathrm{ft}
\end{array}
$$

unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=$
(60) * (1) * (16.67) * $32.17=62.41$ kip

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \mathrm{\rho}_{\mathrm{c}}=0.08705 \mathrm{k}-\sec ^{2} / \mathrm{ft}^{2}$
liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}{ }^{*} P_{L}=0.30993 k-\sec ^{2} / \mathrm{ft}^{2}$
centroidal distance of masses, $h=\left(h_{w}{ }^{*} m_{w}+h_{i}{ }^{*} m_{i}\right) /\left(m_{w}+m_{i}\right)=6.927 \mathrm{ft}$
wall fixity condition is no roof \& fixed at floor:
wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k=E c^{*}(t w / h)^{3} / 48=390.46 \mathrm{k} / \mathrm{ft} / \mathrm{ft}$
 $(390.46 /(0.0871+0.3099))^{\wedge 1 / 2}=31.3618 \mathrm{rad} / \mathrm{sec}$
period of tank plus impulsive mass, $T_{i}=2 \pi / \omega_{i}=2 \pi / 31.3618=0.2003 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{a i}=S_{D S}=0.446 \quad g$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

3). lateral fluid impulsive force: Dynamic Model

$$
\mathrm{W}_{\mathrm{i}}=\mathrm{W}_{\mathrm{L}}\left(\frac{\tanh \left(0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right)}{0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}}\right)=\quad 62.41^{*}\left(\tanh \left(0.866^{*}(3.5993)\right) / 0.866^{*}(3.5993)\right)=19.94 \quad \mathrm{kip}
$$

4). lateral fluid convective force:
$\mathrm{Wc}=$ e equivalent mass of the convective component of liquid.

$$
\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{L}}\left(0.264\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right) \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)\right)=\quad 62.41^{*}\left(0.264^{*}(3.5993)^{*} \tanh \left(3.16^{*}(0.2778)\right)\right)=41.83 \mathrm{kip}
$$

$$
\begin{gathered}
h_{c(\text { EBP })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)-1}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=8.832 \mathrm{ft} \\
\mathrm{~h}_{\mathrm{c} \text { (IBP) }}=H_{\mathrm{L}}\left(1-\frac{\cosh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)-2.01}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=28.102 \mathrm{ft}
\end{gathered}
$$

convective force, $P_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{a}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=\quad(0.0866 * 1.25 / 1)^{*} 41.83=\quad 4.5 \quad$ kip

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET: JOB NO:	
CHKD:		DESCRIPTION:		Aeration Basins		11962A. 00
DESIGN	ASK:		Stabilizatin Basins (Longitudinal Direction) (CSZ)			

5). lateral inertia force of the accelerating wall:

unit width wall mass, W_{w}	$=$	2.80
kip		
wall c.g. relative to base, h_{w}	$=$	9.335

wall inertia force, $P_{w}=\left(\frac{S_{a i} I \varepsilon}{R_{w i}}\right) W_{w}=\quad(0.446 * 1.25 * 0.5299 / 3)^{*} 2.8=0.28 \quad$ kip
6). maximum wave slosh height displacement:

$$
d_{(\max)}=\left(\frac{L}{2}\right)\left(\frac{S_{a c}}{1.4} \mathrm{I}\right)=(60 / 2) *(0.0866 / 1.4 * 1.25)=3.25 \mathrm{ft}
$$

Wave height is greater than the freeboard of 2-ft. Check effects of wave spillage.
7). vertical acceleration:

$$
\begin{aligned}
\text { design horizontal accereration, } S_{D S} & =0.446 \quad{ }^{*} \mathrm{~g} \\
\text { vertical spectral response acceleration (per ACI 350 para 9.4.3), } \mathrm{S}_{\mathrm{av}}=\mathrm{C}_{\mathrm{t}}=0.4^{*} \mathrm{~S}_{\mathrm{DS}}= & 0.1784 \mathrm{~g}
\end{aligned}
$$

$$
\text { per ASCE } 7-10 \text { para. 15.7.7.2(b), use } I=R_{i}=b=1.0
$$

$$
\text { Design vertical acceleration, ü }=\frac{S_{a v} I \text { b }}{R_{i}}=0.1784^{*} 1 * 1 / 1=0.1784 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of $\mathrm{ACI} 350 \sec 5.3$:

0.111 ksf
convective

vertical acceleration

0.015 ksf wall

1.040 ksf hydrostatic
impulsive:

$$
p_{\mathrm{iy}}=\frac{P_{\mathrm{i}}\left[4 \mathrm{H}_{\mathrm{L}}-6 h_{\mathrm{i}}-\left(6 \mathrm{H}_{\mathrm{L}}-12 h_{\mathrm{i}}\right)\left(\frac{\mathrm{y}}{\mathrm{H}_{\mathrm{L}}}\right)\right]}{2 B \mathrm{H}_{\mathrm{L}}^{2}}=
$$

convective:

$$
\mathrm{p}_{\mathrm{c} y}=\frac{\mathrm{P}_{\mathrm{c}}\left[4 \mathrm{H}_{\mathrm{L}}-6 \mathrm{~h}_{\mathrm{c}}-\left(6 \mathrm{H}_{\mathrm{L}}-12 \mathrm{~h}_{\mathrm{c}}\right)\left(\frac{\mathrm{y}}{\mathrm{H}_{\mathrm{L}}}\right)\right]}{2 B \mathrm{H}_{\mathrm{L}}^{2}}=
$$

vertical acceleration:

$$
p_{\mathrm{wy}}=\ddot{u} \gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

$$
\begin{array}{rlrl}
u ̈ & =0.1784 \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } y=0, p_{v y} & =0.186 & \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
\mathrm{p}_{\mathrm{wy}}=\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon \gamma_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{\mathrm{R}_{\mathrm{wi}}}=
$$

$$
p_{w y}=0.0985 * \gamma_{c} *\left(t_{w} / 12\right)
$$

hydrostatic:

$$
\mathrm{q}_{\mathrm{hy}}=\gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{y y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.015 \mathrm{ksf}$ at base $\mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.015 \mathrm{ksf}$
at $\mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{q}_{\mathrm{hy}}=0.000 \mathrm{ksf}$ at base $\mathrm{y}=0, \mathrm{q}_{\mathrm{hy}}=1.040 \mathrm{ksf}$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{y}}=0.165 \mathrm{ksf}
$$

$$
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{y}}=0.301 \mathrm{ksf}
$$

9). wall design pressures for hydrostatic + dynamic:

$\begin{array}{rlr}\text { wall height, } H_{w} & =18.67 & \mathrm{ft} \\ \text { liquid height, } H_{L} & =16.67 \mathrm{ft}\end{array}$

unfactored load $=0.215 \mathrm{ksf}$ resultant dynamic pressures

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:JOB NO:	
CHKD:		DESCRIPTION:		Aeration Basins		11962A. 00
DESIGN	ASK:		Stabiliza	Basins (Longitudinal Dir) (CSZ)	

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

=

The site has no groundwater. wall height $=18.67 \mathrm{ft}$
soil height above top of base $=0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$
dry soil lateral pressure $=0.000 \quad \mathrm{k} / \mathrm{ft}^{3}$
sat. soil lateral pressure $=0.000 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000 \mathrm{ksf}$ unfactored soil, q3 $=0.0000 \mathrm{ksf}$
equivalent soil loadings:
unfactored q5 $=0.0000 \mathrm{ksf}$
unfactored $\mathrm{q} 6=0.0000 \mathrm{ksf}$
soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq)}}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf unfactored equivalent soil seismic, $q 9=0 / 1.4=0.0000$ ksf
unfactored wall seismic, q10 $=0.0148 / 1.4=0.0106 \mathrm{ksf}$
unfactored equivalent soil seismic, q11 $=0 / 1.4=0.0000 \mathrm{ksf}$ unfactored equivalent soil seismic, q12 $=0 / 1.4=0.0000 \mathrm{ksf}$

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET: JOB NO:	
CHKD:		DESCRIPTION:		Aeration Basins		11962A. 00
DESIGN	ASK:		Stabiliza	Basins (Longitudinal Dir) (CSZ)	

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:


```
                                    Load Cases:
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic
```

a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

(unfactored) hydrostatic

wall height $=18.67 \mathrm{ft}$ water depth $=16.67 \mathrm{ft}$
c). load case 3: static soil + LL surcharge:
wall height $=18.67 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$
equivalent static soil \& surcharge loadings...
 $=$

LL lateral surcharge, q1 $=0.000$ unfactored soil, q2 $=0.000$ ksf unfactored soil, q3 $=0.000$ ksf
equivalent soil loadings:
unfactored q5 $=0.000$ ksf
unfactored q6 $=0.000$ ksf
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...
wall height $=18.67 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$

unfactored equivalent soil seismic, $q 8=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, q9 = 0.000 ksf unfactored equivalent soil seismic, q10 $=0.011$ ksf unfactored equivalent soil seismic, q11 $=0.000$ ksf unfactored equivalent soil seismic, q12 $=0.000$ ksf

Engineers...Working Wonders With Water ${ }^{\text {sw }}$

Choice of Available Loadings						
load	load type	load height, (ft)	unfactored loads:	concrete load factors		
conditions	Loading	\ldots. only for custom	q, M, or F	for	for	
(4 max)	Selection Number	loads 100 or 400	(ksf, ft-k/ft, k/ft $)$	moment	shear	
A	100	16.670	0.165	1	1	
B	400	16.670	0.136	1	1	
C	400	16.670	1.040	1	1	
D	400	10.280	-0.411	0.9	0.9	

Notes: 1). Load $100=$ uniform load of any load height $\geq b / 3 ;$ Load $400=$ triangular load of any load height $\geq b / 6$.
2). load height must be less than or equal to "b", and uniform load height \geq " $\mathrm{b} / 3$ ", and triangular load height \geq " $\mathrm{b} / 6$ " .
3). loads may be positive or negative.

plate thickness, $\mathrm{h}=$	12	in
concrete strength, $\mathrm{f}^{\prime} \mathrm{c}=$	4	ksi
reinforcing steel strength, fy	$=$	60
ksi		

bar locations	d (in)	d^{\prime} (in)
Mx bending	$9^{\prime \prime}$	$3^{\prime \prime}$
My bending	$9.5^{\prime \prime}$	$2.5^{\prime \prime}$

reinforcing clear cover to face of concrete $=\mathbf{2}$ in number of curtains of reinforcing, (1 or 2) $=\mathbf{2}$
Are bars in "x" or "y" direction closest to face of concrete? y minimum ratio of horizontal shrinkage-temperature steel $=\mathbf{0 . 0 0 5 0 0}$ minimum ratio of vertical shrinkage-temperature steel $=\mathbf{0 . 0 0 5 0 0}$

Engineers...Working Wonders With Water ${ }^{51}$

BY:	BS	DATE:	Aug-21	CLIENT
CHKD:	City of Wilsonville	SHEET:		
DESIGN TASK:	DESCRIPTION:			

BY:	BS	DATE: Aug-21	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIG	ASK		Stabiliz	mieter Wall w/ Seismic	kfill (CSZ	

Concrete strength reduction factor for shear, $\phi=0.75$

$$
\begin{aligned}
& \mathrm{d}=9.5 \text { in } \\
& \text { maximum shear, } \mathrm{V}_{\mathrm{u}}=7.92 \mathrm{k} / \mathrm{ft} \\
& \phi \mathrm{~V}_{\mathrm{c}}=\phi^{*} 2^{*}(\mathrm{f} \mathrm{C})^{1 / 2 *} \mathrm{~b}^{*} \mathrm{~d}=\left(0.75^{*} 2^{*}(4000)^{11 / 2 *} 2^{*} 9.5\right) / 1000=10.81 \mathrm{k} / \mathrm{ft}
\end{aligned}
$$

Reference:
"Moments and Reactions for Rectangular Plates"
Engineering Monograph No. 27
By: W. T. Moody, United States Bureau of Reclamation

Notes:
Quadratic interpolation is used for intermediate values within the Moody tables and between Moody figures.
The positive sign convention for moments M_{x} and M_{y} is tension on the loaded face of the plate.
The M_{x} moment is in the direction of the x-axis and the M_{y} moment is in the direction of the y-axis by plate sign convention.

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		ation Basins	JOB NO:	11962A. 00
DESIGN TASK:	Stabilization Basins Perimeter Wall Strength (Vertical Reinforcing) (CSZ)				

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

| | | |
| ---: | :---: | :--- | :--- |
| Compression width of wall, $b=$ | 12 | inch |
| Thickness of wall, $h=$ | 12 | inch |
| Depth to reinforcing, $d=$ | 9 | inch |
| factored design moment, $M_{u}=$ | 20.22 | ft-k |
| factored design shear, $V_{u}=$ | 7.92 | kip |

$$
\begin{aligned}
\mathrm{f}_{\mathrm{c}}(\mathrm{psi}) & =4000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =60000 \\
\phi, \text { Bending } & =1 \\
\phi, \text { Shear } & =1 \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3604997 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =8.04 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 13.66 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

comment : existing 12" wall w/ \#8@12" vert reinf
 Moment strength \geq design moment, Okay

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN TASK:	Stabilization Basins Perimeter Wall Strength (Horizontal Reinforcing) (CSZ)				

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

Compression width of wall, $\mathrm{b}=$	12	inch
Thickness of wall, $\mathrm{h}=$	12	inch
Depth to reinforcing, $\mathrm{d}=$	9	inch
factored design moment, $\mathrm{M}_{\mathrm{u}}=$	16.25	ft-k
factored design shear, $\mathrm{V}_{\mathrm{u}}=$	5.18	kip

$$
\begin{aligned}
\mathrm{f}^{\prime}{ }_{\mathrm{c}}(\mathrm{psi}) & =4000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =\mathbf{6 0 0 0 0} \\
\phi, \text { Bending } & =1 \\
\phi, \text { Shear } & =1 \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3604997 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =8.04 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 13.66 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

Bending Strength (ACI 318-10.2.1 thru 10.2.7)

comment : existing 12" wall w/ \#8@12" horiz reinf outside face
Area steel provided, $\mathrm{A}_{\mathrm{s}}=$
$0.79 \mathrm{in}^{2}$

$$
\begin{aligned}
& \rho=A_{s} / b d=0.00731 \\
& \quad \rho(\min)<A s / b d<\rho(\max)-\text { OK }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}(\min)} & =0.19 & \mathrm{in}^{2} & \rho_{(\min)}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)} & =2.31 & \mathrm{in}^{2} & \rho_{(\max)}=0.02138
\end{aligned}
$$

bending strength, $\quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)$
$\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00731^{*} 60^{*} 12^{*} 9^{2} *\left(1-0.588^{*} 0.00731^{*} 60 / 4\right)^{*}(\mathrm{ft} / 12)=33.256 \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}$

Moment strength \geq design moment, Okay

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Aeration Basins	JOB NO:	11962A. 00
DESIGN TASK:	Stabilization Basins Perimeter Wall Strength (Horizontal Reinforcing) (CSZ)				

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

Compression width of wall, $b=$	12	inch
Thickness of wall, $\mathrm{h}=$	12	inch
Depth to reinforcing, $\mathrm{d}=$	9	inch
factored design moment, $\mathrm{M}_{\mathrm{u}}=$	8.05	ft-k
factored design shear, $\mathrm{V}_{\mathrm{u}}=$	5.18	kip

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{psi})=4000 \\
& \mathrm{f}_{\mathrm{y}}(\mathrm{psi})=\mathbf{6 0 0 0 0} \\
& \phi, \text { Bending }=1 \\
& \phi, \text { Shear }=1 \\
& \mathrm{E}_{\mathrm{s}}(\mathrm{psi})=29000000 \\
& \mathrm{E}_{\mathrm{c}}(\mathrm{psi})=3604997 \\
& \mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}=8.04 \\
& \beta_{1}=0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}}=\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 13.66 & \mathrm{kip} \geq \mathrm{Vu} \\
\text { stirrup spacing, } \mathrm{s}= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

comment : existing 12" wall w/ \#7@12" horiz reinf inside face
Area steel provided, $\mathrm{A}_{\mathrm{s}}=0.6 \quad \mathrm{in}^{2} \quad \rho=\mathrm{A}_{\mathrm{s}} / \mathrm{bd}=0.00556$
$\rho(\min)<A s / b d<\rho(\max)-O K$
$\begin{array}{rlll}\mathrm{A}_{\mathrm{s}(\text { min })} & =0.19 & \mathrm{in}^{2} & \rho_{(\text {min })}=0.00180 \\ \mathrm{~A}_{\mathrm{s}(\text { max })} & =2.31 & \mathrm{in}^{2} & \rho_{(\text {max })}=0.02138\end{array}$
$\mathrm{A}_{\mathrm{s}(\max)}=2.31 \quad \mathrm{in}^{2} \quad \rho_{(\max)}=0.02138$
bending strength, $\quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)$
$\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00556^{*} 60^{*} 12^{*} 9^{2} *\left(1-0.588^{*} 0.00556^{*} 60 / 4\right)^{*}(\mathrm{ft} / 12)=25.676 \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}$
Moment strength \geq design moment, Okay

City of Wilsonville

Sludge Storage Basins and Biofilter Structural Calculations

Biofilter Basin Dividing Wall Check (BSE-2E Seismic Level)
pg. 1
Biofilter Basin Dividing Wall Check (CSZ Seismic Level)
pg. 25
WAS Basin Dividing Wall Check (BSE-2E Seismic Level)
pg. 45
WAS Basin Dividing Wall Check (CSZ Seismic Level)
pg. 61

Dividing Wall Section Reinforcing

BY BS \qquad DATE $7 / 8 / 21$ SUBJECT City of Wilsannille \qquad SHEETNO. \qquad OF \qquad CHKD. BY \qquad DATE \qquad Sludge Storage \& Biofilters $10 B$ NO. 119624.00
Sludge Storage $\%$ Biofilters. Dividing Wall Cher
The existing interior wall between the sludge storage and biofilters will be evaluated to resist the hydrostatic: hydrodynamic loads from basins. The forces will be evaluated per ACI 350 and using the CSZ seismic coefficient For the dividing wall between the sludge

storage k biofilter basins, the assumption made is water is present on one side only.
The dividing wall is. $12^{\prime \prime}$ thick with

base of wall, and 6 G12" wall reinforcing,
The dowels extend up into wall $2^{\prime}-2^{\prime \prime} \frac{1}{4} 3^{i}-5^{\prime \prime}$ respectively.
See attached spreadsheet for hydro static \& hydrodynamic lond.
Checking wall strength for out-it-plane flexure and shear dewayne. Using ASCE 41.17 for the wall capacities, the ϕ factor shall be set $\phi=1.0$. Forces are at BSE-2E seismic level.

$M_{w y} 13.62 \mathrm{kff} / \mathrm{ft}$

$$
V_{u y}=5.29 \mathrm{k} / f_{4}
$$

$$
\begin{array}{ll}
\phi M_{n}=41.50 \mathrm{k} \cdot \mathrm{ft} / \mathrm{f} \\
\phi U_{n}=11.83 \mathrm{k} / \mathrm{ft}
\end{array} \quad M_{\text {Don }} D C R=\frac{13.62}{41.00}=0.33
$$

(ole)
Will Check (H6e12")

$$
\begin{aligned}
& M_{u x}=10.38 \mathrm{k} \cdot \mathrm{f}_{\mathrm{H}} / \mathrm{f} \quad \quad \quad \mathrm{M}_{\mathrm{m}}=18.85 \mathrm{k} \cdot \mathrm{FH}_{\mathrm{H}} \\
& V_{u x}=3.42 \mathrm{k} / f_{t} \quad \phi V_{n}=11.83 \mathrm{k} / \mathrm{ft} \\
& M_{\text {neat }} \text { oCR }=\frac{10.38}{18.85}=0.55 \quad \text { (06) } \\
& \text { Shaor DCR }=\frac{3.42}{11.83}=0.29 \text { (uk) }
\end{aligned}
$$

Checking free board height in basin. For Risk Category III, $\delta=0.7 \times \mathrm{d}_{\text {max }}$.

$$
\begin{aligned}
& \delta_{\text {frambunge }}=0.7(2.10 \mathrm{ff})=1.47 \mathrm{f} \\
& \delta_{\text {brainobel }}=0.7(2.66 \mathrm{f})=1.87 \mathrm{f}
\end{aligned}
$$

free beard height $=0.74 \mathrm{ft}$
$0.74 \mathrm{ft}<1.47 \mathrm{ft}(\mathrm{NG}) \quad \mathrm{N}_{4}$ enough freeboard. $0.74 \mathrm{ft} 41.87 \mathrm{ft}(\mathrm{NG})$ Not waugh freeboard.
\qquad BS DATE \qquad City of wilsonville SHEET NO. \qquad OF \qquad CHKD. BY \qquad DATE \qquad Sivige Storage \& Biofilters JOB NO. 119624.00
Chedring wall strength for ost-af-plane flexure and shaw demands. Farces are at CSZ seismic level.
Vertical wall Strength

$$
\begin{aligned}
& M_{v y}=12.49 \mathrm{k}-\mathrm{ff}_{\mathrm{f}} \mathrm{f} \quad \quad \phi M_{n}=41.50 \mathrm{kff} / \mathrm{ff}_{4} \\
& V_{v y}=4.84 \mathrm{k} / \mathrm{ft} \quad \phi V_{\hat{H}}=11.83 \mathrm{k} / \mathrm{ft} \\
& \text { Moment } D C R=\frac{1249 k f_{+} / f f}{4 . .50 v .4+1 \text { fer }}=0.30 \text { (ok) } \\
& \text { Shror } D C R=\frac{484 k \text { oft }}{11836 / f t}=0.41 \text { (ok) }
\end{aligned}
$$

Horizontal Wall Strength

$$
\begin{aligned}
& M_{\text {six }}=9.56 \mathrm{k} . \mathrm{fth} \\
& \phi M_{a}=18.8512 . \mathrm{ff} / \mathrm{F} \\
& V_{u_{x}}=3.16 \mathrm{k} / \mathrm{f}_{\mathrm{t}} \quad \quad \quad V_{n}=11.83 \mathrm{k} / \mathrm{f}_{+} \\
& M_{\text {moment }} D 02=\frac{9.566 . \mathrm{ffift}}{18.85 \mathrm{kftit}}=0.51 \text { (ok) } \\
& \text { Sher DCR }=\frac{3.16 \mathrm{k} / \mathrm{f}}{1.83 \mathrm{bif}}=0.27(\mathrm{ck})
\end{aligned}
$$

| BY: | BS | DATE: \quad Aug-21 | CLIENT: | City of Wilsonville | SHEET: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CHKD: | | DESCRIPTION: | Sludge Storage Basins \& Biofilter | JOB NO: | 11962A.00 |
| DESIGN TASK: | | Interior Dividing Wall between Sludge Storage \& Biofilter Basins (Transverse | | | |

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity $=$ no roof $\&$ fixed at floor
tank unit width perpendicular to EQ., $B=1 \mathrm{ft}$
tank inside length in direction of seismic, $L=20 \mathrm{ft}$
tank wall thickness, $\mathrm{t}_{\mathrm{w}}=12$ inch
wall height, $\quad \mathrm{H}_{\mathrm{w}}=11.18 \mathrm{ft}$
liquid height, $\mathrm{H}_{\mathrm{L}}=10.44 \mathrm{ft}$
liquid specific gravity $=1$
liquid density, $\gamma_{L}=(\mathrm{sp} . \mathrm{gr} .)^{*} \gamma_{\mathrm{w}}=0.0624 \mathrm{k} / \mathrm{ft}^{3}$
acceleration due to gravity, $g=32.17 \mathrm{ft} / \mathrm{sec}^{2}$
liquid mass density, $\rho_{\mathrm{L}}=\gamma_{\mathrm{L}} / \mathrm{g}=0.00194 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}{ }^{4}$

Soil Data
The site has no groundwater.
soil height above top of foundation base $=\mathbf{0} \mathrm{ft}$
groundwater ht. above foundation base $=\mathbf{0} \mathrm{ft}$
dry soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$

ated soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
dry soil unit weight $=\quad 0 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=\mathbf{0 . 0 0 0} \mathrm{ksf}$
0
concrete strength, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{3} \mathrm{ksi}$
concrete density, $\gamma_{\mathrm{c}}=0.150 \mathrm{k} / \mathrm{ft}^{3}$
concrete modulus of elasticity, $\mathrm{E}_{\mathrm{c}}=3122.0 \mathrm{ksi}$
concrete mass density, $\rho_{c}=\gamma_{c} / \mathrm{g}=0.004663 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{4}$

Seismic:
$\begin{aligned} \text { Deisgn, } 5 \% \text { damped, spectral response acceleration at the short period of } 0.2-\text { second, } \mathrm{S}_{\mathrm{DS}}= & \mathbf{0 . 7 4 4} \\ \text { Deisgn, } 5 \% \text { damped, spectral response acceleration at a period of } 1-\text { second, } \mathrm{S}_{\mathrm{D1} 1}= & \mathbf{0 . 4 0 5} \quad{ }^{\mathrm{*} g} \mathrm{~g}\end{aligned}$

Structure Risk Category $=$	$\mathbf{2}$
Importance factor, $\mathrm{I}=$	$\mathbf{1}$
Response modification factor, $\mathrm{R}_{\mathrm{wi}}=$	$\mathbf{3}$
Response modification factor, $\mathrm{R}_{\mathrm{wc}}=$	$\mathbf{1}$

Load Cases:

```
case 1 = water
```

case 2 = water + water seismic + wall seismic
case $3=$ soil + lateral surcharge
case $4=$ soil + soil seismic + wall seismic

Engineers...Working Wonders With Water '"

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:	Sludge Storage Basins \& Biofilter		JOB NO:	11962A. 00
DESIGN	ASK:	Interior Dividing Wal	etween S	torage \& Biofilter Bas	Transverse	ction) (BSE-2

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $h_{w}=$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=$
$(12 / 12) *(11.18) * 0.15=1.68$ kip
$11.18 / 2=5.590 \mathrm{ft}$

Seismic:
1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \rho_{\mathrm{c}}=0.05213 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}^{*} \rho_{L}=0.11345 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
centroidal distance of masses, $\mathrm{h}=\left(\mathrm{h}_{\mathrm{w}}{ }^{*} \mathrm{~m}_{\mathrm{w}}+\mathrm{h}_{\mathrm{i}}{ }^{*} \mathrm{~m}_{\mathrm{i}}\right) /\left(\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{i}}\right)=4.442 \mathrm{ft}$
wall fixity condition is no roof \& fixed at floor:
wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k=E c^{*}(\mathrm{tw} / \mathrm{h})^{3} / 48=1282.34 \mathrm{k} / \mathrm{ft} / \mathrm{ft}$

(20) * (1) * $(10.44) * 32.17=13.03$ kip wall flexuresifnes $k=148=1282.34 \mathrm{k} / \mathrm{f}$ $\omega_{\mathrm{i}}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{i}}}}=\quad(1282.34 /(0.0521+0.1135))^{\wedge} 1 / 2=88.0026 \mathrm{rad} / \mathrm{sec}$ period of tank plus impulsive mass, $\mathrm{T}_{\mathrm{i}}=2 \pi / \omega_{\mathrm{i}}=2 \pi / 88.0026=0.0714 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $\mathrm{S}_{\mathrm{ai}}=\mathrm{S}_{\mathrm{DS}}=0.744 \mathrm{~g}$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonvill	SHEET:	
CHKD:		DESCRIPTION:		Sludge Storage Basins \& Biofilter		JOB NO:	11962 A. 00
DESIGN	ASK:	Interio	ding W	tween S	orage \& Biofilter Bas	Transverse	tion) (BS

$\mathrm{L}=$	20	ft
B	$=1$	ft
H_{L}	$=10.44$	ft
W_{L}	$=$	13.03

$L / H_{L}=1.91571$
$H_{L} / L=0.52200$
3). lateral fluid impulsive force: Dynamic Model
4). lateral fluid convective force:

$$
\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{L}}\left(0.264\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right) \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)\right)=
$$

$$
13.03^{*}\left(0.264^{*}(1.9157)^{*} \tanh \left(3.16^{*}(0.522)\right)\right)=6.12 \text { kip }
$$

$$
h_{c(\text { (EBP) }}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{L}\right)\right)-1}{3.16\left(\frac{H_{L}}{L}\right) \sinh \left(3.16\left(\frac{H_{L}}{L}\right)\right)}\right)=6.151 \quad \mathrm{ft}
$$

$$
h_{c(1 B P)}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)-2.01}{3.16\left(\frac{H_{L}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=8.702 \mathrm{ft}
$$

$$
\text { convective force, } P_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{a}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=\quad(0.2101 * 1 / 1) * 6.12=1.3 \quad \text { kip }
$$

$$
\begin{aligned}
& W_{i}=W_{L}\left(\frac{\operatorname{Wi}=\text { equivalent mass of the impulsive component of }}{\left.0.866 \frac{L}{H_{L}}\right)} \mathrm{H}_{\mathrm{L}} \quad\right)=\quad 13.03^{*}\left(\tanh \left(0.866^{*}(1.9157)\right) / 0.866^{*}(1.9157)\right)=7.3 \quad \mathrm{kip} \\
& \text { hi (EBP) }=\mathrm{HL} \text { * } 0.375=10.44 \text { * } 0.375=3.915 \mathrm{ft} \\
& \text { hi }(\mathrm{IBP})=\mathrm{HL} *\left\{\left\{\left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right) /\left(2^{*} \tanh \left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right)\right)\right\}-1 / 8\right\}=8.006 \mathrm{ft} \\
& \text { impulsive force, } P_{i}=\left(\frac{S_{\mathrm{ai}} I}{R_{\mathrm{wi}}}\right) \mathrm{W}_{\mathrm{i}}=\quad(0.744 * 1 / 3)^{*} 7.3=1.8 \quad \mathrm{kip}
\end{aligned}
$$

Engineers...Working Wonders With Water '"

5). lateral inertia force of the accelerating wall:

$$
\begin{array}{rcl}
\text { unit width wall mass, } \mathrm{W}_{\mathrm{w}} & =1.68 & \mathrm{kip} \\
\text { wall } \mathrm{c} \text {.g. relative to base, } \mathrm{h}_{\mathrm{w}} & = & 5.590
\end{array} \mathrm{ft}
$$

wall inertia force, $P_{w}=\left(\frac{S_{a i} I \varepsilon}{R_{w i}}\right) W_{w}=\quad\left(0.744^{*} 1^{*} 0.7109 / 3\right)^{*} 1.68=0.30 \quad$ kip
6). maximum wave slosh height displacement:

$$
d_{(\text {max })}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.4} \mathrm{I}\right)=(20 / 2)^{*}(0.2101 / 1.0 * 1)=2.10 \mathrm{ft}
$$

Wave height is greater than the freeboard of 0.74 -ft. Check effects of wave spillage.
7). vertical acceleration:

$$
\begin{array}{r}
\text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}=\begin{array}{lll}
& 0.744 & { }^{*} \mathrm{~g} \\
\text { vertical spectral response acceleration (per ACI } 350 \text { para 9.4.3), } \mathrm{S}_{\mathrm{av}}=\mathrm{C}_{\mathrm{t}}=0.4 \mathrm{~S}_{\mathrm{DS}}= & 0.2976 \mathrm{~g}
\end{array} \\
\text { per ASCE 7-10 para. 15.7.7.2(b), use } \mathrm{I}=\mathrm{R}_{\mathrm{i}}=\mathrm{b}=1.0
\end{array}
$$

$$
\text { Design vertical acceleration, ü }=\frac{\mathrm{S}_{\mathrm{av}} \mathrm{I} \mathrm{~b}}{R_{\mathrm{i}}}=0.2976^{*} 1^{*} 1 / 1=0.2976 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of ACl 350 sec 5.3 :

convective

0.194 ksf
vertical
acceleration

wall

hydrostatic
impulsive:

$$
p_{\mathrm{iy}}=\frac{P_{i}\left[4 H_{L}-6 h_{\mathrm{i}}-\left(6 \mathrm{H}_{\mathrm{L}}-12 h_{i}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

convective:

$$
p_{o f}=\frac{P_{c}\left[4 H_{L}-6 h_{c}-\left(6 H_{L}-12 h_{c}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

BY:	BS	DATE:	Aug-21	N	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Sludge Storage Basins \& Biofilter		JOB NO:	11962A. 00
DESIGN	ASK:	Interi	ding W	ween	orage \& Biofilter Ba	ransver	ion) (BS

vertical acceleration:

$$
p_{v y}=\ddot{u} \gamma_{L}\left(H_{L}-y\right)=
$$

$$
\begin{array}{rlrl}
u ̈ & =0.2976 \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } y=0, p_{v y} & =0.194 & \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
\mathrm{p}_{\mathrm{wy}}=\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon \gamma_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{\mathrm{R}_{\mathrm{wi}}}=
$$

$$
p_{w y}=0.1763 * \gamma_{c} *\left(t_{w} / 12\right)
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.026 \mathrm{ksf}
$$

$$
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.026 \mathrm{ksf}
$$

hydrostatic:

$$
q_{h y}=\gamma_{L}\left(H_{L}-y\right)=
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{q}_{\mathrm{hy}}=0.000 \mathrm{ksf}$ at base $\mathrm{y}=0, \mathrm{q}_{\mathrm{hy}}=0.651 \mathrm{ksf}$
combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{y y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{y}}=0.107 \mathrm{ksf}$ at base $y=0, p_{y}=0.264 \mathrm{ksf}$

9). wall design pressures for hydrostatic + dynamic:

$\begin{array}{rlr}\text { wall height, } H_{w} & =11.18 & \mathrm{ft} \\ \text { liquid height, } H_{L} & =10.44 & \mathrm{ft}\end{array}$

BY:	BS	DATE: \quad Aug-21	CLIENT:	City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:	Sludge Storage Basins \& Biofilter	JOB NO:	
DESIGN TASK:		Interior Dividing Wall between Sludge Storage \& Biofilter Basins (Transverse			

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

$=$

The site has no groundwater.
wall height $=11.18 \mathrm{ft}$
soil height above top of base $=0 \quad 0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$
dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
sat. soil lateral pressure $=0.000 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000$ ksf unfactored soil, q3 $=\begin{array}{r}0.0000 \\ 0.000\end{array} \quad \mathrm{ksf}$ 0.000
equivalent soil loadings:
unfactored q5 $=0.0000 \mathrm{ksf}$
unfactored $q 6=0.0000 \mathrm{ksf}$
soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq})}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf unfactored equivalent soil seismic, q9 $=0 / 1.4=0.0000 \mathrm{ksf}$
unfactored wall seismic, q10 $=0.0264 / 1.4=0.0189 \mathrm{ksf}$
unfactored equivalent soil seismic, q11 $=0 / 1.4=0.0000 \mathrm{ksf}$ unfactored equivalent soil seismic, q12 $=0 / 1.4=0.0000 \mathrm{ksf}$

BY:	BS	DATE: \quad Aug-21	CLIENT:	City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:	Sludge Storage Basins \& Biofilter	JOB NO:	$11962 A .00$
DESIGN TASK:		Interior Dividing Wall between Sludge Storage \& Biofilter Basins (Transverse			

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:


```
Load Cases:
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic
```

a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

c). load case 3: static soil + LL surcharge:
wall height $=11.18 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$
equivalent static soil \& surcharge loadings...
 $=$

LL lateral surcharge, q1 $=0.000 \quad \mathrm{ksf}$ unfactored soil, q2 $=0.000$ ksf unfactored soil, q3 $=0.000 \mathrm{ksf}$
equivalent soil loadings:
unfactored q5 $=0.000$ ksf
unfactored q6 $=0.000$ ksf
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...
wall height $=11.18 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$

unfactored equivalent soil seismic, $q 8=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, $q 9=0.000$ ksf unfactored equivalent soil seismic, q10 $=0.019 \mathrm{ksf}$ unfactored equivalent soil seismic, q11 $=0.000$ ksf unfactored equivalent soil seismic, q12 $=0.000$ ksf

| BY: | BS | DATE: \quad Aug-21 | CLIENT: | City of Wilsonville | SHEET: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CHKD: | | DESCRIPTION: | Sludge Storage Basins \& Biofilter | JOB NO: | 11962A.00 |
| DESIGN TASK: | | Interior Dividing Wall between Sludge Storage \& Biofilter Basins (Longitudinal Direction) (BSE-2E) | | | |

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity $=$ no roof $\&$ fixed at floor
tank unit width perpendicular to EQ ., $\mathrm{B}=1 \mathrm{ft}$
tank inside length in direction of seismic, $\mathrm{L}=58.5 \mathrm{ft}$
tank wall thickness, $\mathrm{t}_{\mathrm{w}}=12$ inch
wall height, $\quad \mathrm{H}_{\mathrm{w}}=11.18 \mathrm{ft}$
liquid height, $\mathrm{H}_{\mathrm{L}}=10.44 \mathrm{ft}$
liquid specific gravity $=1$
liquid density, $\gamma_{\mathrm{L}}=(\mathrm{sp} . \mathrm{gr} \text {. })^{*} \gamma_{\mathrm{w}}=0.0624 \mathrm{k} / \mathrm{ft}^{3}$
acceleration due to gravity, $\mathrm{g}=32.17 \mathrm{ft} / \mathrm{sec}^{2}$
liquid mass density, $\rho_{\mathrm{L}}=\gamma_{\mathrm{L}} / \mathrm{g}=0.00194 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}{ }^{4}$

Soil Data
The site has no groundwater.
soil height above top of foundation base $=\mathbf{0} \mathrm{ft}$
groundwater ht. above foundation base $=\mathbf{0} \mathrm{ft}$
dry soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$

ated soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
dry soil unit weight $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
0
concrete strength, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=3 \mathrm{ksi}$
concrete density, $\gamma_{\mathrm{c}}=0.150 \mathrm{k} / \mathrm{ft}^{3}$
concrete modulus of elasticity, $\mathrm{E}_{\mathrm{c}}=3122.0 \mathrm{ksi}$
concrete mass density, $\rho_{c}=\gamma_{c} / \mathrm{g}=0.004663 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{4}$

Seismic:

Structure Risk Category $=$	$\mathbf{2}$
Importance factor, $\mathrm{I}=$	$\mathbf{1}$
Response modification factor, $\mathrm{R}_{\mathrm{wi}}=$	$\mathbf{3}$
Response modification factor, $\mathrm{R}_{\mathrm{wc}}=$	$\mathbf{1}$

Load Cases:

```
case 1 = water
```

case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic

Engineers...Working Wonders With Water '"

BY:	BS	E:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD		DESCRIPTION:		Sludge Storage Basins \& Biofilter		J	119
DESIGN	SK	Inte	ing W	een SI	rage \& Biofilter Ba	ngit	ion) (B

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$
$(12 / 12) *(11.18) * 0.15=1.68$ kip
$11.18 / 2=5.590 \mathrm{ft}$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=(58.5)^{*}(1) *(10.44) * 32.17=38.11$ kip

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \rho_{\mathrm{c}}=0.05213 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$ liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}{ }^{*} \rho_{L}=0.12201 \mathrm{k}-\mathrm{sec}^{2} / f t^{2}$ centroidal distance of masses, $h=\left(h_{w}^{*} m_{w}+h_{i}{ }^{*} m_{i}\right) /\left(m_{w}+m_{i}\right)=4.416 \mathrm{ft}$
wall fixity condition is no roof \& fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k=E c^{*}(t w / h)^{3} / 48=1305.12 \mathrm{k} / \mathrm{ft} / \mathrm{ft}$

$$
(1305.12 /(0.0521+0.122))^{\wedge 11 ⁄ 2}=86.5722 \mathrm{rad} / \mathrm{sec}
$$

period of tank plus impulsive mass, $\mathrm{T}_{\mathrm{i}}=2 \pi / \omega_{\mathrm{i}}=2 \pi / 86.5722=0.0726 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $\mathrm{S}_{\mathrm{ai}}=\mathrm{S}_{\mathrm{DS}}=0.744 \mathrm{~g}$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

BY:	BS	DATE: \quad Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:	Sludge Storage Basins \& Biofiter	JOB NO:	$11962 A .00$	
DESIGN TASK:		Interior Dividing Wall between Sludge Storage \& Biofilter Basins (Longitudinal Direction) (BSE-2E)				

L	$=$	58.5
B	$=$	ft
H_{L}	$=$	10.44
ft		
W_{L}	$=$	ft
	38.11	kip

$L / H_{L}=5.60345$
$H_{L} / L=0.17846$
3). lateral fluid impulsive force: Dynamic Model

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{i}}=\mathrm{W}_{\mathrm{L}}\left(\frac{\tanh \left(0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right)}{0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}}\right)= \\
& \mathrm{Wi}=\text { equivalent mass of the impulsive component of liquid. } \\
& 38.11^{*}\left(\tanh \left(0.866^{*}(5.6034)\right) / 0.866^{*}(5.6034)\right)=7.85 \text { kip } \\
& \mathrm{hi}(\mathrm{EBP})=\mathrm{HL} * 0.375=10.44 \text { * } 0.375=3.915 \mathrm{ft} \\
& \text { hi }(\mathrm{IBP})=\mathrm{HL} *\left\{\left\{\left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right) /\left(2^{*} \tanh \left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right)\right)\right\}-1 / 8\right\}=24.029 \mathrm{ft} \\
& \text { impulsive force, } P_{i}=\left(\frac{S_{a i} I}{R_{w i}}\right) W_{i}= \\
& (0.744 * 1 / 3) * 7.85=1.9 \text { kip }
\end{aligned}
$$

4). lateral fluid convective force:

$$
\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{L}}\left(0.264\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right) \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)\right)=
$$

$\mathrm{Wc}=$ e equivalent mass of the convective component of liquid.
$38.11^{*}\left(0.264^{*}(5.6034)^{*} \tanh \left(3.16^{*}(0.1785)\right)\right)=28.8 \quad$ kip

$$
\begin{gathered}
h_{c(\text { EBP })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)-1}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)}\right)=5.354 \mathrm{ft} \\
\mathrm{~h}_{\mathrm{c}(\text { (BP) })}=\mathrm{H}_{\mathrm{L}}\left(1-\frac{\cosh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)-2.01}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=36.815 \mathrm{ft}
\end{gathered}
$$

convective force, $\mathrm{P}_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{a}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=\quad(0.0911 * 1 / 1) * 28.8=2.6 \quad$ kip

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:		Sludge Storage Basins \& Biofilter	JOB NO:	11962A.00
DESIGN TASK:		Interior Dividing Wall between Sludge Storage \& Biofilter Basins (Longitudinal Direction)(BSE-2E)				

5). lateral inertia force of the accelerating wall:

unit width wall mass, W_{w}	$=1.68$	kip
wall c.g. relative to base, h_{w}	$=$	5.590

wall inertia force, $\mathrm{P}_{\mathrm{w}}=\left(\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon}{\mathrm{R}_{\mathrm{wi}}}\right) \mathrm{W}_{\mathrm{w}}=$
$\left(0.744^{*} 1 * 0.426 / 3\right) * 1.68=0.18$ kip
6). maximum wave slosh height displacement:

$$
\mathrm{d}_{\text {(max) }}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.4} \mathrm{I}\right)=(58.5 / 2) *(0.0911 / 1.0 * 1)=2.66 \mathrm{ft}
$$

Wave height is greater than the freeboard of 0.74 -ft. Check effects of wave spillage.
7). vertical acceleration:

$$
\begin{array}{r}
\text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}= \\
\text { vertical spectral response acceleration (per ACl } 350 \text { para 9.4.3), } \mathrm{S}_{\mathrm{av}}=\mathrm{C}_{\mathrm{t}}=0.744 \mathrm{4} \mathrm{~S}_{\mathrm{DS}}=\begin{array}{ll}
& \text { *g } \\
0.2976 & \mathrm{~g}
\end{array} \\
\text { per ASCE 7-10 para. 15.7.7.2(b), use } \mathrm{I}=\mathrm{R}_{\mathrm{i}}=\mathrm{b}=1.0
\end{array}
$$

$$
\text { Design vertical acceleration, ü }=\frac{\mathrm{S}_{\mathrm{av}} \mathrm{I} \mathrm{~b}}{\mathrm{R}_{\mathrm{i}}}=0.2976^{* 1 * 1 / 1}=0.2976 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of $\mathrm{ACI} 350 \sec 5.3$:

convective

vertical acceleration

wall

0.651 ksf
impulsive:

$$
p_{\mathrm{iy}}=\frac{P_{i}\left[4 H_{L}-6 h_{\mathrm{i}}-\left(6 \mathrm{H}_{\mathrm{L}}-12 h_{i}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

convective:

$$
p_{o y}=\frac{P_{c}\left[4 H_{L}-6 h_{c}-\left(6 H_{L}-12 h_{c}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

BY:	BS	DATE: \quad Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:	Sludge Storage Basins \& Biofiter	JOB NO:	$11962 A .00$	
DESIGN TASK:		Interior Dividing Wall between Sludge Storage \& Biofilter Basins (Longitudinal Direction) (BSE-2E)				

vertical acceleration:

$$
p_{v y}=\ddot{u} \gamma_{L}\left(H_{L}-y\right)=
$$

$$
\begin{array}{rlrl}
u ̈ & = & 0.2976 \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } y=0, p_{v y} & =0.194 & \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
\mathrm{p}_{\mathrm{wy}}=\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon \gamma_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{\mathrm{R}_{\mathrm{wi}}}=
$$

$$
p_{w y}=0.1056 * \gamma_{c} *\left(t_{w} / 12\right)
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.016 \mathrm{ksf}
$$ at base $\mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.016 \mathrm{ksf}$

hydrostatic:

$$
q_{n y}=\gamma_{L}\left(H_{L}-y\right)=
$$

at $y=H_{L}, q_{h y}=0.000 \mathrm{ksf}$ at base $\mathrm{y}=0, \mathrm{q}_{\mathrm{hy}}=0.651 \mathrm{ksf}$
combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{1 y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{y}}=0.140 \mathrm{ksf}$ at base $y=0, p_{y}=0.285 \mathrm{ksf}$

9). wall design pressures for hydrostatic + dynamic:

$$
\begin{array}{rlr}
\text { wall height, } H_{w} & =11.18 & \mathrm{ft} \\
\text { liquid height, } H_{L} & =10.44 \mathrm{ft}
\end{array}
$$

unfactored load $=0.100 \mathrm{ksf}$

unfactored load $=0.204 \mathrm{ksf}$ resultant dynamic pressures

BY:	BS	DATE	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Sludge Storage Basins \& Biofilter		JOB NO:	11962A. 00
DESIG	K:	Interio	ing	SI	orage \& Biofilter Ba	ng	tion) (BS

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

$=$

The site has no groundwater.
wall height $=11.18 \mathrm{ft}$
soil height above top of base $=0 \quad 0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$
dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
sat. soil lateral pressure $=0.000 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000$ ksf unfactored soil, q3 $=\begin{array}{r}0.0000 \\ 0.000\end{array} \quad \mathrm{ksf}$ 0.000
equivalent soil loadings:
unfactored q5 $=0.0000 \mathrm{ksf}$
unfactored q6 $=0.0000 \mathrm{ksf}$
soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq})}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

unfactored equivalent soil seismic, q8 $=0 / 1.4=0.0000 \mathrm{ksf}$ unfactored equivalent soil seismic, q9 $=0 / 1.4=0.0000$ ksf
unfactored wall seismic, q10 $=0.0158 / 1.4=0.0113 \mathrm{ksf}$
unfactored equivalent soil seismic, q11 $=0 / 1.4=0.0000 \mathrm{ksf}$ unfactored equivalent soil seismic, q12 $=0 / 1.4=0.0000 \mathrm{ksf}$

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET: JOB NO	
C		DESCRIPTION:		Sludge Storage Basins \& Biofilter			11962A. 00
DESIGN	ASK:		g W	en	rage \& Biofilter Bas	ngitu	ction) (BS

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:


```
                                    Load Cases:
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic
```

a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

c). load case 3: static soil + LL surcharge:
wall height $=11.18 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$
equivalent static soil \& surcharge loadings...
 $=$

LL lateral surcharge, q1 $=0.000 \quad \mathrm{ksf}$ unfactored soil, q2 $=0.000$ ksf unfactored soil, q3 $=0.000 \mathrm{ksf}$
equivalent soil loadings:
unfactored q5 $=0.000$ ksf
unfactored q6 $=0.000$ ksf
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...
wall height $=11.18 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$

unfactored equivalent soil seismic, $q 8=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, q9 = 0.000 ksf unfactored equivalent soil seismic, q10 $=0.011$ ksf unfactored equivalent soil seismic, q11 $=0.000$ ksf unfactored equivalent soil seismic, q12 $=0.000$ ksf

Engineers...Working Wonders With Water ${ }^{\text {sw }}$

Choice of Available Loadings					
	load type	load height, (ft) .only for custom loads 100 or 400	unfactored loads: q, M, or F (ksf, ft-k/ft, k/ft)	concrete load factors	
	Loading Selection Number			$\begin{gathered} \text { for } \\ \text { moment } \end{gathered}$	for shear
A	100	10.440	0.107	1	1
B	400	10.440	0.157	1	1
C	400	10.440	0.651	1	1

Notes: 1). Load $100=$ uniform load of any load height $\geq b / 3 ;$ Load $400=$ triangular load of any load height $\geq b / 6$.
2). load height must be less than or equal to "b", and uniform load height \geq " $\mathrm{b} / 3$ ", and triangular load height \geq " $\mathrm{b} / 6$ " .
3). loads may be positive or negative.

plate thickness, h	$=$	12
in		
concrete strength, $\mathrm{f}^{\prime} \mathrm{c}$	$=$	3
ksi		
reinforcing steel strength, fy	$=$	60
ksi		
lear cover to face of concrete	$=$	2

bar locations	d (in)	d^{\prime} (in)
Mx bending	$9^{\prime \prime}$	$3^{\prime \prime}$
My bending	$9.5^{\prime \prime}$	$2.5^{\prime \prime}$

reinforcing clear cover to face of concrete $=\mathbf{2}$ in number of curtains of reinforcing, $(1$ or 2$)=2$
Are bars in "x" or " y " direction closest to face of concrete ? y minimum ratio of horizontal shrinkage-temperature steel $=\mathbf{0 . 0 0 5 0 0}$ minimum ratio of vertical shrinkage-temperature steel $=\mathbf{0 . 0 0 5 0 0}$

BY:	BS	DATE: Aug-21 CLIENT	City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:	Sludge Storage and Biofilters Basins	JOB NO: 11962A.00
DESIGN	TASK:	Biofilter Divid	Wall Evaluationf ro Hydrostatic + Hydr	oads (BSE-2E)

BY: BS	DATE: Aug-21 CLIENT	City of Wilsonville	SHEET:
CHKD:	DESCRIPTION:	Sludge Storage and Biofilters Basins	JOB NO: 11962A.00
DESIGN TASK:	Biofilter Divid	Wall Evaluationf ro Hydrostatic + Hyd	-ads (BSE-2E)

$$
\begin{array}{rlrl}
\text { Concrete strength reduction factor for shear, } \phi= & & 1.00 \\
& \\
d & = & 9.0 & \text { in } \\
\text { maximum shear, } V_{u} & = & 5.29 & \mathrm{k} / \mathrm{ft} \\
\phi \mathrm{~V}_{\mathrm{c}}=\phi^{*} 2^{*}\left(\mathrm{f} \mathrm{f}^{\prime} \mathrm{c}\right)^{1 / 2 *} \mathrm{~b}^{*} \mathrm{~d}=\quad\left(1.00^{*} 2^{*}(3000)^{\wedge} 1 / 2 * 12^{*} 9.0\right) / 1000 & = & 11.83 \mathrm{k} / \mathrm{ft}
\end{array}
$$

Reference:
"Moments and Reactions for Rectangular Plates"
Engineering Monograph No. 27
By: W. T. Moody, United States Bureau of Reclamation

Notes:
Quadratic interpolation is used for intermediate values within the Moody tables and between Moody figures.
The positive sign convention for moments M_{x} and M_{y} is tension on the loaded face of the plate.
The M_{x} moment is in the direction of the x-axis and the M_{y} moment is in the direction of the y-axis by plate sign convention

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Sludge Storage and Biofilter Basins	JOB NO:	11962A.00

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

| | | |
| ---: | :---: | :--- | :--- |
| Compression width of wall, $b=$ | 12 | inch |
| Thickness of wall, $h=$ | 12 | inch |
| Depth to reinforcing, $\mathrm{d}=$ | 9 | inch |
| factored design moment, $\mathrm{M}_{\mathrm{u}}=$ | 13.62 | ft-k |
| factored design shear, $\mathrm{V}_{\mathrm{u}}=$ | 5.29 | kip |

$$
\begin{aligned}
\mathrm{f}^{\prime} \mathrm{c}(\mathrm{psi}) & =3000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =\mathbf{6 0 0 0 0} \\
\phi, \text { Bending } & =\mathbf{1} \\
\phi, \text { Shear } & =\mathbf{1} \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3122019 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =9.29 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 11.83 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

comment : existing 12" wall w/ \#6@12" \& \#7@12" alternating (effective 6" spacing)
Area steel provided, $\mathrm{A}_{\mathrm{s}}=$

$$
\rho=A_{s} / b d=0.00963
$$

$$
\rho(\min)<\mathrm{As} / \mathrm{bd}<\rho(\max)-\mathrm{OK}
$$

$$
\begin{array}{rlll}
\mathrm{A}_{\mathrm{s}(\text { min })}=0.19 & \mathrm{in}^{2} & \rho_{(\text {min })}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)} & =1.73 & \mathrm{in}^{2} & \rho_{(\max)}=0.01604
\end{array}
$$

$$
\text { bending strength, } \quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)
$$

$$
\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00963^{*} 60^{*} 12^{*} 9^{2} *\left(1-0.588^{*} 0.00963^{*} 60 / 3\right)^{*}(\mathrm{ft} / 12)=41.498 \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}
$$

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Sludge Storage and Biofilter Basins	JOB NO:	11962A. 00

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

| | | |
| ---: | :---: | :--- | :--- |
| Compression width of wall, $\mathrm{b}=$ | 12 | inch |
| Thickness of wall, $\mathrm{h}=$ | 12 | inch |
| Depth to reinforcing, $\mathrm{d}=$ | 9 | inch |
| factored design moment, $\mathrm{M}_{\mathrm{u}}=$ | 10.38 | $\mathrm{ft}-\mathrm{k}$ |
| factored design shear, $\mathrm{V}_{\mathrm{u}}=$ | 3.42 | kip |

$$
\begin{aligned}
\mathrm{f}^{\prime} \mathrm{c}(\mathrm{psi}) & =3000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =\mathbf{6 0 0 0 0} \\
\phi, \text { Bending } & =\mathbf{1} \\
\phi, \text { Shear } & =\mathbf{1} \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3122019 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =9.29 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 11.83 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

Area steel provided, $\mathrm{A}_{\mathrm{s}}=$

$$
\begin{aligned}
& \rho=A_{s} / b d=0.00407 \\
& \quad \rho(\min)<A s / b d<\rho(\max)-\text { OK }
\end{aligned}
$$

$$
\begin{array}{rlll}
\mathrm{A}_{\mathrm{s}(\min)} & =0.19 & \mathrm{in}^{2} & \rho_{(\min)}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)} & =1.73 & \mathrm{in}^{2} & \rho_{(\max)}=0.01604
\end{array}
$$

bending strength, $\quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)$

$$
\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00407^{*} 60^{*} 12^{*} 9^{2} *\left(1-0.588^{*} 0.00407^{*} 60 / 3\right)^{*}(\mathrm{ft} / 12)=18.851 \quad \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}
$$

Engineers...Working Wonders With Water 'u

BY:	BS	DATE: \quad Aug-21	CLIENT:	City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:	Sludge Storage Basins \& Biofilter	JOB NO:	11962A.00
DESIGN TASK:			Interior Dividing Wall between Sludge Storage \& Biofilter Basins	(Transverse Direction) (CSZ)	

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity $=$ no roof $\&$ fixed at floor
tank unit width perpendicular to $\mathrm{EQ} ., \mathrm{B}=1 \mathrm{ft}$
tank inside length in direction of seismic, $\mathrm{L}=20 \mathrm{ft}$
tank wall thickness, $\mathrm{t}_{\mathrm{w}}=12$ inch
wall height, $\quad \mathrm{H}_{\mathrm{w}}=11.18 \mathrm{ft}$
liquid height, $H_{L}=10.44 \mathrm{ft}$
liquid specific gravity $=1$
liquid density, $\gamma_{\mathrm{L}}=(\mathrm{sp} . \mathrm{gr} \text {. })^{*} \gamma_{\mathrm{w}}=0.0624 \mathrm{k} / \mathrm{ft}^{3}$
acceleration due to gravity, $\mathrm{g}=32.17 \mathrm{ft} / \mathrm{sec}^{2}$
liquid mass density, $\rho_{\mathrm{L}}=\gamma_{\mathrm{L}} / \mathrm{g}=0.00194 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}{ }^{4}$

Soil Data
The site has no groundwater.
soil height above top of foundation base $=\mathbf{0} \mathrm{ft}$
groundwater ht. above foundation base $=\mathbf{0} \mathrm{ft}$
dry soil lateral pressure $=0 \quad \mathbf{k} / \mathrm{ft}^{3}$

\qquad
saturated soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
dry soil unit weight $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=\mathbf{0 . 0 0 0} \mathrm{ksf}$
0
concrete strength, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{3} \mathrm{ksi}$
concrete density, $\gamma_{\mathrm{c}}=0.150 \mathrm{k} / \mathrm{ft}^{3}$
concrete modulus of elasticity, $\mathrm{E}_{\mathrm{c}}=3122.0 \mathrm{ksi}$
concrete mass density, $\rho_{c}=\gamma_{c} / g=0.004663 \mathrm{k}_{\mathrm{k}} \mathrm{sec}^{2} / \mathrm{ft}^{4}$

Seismic:
$\begin{aligned} & \text { Deisgn, } 5 \% \text { damped, spectral response acceleration at the short period of 0.2-second, } \mathrm{S}_{\mathrm{DS}}= \mathbf{0 . 4 4 6} \\ & \text { Deisgn, } 5 \% \text { damped, spectral response acceleration at a period of } 1 \text {-second, } \mathrm{S}_{\mathrm{D} 1}={ }^{*} \mathrm{~g} \\ & \mathbf{0 . 3 3 2}\end{aligned}{ }^{* g}$

Engineers...Working Wonders With Water '"

BY: BS	DATE: Aug-21	CLIENT: City of Wilsonville	SHEET:
CHKD:	DESCRIPTION:	Sludge Storage Basins \& Biofilter	JOB NO: 11962A.00
DESIGN TASK:	Interior Dividing W	etween Sludge Storage \& Biofilter Ba	(Transverse Direction) (CSZ)

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$
$(12 / 12) *(11.18) * 0.15=1.68$ kip
$11.18 / 2=5.590 \mathrm{ft}$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=$
(20) * (1) * (10.44) * $32.17=13.03$ kip

Seismic:
1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \mathrm{\rho}_{\mathrm{c}}=0.05213 \mathrm{k}-\sec ^{2} / \mathrm{ft}^{2}$
liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}^{*} \rho_{L}=0.11345 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
centroidal distance of masses, $\mathrm{h}=\left(\mathrm{h}_{\mathrm{w}}{ }^{*} \mathrm{~m}_{\mathrm{w}}+\mathrm{h}_{\mathrm{i}}{ }^{*} \mathrm{~m}_{\mathrm{i}}\right) /\left(\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{i}}\right)=4.442 \mathrm{ft}$
wall fixity condition is no roof \& fixed at floor:
wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k=E c^{*}(\mathrm{tw} / \mathrm{h})^{3} / 48=1282.34 \mathrm{k} / \mathrm{ft} / \mathrm{ft}$

$(1282.34 /(0.0521+0.1135))^{\wedge} 1 / 2=88.0026 \mathrm{rad} / \mathrm{sec}$
period of tank plus impulsive mass, $\mathrm{T}_{\mathrm{i}}=2 \pi / \omega_{\mathrm{i}}=2 \pi / 88.0026=0.0714 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{a i}=S_{D S}=0.446 \quad g$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

3). lateral fluid impulsive force: Dynamic Model
4). lateral fluid convective force:

$$
\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{L}}\left(0.264\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right) \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)\right)=
$$

$$
13.03^{*}\left(0.264^{*}(1.9157)^{*} \tanh \left(3.16^{*}(0.522)\right)\right)=\quad 6.12 \quad \text { kip }
$$

$$
h_{c}(E B P)=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{L}\right)\right)-1}{3.16\left(\frac{H_{L}}{L}\right) \sinh \left(3.16\left(\frac{H_{L}}{L}\right)\right)}\right)=6.151 \quad \mathrm{ft}
$$

$$
h_{c(\text { IBP) })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{L}\right)\right)-2.01}{3.16\left(\frac{H_{L}}{L}\right) \sinh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)}\right)=8.702 \mathrm{ft}
$$

convective force, $\mathrm{P}_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{ac}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=$
$(0.1722$ * $1.25 / 1$)*6.12 =
1.3 kip

$$
\begin{aligned}
& W_{i}=W_{L}\left(\frac{\operatorname{Wi}=\text { equivalent mass of the impulsive component of }}{\left.0.866 \frac{L}{H_{L}}\right)} \underset{0.866 \frac{L}{H_{L}}}{L}\right)=\quad 13.03^{*}\left(\tanh \left(0.866^{*}(1.9157)\right) / 0.866^{*}(1.9157)\right)=7.3 \quad \mathrm{kip} \\
& \text { hi (EBP) }=\mathrm{HL} \text { * } 0.375=10.44 \text { * } 0.375=3.915 \mathrm{ft} \\
& \text { hi } \left.(\text { IBP })=H L *\left\{\left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right) /\left(2^{*} \tanh \left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right)\right)\right\}-1 / 8\right\}=8.006 \mathrm{ft} \\
& \text { impulsive force, } P_{i}=\left(\frac{S_{\mathrm{ai}} \mathrm{I}}{\mathrm{R}_{\mathrm{wi}}}\right) \mathrm{W}_{\mathrm{i}}=\quad(0.446 * 1.25 / 3)^{*} 7.3=1.4 \quad \mathrm{kip}
\end{aligned}
$$

BY: BS	DATE: Aug-21	CLIENT: City of Wilsonville	SHEET:
CHKD:	DESCRIPTION:	Sludge Storage Basins \& Biofilter	JOB NO: 11962A.00
DESIGN TASK:	Interio	between Sludge Storage \& Biofilter B	rection) (CSZ)

5). lateral inertia force of the accelerating wall:

$$
\begin{array}{rcl}
\text { unit width wall mass, } \mathrm{W}_{\mathrm{w}} & =1.68 & \mathrm{kip} \\
\text { wall } \mathrm{c} \text {.g. relative to base, } \mathrm{h}_{\mathrm{w}} & = & 5.590
\end{array} \mathrm{ft}
$$

wall inertia force, $P_{w}=\left(\frac{S_{a i} I \varepsilon}{R_{w i}}\right) W_{w}=\quad\left(0.446^{* 1} 1.25^{*} 0.7109 / 3\right)^{*} 1.68=0.22$ kip
6). maximum wave slosh height displacement:

$$
d_{\text {(max) }}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.4} \mathrm{I}\right)=(20 / 2) *(0.1722 / 1.0 * 1.25)=2.15 \mathrm{ft}
$$

Wave height is greater than the freeboard of $0.74-\mathrm{ft}$. Check effects of wave spillage.
7). vertical acceleration:

$$
\begin{array}{rlrl}
\text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}= & 0.446 & { }^{*} \mathrm{~g} \\
\text { vertical spectral response acceleration (per ACI } 350 \text { para 9.4.3), } \mathrm{S}_{\mathrm{av}}=\mathrm{C}_{\mathrm{t}}=0.4 \mathrm{~S}_{\mathrm{DS}}= & 0.1784 \mathrm{~g}
\end{array}
$$

$$
\text { per ASCE 7-10 para. 15.7.7.2(b), use } I=R_{i}=b=1.0
$$

$$
\text { Design vertical acceleration, ü }=\frac{\mathrm{S}_{\mathrm{av}} \mathrm{I} \mathrm{~b}}{\mathrm{R}_{\mathrm{i}}}=0.1784^{* 1 * 1 / 1}=0.1784 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of ACl 350 sec 5.3 :

convective

vertical acceleration

wall

0.651 ksf hydrostatic
impulsive:

$$
p_{\mathrm{iy}}=\frac{P_{i}\left[4 H_{L}-6 h_{\mathrm{i}}-\left(6 \mathrm{H}_{\mathrm{L}}-12 h_{i}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

convective:

$$
p_{\mathrm{o}}=\frac{\mathrm{P}_{\mathrm{c}}\left[4 \mathrm{H}_{\mathrm{L}}-6 \mathrm{~h}_{\mathrm{c}}-\left(6 \mathrm{H}_{\mathrm{L}}-12 \mathrm{~h}_{\mathrm{c}}\right)\left(\frac{\mathrm{y}}{\mathrm{H}_{\mathrm{L}}}\right)\right]}{2 \mathrm{~B} \mathrm{H} \mathrm{H}_{\mathrm{L}}^{2}}=
$$

BY:	BS	DATE: \quad Aug-21	CLIENT:	City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:	Sludge Storage Basins \& Biofilter	JOB NO:	11962A.00
DESIGN TASK:		Interior Dividing Wall between Sludge Storage \& Biofilter Basins	(Transverse Direction) (CSZ)		

vertical acceleration:

$$
p_{\mathrm{w}}=\ddot{u} \gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

$$
\begin{array}{rlrl}
u ̈ & =0.1784 \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } y=0, p_{v y} & =0.116 & \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
\mathrm{p}_{\mathrm{wy}}=\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon \gamma_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{\mathrm{R}_{\mathrm{wi}}}=
$$

$$
p_{w y}=0.1321 * \gamma_{c} *\left(t_{w} / 12\right)
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.020 \mathrm{ksf}
$$

$$
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.020 \mathrm{ksf}
$$

hydrostatic:

$$
\mathrm{a}_{\mathrm{ny}}=\gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

at $y=H_{L}, q_{h y}=0.000 \mathrm{ksf}$ at base $\mathrm{y}=0, \mathrm{q}_{\mathrm{hy}}=0.651 \mathrm{ksf}$
combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$

at $y=H_{w}, p_{y}=0.102$ ksf at base $y=0, p_{y}=0.182 \mathrm{ksf}$

9). wall design pressures for hydrostatic + dynamic:

$\begin{array}{rlr}\text { wall height, } H_{w} & =11.18 & \mathrm{ft} \\ \text { liquid height, } H_{L} & =10.44 & \mathrm{ft}\end{array}$

BY:	BS	DATE	Aug-21	CLIENT	City of Wilsonville	SHEET: JOB NO:	
CHKD:		DESCRIPTION:		Sludge Storage Basins \& Biofilter			11962A. 00
DESIGN	ASK:		iding	betwee	Storage \& Biofilter	Transv	ection) (C)

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

$=$

The site has no groundwater.
wall height $=11.18 \mathrm{ft}$
soil height above top of base $=0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$
dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
sat. soil lateral pressure $=0.000 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000$ ksf unfactored soil, q3 $=\begin{array}{r}0.0000 \\ 0.000\end{array} \quad \mathrm{ksf}$ 0.000
equivalent soil loadings:
unfactored q5 $=0.0000 \mathrm{ksf}$
unfactored q6 $=0.0000 \mathrm{ksf}$
soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq})}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf unfactored equivalent soil seismic, $q 9=0 / 1.4=0.0000$ ksf
unfactored wall seismic, q10 $=0.0198 / 1.4=0.0142 \mathrm{ksf}$
unfactored equivalent soil seismic, q11 $=0 / 1.4=0.0000 \mathrm{ksf}$ unfactored equivalent soil seismic, q12 $=0 / 1.4=0.0000 \mathrm{ksf}$

Engineers...Working Wonders With Water '"

BY:	BS	DATE: \quad Aug-21	CLIENT:	City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:	Sludge Storage Basins \& Biofilter	JOB NO:	11962A.00
DESIGN TASK:			Interior Dividing Wall between Sludge Storage \& Biofilter Basins	(Transverse Direction) (CSZ)	

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:


```
                                    Load Cases:
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic
```

a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

c). load case 3: static soil + LL surcharge:
wall height $=11.18 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$
equivalent static soil \& surcharge loadings...
 $=$

LL lateral surcharge, q1 $=0.000 \quad \mathrm{ksf}$ unfactored soil, q2 $=0.000$ ksf unfactored soil, q3 $=0.000 \mathrm{ksf}$
equivalent soil loadings:
unfactored q5 $=0.000$ ksf
unfactored q6 $=0.000$ ksf
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...
wall height $=11.18 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$

unfactored equivalent soil seismic, $q 8=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, q9 = 0.000 ksf unfactored equivalent soil seismic, q10 $=0.014$ ksf unfactored equivalent soil seismic, q11 $=0.000$ ksf unfactored equivalent soil seismic, q12 $=0.000$ ksf

Engineers...Working Wonders With Water '"

BY:	BS	DATE: \quad Aug-21	CLIENT:	City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:	Sludge Storage Basins \& Biofilter	JOB NO:	11962A.00
DESIGN TASK:		Interior Dividing Wall between Sludge Storage \& Biofilter Basins (Longitudinal Direction) (CSZ)			

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity $=$ no roof $\&$ fixed at floor
tank unit width perpendicular to EQ., $\mathrm{B}=1 \mathrm{ft}$
tank inside length in direction of seismic, $\mathrm{L}=58.5 \mathrm{ft}$
tank wall thickness, $\mathrm{t}_{\mathrm{w}}=12$ inch
wall height, $\quad \mathrm{H}_{\mathrm{w}}=11.18 \mathrm{ft}$
liquid height, $H_{L}=10.44 \mathrm{ft}$
liquid specific gravity $=1$
liquid density, $\gamma_{\mathrm{L}}=(\mathrm{sp} . \mathrm{gr} \text {. })^{*} \gamma_{\mathrm{w}}=0.0624 \mathrm{k} / \mathrm{ft}^{3}$
acceleration due to gravity, $\mathrm{g}=32.17 \mathrm{ft} / \mathrm{sec}^{2}$
liquid mass density, $\rho_{\mathrm{L}}=\gamma_{\mathrm{L}} / \mathrm{g}=0.00194 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}{ }^{4}$

Soil Data
The site has no groundwater.
soil height above top of foundation base $=\mathbf{0} \mathrm{ft}$
groundwater ht. above foundation base $=\mathbf{0} \mathrm{ft}$
dry soil lateral pressure $=0 \quad \mathbf{k} / \mathrm{ft}^{3}$

\qquad
saturated soil lateral pressure $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
dry soil unit weight $=0 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \quad \mathrm{ksf}$
0
concrete strength, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{3} \mathrm{ksi}$
concrete density, $\gamma_{\mathrm{c}}=0.150 \mathrm{k} / \mathrm{ft}^{3}$
concrete modulus of elasticity, $\mathrm{E}_{\mathrm{c}}=3122.0 \mathrm{ksi}$
concrete mass density, $\rho_{c}=\gamma_{c} / g=0.004663 \mathrm{k}_{\mathrm{k}} \mathrm{sec}^{2} / \mathrm{ft}^{4}$

Seismic:
$\begin{aligned} & \text { Deisgn, } 5 \% \text { damped, spectral response acceleration at the short period of 0.2-second, } \mathrm{S}_{\mathrm{DS}}= \mathbf{0 . 4 4 6} \quad{ }^{\mathrm{*} g} \mathrm{~g} \\ & \text { Deisgn, } 5 \% \text { damped, spectral response acceleration at a period of } 1 \text {-second, } \mathrm{S}_{\mathrm{D1} 1}=\begin{array}{l}\mathbf{0 . 4 0 5}\end{array} \quad{ }^{\mathrm{*g}} \mathrm{~g}\end{aligned}$

| Structure Risk Category $=$ | $\mathbf{3}$ |
| ---: | :---: | :---: |
| Importance factor, $\mathrm{I}=$ | $\mathbf{1 . 2 5}$ |
| Response modification factor, $\mathrm{R}_{\mathrm{wi}}=$ | $\mathbf{3}$ |
| Response modification factor, $\mathrm{R}_{\mathrm{wc}}=$ | $\mathbf{1}$ |

Load Cases:

```
case 1 = water
```

case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case $4=$ soil + soil seismic + wall seismic

Engineers...Working Wonders With Water '"

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$
$(12 / 12) *(11.18) * 0.15=1.68$ kip
$11.18 / 2=5.590 \mathrm{ft}$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=(58.5)^{*}(1) *(10.44) * 32.17=38.11$ kip

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \rho_{\mathrm{c}}=0.05213 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$ liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}{ }^{*} \rho_{L}=0.12201 \mathrm{k}-\mathrm{sec}^{2} / f t^{2}$ centroidal distance of masses, $h=\left(h_{w}^{*} m_{w}+h_{i}{ }^{*} m_{i}\right) /\left(m_{w}+m_{i}\right)=4.416 \mathrm{ft}$
wall fixity condition is no roof \& fixed at floor: wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $k=E c^{*}(t w / h)^{3} / 48=1305.12 \mathrm{k} / \mathrm{ft} / \mathrm{ft}$

$$
(1305.12 /(0.0521+0.122))^{\wedge 11 ⁄ 2}=86.5722 \mathrm{rad} / \mathrm{sec}
$$

period of tank plus impulsive mass, $\mathrm{T}_{\mathrm{i}}=2 \pi / \omega_{\mathrm{i}}=2 \pi / 86.5722=0.0726 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $\mathrm{S}_{\mathrm{ai}}=\mathrm{S}_{\mathrm{DS}}=0.446 \mathrm{~g}$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

BY:	BS	DATE: \quad Aug-21	CLIENT:	City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:	Sludge Storage Basins \& Biofilter	JOB NO:	11962A.00
DESIGN TASK:		Interior Dividing Wall between Sludge Storage \& Biofilter Basins (Longitudinal Direction) (CSZ)			

L	$=58.5$	ft
B	$=1$	ft
H_{L}	$=10.44$	ft
W_{L}	$=38.11$	kip

$L / H_{L}=5.60345$
$H_{L} / L=0.17846$
3). lateral fluid impulsive force: Dynamic Model
$\mathrm{W}_{\mathrm{i}}=\mathrm{W}_{\mathrm{L}}\left(\frac{\tanh \left(0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right)}{0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}}\right)=$
$\mathrm{Wi}=$ equivalent mass of the impulsive component of liquid.
$38.11^{*}\left(\tanh \left(0.866^{*}(5.6034)\right) / 0.866^{*}(5.6034)\right)=7.85$ kip
hi (EBP) $=\mathrm{HL}$ * $0.375=10.44$ * $0.375=3.915 \mathrm{ft}$
hi $(\mathrm{IBP})=\mathrm{HL} *\left\{\left\{\left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right) /\left(2^{*} \tanh \left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right)\right)\right\}-1 / 8\right\}=24.029 \mathrm{ft}$
impulsive force, $P_{i}=\left(\frac{S_{\mathrm{ai}} \mathrm{I}}{\mathrm{R}_{\mathrm{wi}}}\right) \mathrm{W}_{\mathrm{i}}=(0.446 * 1.25 / 3)^{*} 7.85=1.5 \quad \mathrm{kip}$
4). lateral fluid convective force:
$\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{L}}\left(0.264\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right) \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{L}}\right)\right)\right)=$
$W c=$ equivalent mass of the convective component of liquid.
$38.11^{*}\left(0.264^{*}(5.6034)^{\star} \tanh \left(3.16^{*}(0.1785)\right)\right)=28.8$ kip

$$
\begin{gathered}
h_{c(\text { EEP) })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)-1}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)}\right)=5.354 \mathrm{ft} \\
\mathrm{~h}_{\mathrm{c}(\text { (BP) })}=\mathrm{H}_{\mathrm{L}}\left(1-\frac{\cosh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)-2.01}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=36.815 \mathrm{ft}
\end{gathered}
$$

convective force, $\mathrm{P}_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{a}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=\quad(0.0911 * 1.25 / 1) * 28.8=3.3 \quad$ kip

BY:	BS	DATE:	Aug-21	C	City of Wilsonville	SHEET: JOB NO:	
CHKD:		DESCRIPTION:		Sludge Storage Basins \& Biofilter			11962A. 00
DESIGN	K:		viding W	btween	Storage \& Biofilter B	Longitudi	tion) (

5). lateral inertia force of the accelerating wall:

unit width wall mass, $\mathrm{W}_{\mathrm{w}}=$	1.68
c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$	5.590

wall inertia force, $P_{w}=\left(\frac{S_{a i} I \varepsilon}{R_{w i}}\right) W_{w}=\quad\left(0.446^{\star 1} 1.25^{*} 0.426 / 3\right)^{*} 1.68=0.13 \quad$ kip
6). maximum wave slosh height displacement:

$$
d_{\text {max }}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.4} \mathrm{I}\right)=(58.5 / 2) *(0.0911 / 1.0 * 1.25)=3.33 \mathrm{ft}
$$

Wave height is greater than the freeboard of 0.74 -ft. Check effects of wave spillage.
7). vertical acceleration:

$$
\begin{array}{rlrl}
\text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}= & 0.446 & { }^{*} \mathrm{~g} \\
\text { vertical spectral response acceleration (per ACI } 350 \text { para 9.4.3), } \mathrm{S}_{\mathrm{av}}=\mathrm{C}_{\mathrm{t}}=0.4 \mathrm{~S}_{\mathrm{DS}}= & 0.1784 \mathrm{~g}
\end{array}
$$

$$
\text { per ASCE } 7-10 \text { para. } 15.7 .7 .2(b), \quad \text { use } I=R_{i}=b=1.0
$$

$$
\text { Design vertical acceleration, ü }=\frac{\mathrm{S}_{\mathrm{av}} \mathrm{I} \mathrm{~b}}{\mathrm{R}_{\mathrm{i}}}=0.1784^{* 1 * 1 / 1}=0.1784 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of ACI 350 sec 5.3 :

convective

0.116 ksf
vertical acceleration

0.012 ksf wall

0.651 ksf hydrostatic
impulsive:

$$
p_{\mathrm{iy}}=\frac{P_{i}\left[4 H_{L}-6 h_{\mathrm{i}}-\left(6 \mathrm{H}_{\mathrm{L}}-12 h_{i}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

convective:

$$
p_{\mathrm{o}}=\frac{\mathrm{P}_{\mathrm{c}}\left[4 \mathrm{H}_{\mathrm{L}}-6 \mathrm{~h}_{\mathrm{c}}-\left(6 \mathrm{H}_{\mathrm{L}}-12 \mathrm{~h}_{\mathrm{c}}\right)\left(\frac{\mathrm{y}}{\mathrm{H}_{\mathrm{L}}}\right)\right]}{2 \mathrm{~B} \mathrm{H} \mathrm{H}_{\mathrm{L}}^{2}}=
$$

BY:	BS	DATE:	Aug-21	C	City of Wilsonville	SHEET: JOB NO:	
CHKD:		DESCRIPTION:		Sludge Storage Basins \& Biofilter			11962A. 00
DESIGN	K:		viding W	btween	Storage \& Biofilter B	Longitudi	tion) (

vertical acceleration:

$$
p_{v y}=\ddot{u} \gamma_{L}\left(H_{L}-y\right)=
$$

$$
\begin{array}{rlrl}
u ̈ & =0.1784 \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } y=0, p_{v y} & =0.116 & \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
\mathrm{p}_{\mathrm{wy}}=\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon \gamma_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{\mathrm{R}_{\mathrm{wi}}}=
$$

$$
p_{w y}=0.0792 * \gamma_{c}{ }^{*}\left(t_{w} / 12\right)
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.012 \mathrm{ksf}
$$ at base $\mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.012 \mathrm{ksf}$

hydrostatic:

$$
\mathrm{a}_{\mathrm{ny}}=\gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

at $y=H_{L}, q_{h y}=0.000 \mathrm{ksf}$ at base $y=0, q_{\mathrm{hy}}=0.651 \mathrm{ksf}$
combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{y y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{y}}=0.173 \mathrm{ksf}$ at base $y=0, p_{y}=0.232 \mathrm{ksf}$

9). wall design pressures for hydrostatic + dynamic:
wall height, $\mathrm{H}_{\mathrm{w}}=11.18 \mathrm{ft}$
liquid height, $H_{L}=10.44 \mathrm{ft}$

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

=

The site has no groundwater.
wall height $=11.18 \mathrm{ft}$
soil height above top of base $=0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$
dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
sat. soil lateral pressure $=0.000 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000 \mathrm{ksf}$
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000$ ksf unfactored soil, q3 $=\begin{array}{r}0.0000 \\ 0.000\end{array} \quad \mathrm{ksf}$ 0.000
equivalent soil loadings:
unfactored q5 $=0.0000 \mathrm{ksf}$
unfactored $q 6=0.0000 \mathrm{ksf}$
soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq})}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

unfactored equivalent soil seismic, q8 $=0 / 1.4=0.0000 \mathrm{ksf}$ unfactored equivalent soil seismic, $q 9=0 / 1.4=0.0000 \mathrm{ksf}$
unfactored wall seismic, q10 $=0.0119 / 1.4=0.0085 \mathrm{ksf}$
unfactored equivalent soil seismic, q11 $=0 / 1.4=0.0000 \mathrm{ksf}$ unfactored equivalent soil seismic, q12 $=0 / 1.4=0.0000 \mathrm{ksf}$

BY:	BS	DATE: \quad Aug-21	CLIENT:	City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:	Sludge Storage Basins \& Biofilter	JOB NO:	11962A.00
DESIGN TASK:		Interior Dividing Wall between Sludge Storage \& Biofilter Basins (Longitudinal Direction) (CSZ)			

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:


```
Load Cases:
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic
```

a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

c). load case 3: static soil + LL surcharge:
wall height $=11.18 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$
equivalent static soil \& surcharge loadings...
 $=$

wall height $=11.18 \mathrm{ft}$
water depth $=10.44 \mathrm{ft}$
wall height $=11.18 \mathrm{ft}$ water depth $=10.44 \mathrm{ft}$
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...
wall height $=11.18 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$

LL lateral surcharge, q1 = 0.000 ksf unfactored soil, q2 $=0.000$ ksf unfactored soil, q3 $=0.000$ ksf
equivalent soil loadings:
unfactored q5 $=0.000$ ksf
unfactored q6 $=0.000$ ksf
unfactored equivalent soil seismic, q8 = 0.000 ksf unfactored equivalent soil seismic, q9 = 0.000 ksf unfactored equivalent soil seismic, q10 $=0.008 \mathrm{ksf}$ unfactored equivalent soil seismic, q11 $=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, q12 $=0.000$ ksf

BY: BS	DATE: Aug-21 CLIENT	City of Wilsonville	SHEET:
CHKD:	DESCRIPTION:	Sludge Storage and Biofilters Basins	JOB NO: 11962A.00
DESIGN TASK:	Biofilter Dividing Wall Evaluation for Hydrostatic + Hydrodynamic Loads (CSZ)		

Rectangular Plate:

plate boundary condition case number $(1,2,3,4$, or 5$)=1$ total plate width $=2 * a=2 * 14.63=29.26 \mathrm{ft}$ plate dimension, $\mathrm{a}=14.63 \mathrm{ft}$ plate dimension, $b=11.18 \mathrm{ft}$
plate sides ratio, $a / b=1.3086$

Choice of Available Loadings					
	load type	load height, (ft) only for custom loads 100 or 400	unfactored loads: q, M, or F (ksf, ft-k/ft, k/ft)	concrete load factors	
	Loading Selection Number			$\begin{gathered} \text { for } \\ \text { moment } \end{gathered}$	for shear
A	100	10.440	0.102	1	1
B	400	10.440	0.080	1	1
C	400	10.440	0.651	1	1

Notes: 1). Load $100=$ uniform load of any load height $\geq b / 3 ;$ Load $400=$ triangular load of any load height $\geq b / 6$.
2). load height must be less than or equal to "b", and uniform load height \geq " $\mathrm{b} / 3$ ", and triangular load height \geq " $\mathrm{b} / 6$ " .
3). loads may be positive or negative.

plate thickness, h	$=$	12
in		
concrete strength, $\mathrm{f}^{\prime} \mathrm{c}$	$=$	3
ksi		
reinforcing steel strength, fy	$=$	60
ksi		
lear cover to face of concrete	$=$	2

bar locations	d (in)	d^{\prime} (in)
$M x$ bending	$9^{\prime \prime}$	$3^{\prime \prime}$
My bending	$9.5^{\prime \prime}$	$2.5^{\prime \prime}$

reinforcing clear cover to face of concrete $=\mathbf{2}$ in number of curtains of reinforcing, $(1$ or 2$)=2$
Are bars in "x" or "y" direction closest to face of concrete? y minimum ratio of horizontal shrinkage-temperature steel $=\mathbf{0 . 0 0 5 0 0}$ minimum ratio of vertical shrinkage-temperature steel $=\mathbf{0 . 0 0 5 0 0}$

BY:	BS	DATE: Aug-21 CLIENT	City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:	Sludge Storage and Biofilters Basins	JOB NO: 11962A.00
DESIGN	ASK:	Biofilter D	g Wall Evaluation for Hydrostatic + Hy	Loads (CSZ)

BY:	BS	DATE: Aug-21 CLIENT	City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:	Sludge Storage and Biofilters Basins	JOB NO: 11962A.00
DESIGN	ASK:	Biofilter D	g Wall Evaluation for Hydrostatic + Hy	Loads (CSZ)

BY:	BS	DATE: Aug-21 CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:	Sludge Storage and Biofilters Basins	JOB NO:	11962A. 00
DESIGN	ASK:	Biofilter Dividing Wall Evaluation for Hydrostatic + Hydrodynamic Loads (CSZ)			

$$
\begin{array}{rlrl}
\text { Concrete strength reduction factor for shear, } \phi= & 1.00 \\
& = & 9.0 & \mathrm{in} \\
& = & \\
\text { maximum shear, } \mathrm{V}_{\mathrm{u}} & = & 4.84 \mathrm{k} / \mathrm{ft} \\
\phi \mathrm{~V}_{\mathrm{c}}=\phi^{*} 2^{*}\left(\mathrm{f}^{\prime} \mathrm{c}\right)^{1 / 2 *} \mathrm{~b}^{*} \mathrm{~d}=\quad\left(1.00^{*} 2^{*}(3000)^{\wedge 1 / 2 *} 12^{*} 9.0\right) / 1000 & = & 11.83 \mathrm{kt} / \mathrm{ft}
\end{array}
$$

Reference:
"Moments and Reactions for Rectangular Plates"
Engineering Monograph No. 27
By: W. T. Moody, United States Bureau of Reclamation

Notes:
Quadratic interpolation is used for intermediate values within the Moody tables and between Moody figures.
The positive sign convention for moments M_{x} and M_{y} is tension on the loaded face of the plate.
The M_{x} moment is in the direction of the x-axis and the M_{y} moment is in the direction of the y-axis by plate sign convention.

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:
CHKD:	DESCRIPTION:		Sludge Storage and Biofilter Basins	JOB NO: 11962A. 00

DESIGN TASK: Biofilter Dividing Wall Strength Check for Hydrostatic + Hydrodynamic Loads (Vertical Reinforcing) (CSZ)

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

| | | |
| ---: | :---: | :--- | :--- |
| Compression width of wall, $\mathrm{b}=$ | 12 | inch |
| Thickness of wall, $\mathrm{h}=$ | 12 | inch |
| Depth to reinforcing, $\mathrm{d}=$ | 9 | inch |
| factored design moment, $\mathrm{M}_{\mathrm{u}}=$ | 12.49 | ft-k |
| factored design shear, $\mathrm{V}_{\mathrm{u}}=$ | 4.84 | kip |

$$
\begin{aligned}
\mathrm{f}^{\prime} \mathrm{c}(\mathrm{psi}) & =3000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =\mathbf{6 0 0 0 0} \\
\phi, \text { Bending } & =\mathbf{1} \\
\phi, \text { Shear } & =\mathbf{1} \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3122019 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =9.29 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 11.83 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, } \mathrm{s}= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

comment : existing 12" wall w/ \#6@12" \& \#7@12" alternating (effective 6" spacing)
Area steel provided, $\mathrm{A}_{\mathrm{s}}=$

$$
\rho=A_{s} / b d=0.00963
$$

$$
\rho(\min)<\mathrm{As} / \mathrm{bd}<\rho(\max)-\mathrm{OK}
$$

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}(\text { min })} & =0.19 & \mathrm{in}^{2} & \rho_{(\min)}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)} & =1.73 & \text { in }^{2} & \rho_{(\max)}=0.01604
\end{aligned}
$$

$$
\text { bending strength, } \quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)
$$

$$
\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00963^{*} 60^{*} 12^{*} 9^{2} *\left(1-0.588^{*} 0.00963^{*} 60 / 3\right)^{*}(\mathrm{ft} / 12)=41.498 \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}
$$

BY: BS
DATE:
Aug-21
CLIENT:
City of Wilsonville
SHEET:
CHKD:
DESCRIPTION:
Sludge Storage and Biofilter Basins
JOB NO: 11962A. 00
DESIGN TASK: Biofilter Dividing Wall Strength Check for Hydrostatic + Hydrodynamic Loads (Horizontal Reinforcing) (CSZ)

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

| | | |
| ---: | :---: | :--- | :--- |
| Compression width of wall, $\mathrm{b}=$ | 12 | inch |
| Thickness of wall, $\mathrm{h}=$ | 12 | inch |
| Depth to reinforcing, $\mathrm{d}=$ | 9 | inch |
| factored design moment, $\mathrm{M}_{\mathrm{u}}=$ | 9.56 | ft-k |
| factored design shear, $\mathrm{V}_{\mathrm{u}}=$ | 3.16 | kip |

$$
\begin{aligned}
\mathrm{f}^{\prime} \mathrm{c}(\mathrm{psi}) & =3000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =\mathbf{6 0 0 0 0} \\
\phi, \text { Bending } & =\mathbf{1} \\
\phi, \text { Shear } & =\mathbf{1} \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3122019 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =9.29 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 11.83 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

Area steel provided, $\mathrm{A}_{\mathrm{s}}=$

$$
\begin{aligned}
& \rho=A_{s} / b d=0.00407 \\
& \quad \rho(\min)<A s / b d<\rho(\max)-\text { OK }
\end{aligned}
$$

$$
\begin{array}{rlll}
\mathrm{A}_{\mathrm{s}(\min)} & =0.19 & \mathrm{in}^{2} & \rho_{(\min)}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)} & =1.73 & \mathrm{in}^{2} & \rho_{(\max)}=0.01604
\end{array}
$$

$$
\text { bending strength, } \quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)
$$

$$
\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00407^{*} 60^{*} 12^{*} 9^{2} *\left(1-0.588^{*} 0.00407^{*} 60 / 3\right)^{*}(\mathrm{ft} / 12)=18.851 \quad \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}
$$

Dividing Wall between Biofilter and WAS Basins

BY \qquad BS DATE $7 / 9 / 21$ SUBECCT City of Wilsonville Sludge Storage $\frac{1}{y}$ Bofilters SHEET NO. \qquad OF CHE. BY \qquad DATE \qquad JOB NO. 119624.00

Sludge Steerage + Broftiturs - Dividing Perimeter Wall
The dividing wall between the Biofilter basin and the WAS Storage tank will be checked for the seismic loads. Since the Biofitter basin is considered empty, the water within storage basin will be both the hydrostatic and hydrodynamic loads. The dividing wall is $12^{\prime \prime}$ thick with alternating 46012^{n} \& $47 e 12^{\prime \prime}$
 for effective $6^{\prime \prime}$ spacing for vertical reinforcing. The horizontal wall restoring is 4512 ".

See attached spreadsheet for hydrostatic hydrodynamic loads. BSE-2E Seismic Level:
Checking wall strength vertically (alteration $46012 " t y 7812^{\prime \prime}$)

$$
\begin{aligned}
& M_{u y}=8.74 . \operatorname{l2.ft/ft} \quad \phi M_{n}=41.50 \text { k.fflf } \\
& V_{v_{y}}=4.73 \mathrm{k} / \mathrm{ff} \quad \quad 84 \quad \Delta V_{n}=11.83 \mathrm{k} / \mathrm{ff}_{4} \\
& M_{\text {ompent }} \text { oCR }=\frac{8.74}{41.50}=0.21(0 \mathrm{k}) \\
& \text { Shear } \operatorname{DCR}=\frac{4.73}{11.83}=0.40(\mathrm{k})
\end{aligned}
$$

Checking wall strength hovizantlly (45 (212")

$$
\begin{aligned}
& M_{J x}=5.97 \mathrm{k} \cdot \mathrm{f}_{7} / \mathrm{ft} \quad \quad \Phi \mathrm{M}_{\mathrm{a}}=13.48 \mathrm{k} \cdot \mathrm{ff}_{\mathrm{f}} / \mathrm{ft} \\
& V_{U K}=2.14 \mathrm{k} / \mathrm{ff} \quad \phi V_{n}=11.83 \mathrm{kf} \\
& \text { Moment DCR* } \frac{5.97}{1348}=0.44 \text { (ole) } \\
& \text { Shear } D C R=\frac{2.14}{1.63}=0.18(\text { (ok) }
\end{aligned}
$$

CSE Seismic Lena:
Chedeing wall strength vertically

$$
\begin{aligned}
& M_{v y}=7.91 \mathrm{k} . \mathrm{Ft} / \mathrm{ft} \quad \phi M_{n}=41,50 \mathrm{k} \cdot \mathrm{ffff} \\
& V_{v y}=4.28 \mathrm{k} / \mathrm{f} \quad-7.916 f_{t+\mathrm{ct}} V_{n}=11.83 \mathrm{k} / \mathrm{ft}_{t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Shear } \left.D C L=\frac{4.50 \varepsilon / 46}{11.83 \mathrm{k} / 1 / 2}=0.36 \text { (ute }\right)
\end{aligned}
$$

Checking wall strength horizontally

$$
\begin{aligned}
& M_{u x}=5.40 \mathrm{k} \cdot \mathrm{ffff} \quad \phi m_{n}=13.48 \mathrm{k} \cdot \mathrm{ff} \mathrm{ff} \\
& V_{u x}=1.94 \mathrm{k} / \mathrm{f} \quad \phi V_{n}=11.83 \mathrm{k} / \mathrm{A} \\
& M_{\text {ament }} D C R=\frac{540 k \cdot 6 / f}{1248(k+f t e}=0.40(d k)
\end{aligned}
$$

BY:	BS	DATE: Aug-21	CLIENT: City of Wilsonville Sludge Storage and Biofilters	SHEET:	
CHKD:		DESCRIPTION:		JOB NO:	11962A. 00
DESIG	ASK		WAS Storage Basin Transverse Loading (BSE-2E)		

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity = pinned at roof $\&$ fixed at floor

Seismic:

Structure Risk Category $=$	$\mathbf{2}$
Importance factor, $\mathrm{I}=$	$\mathbf{1}$
Response modification factor, $\mathrm{R}_{\mathrm{w}}=$	$\mathbf{3}$
Response modification factor, $\mathrm{R}_{\mathrm{wc}}=$	$\mathbf{1}$

Load Cases:

```
case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
```

case $4=$ soil + soil seismic + wall seismic

Engineers...Working Wonders With Water '"

BY:	BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Sludge Storage and Biofilters		11962A. 00
DESIGN	ASK:			WAS Storage Basin Trans	Loading (B	

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$
$(12 / 12) *(12.48) * 0.15=1.87$ kip
$12.48 / 2=6.240 \mathrm{ft}$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=(12.67)^{*}(1)^{*}(10.89) * 32.17=8.61$ kip

Seismic:
1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \rho_{\mathrm{c}}=0.05819 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}^{*} \rho_{L}=0.10164 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
 centroidal distance of masses, $\mathrm{h}=\left(\mathrm{h}_{\mathrm{w}}{ }^{*} \mathrm{~m}_{\mathrm{w}}+\mathrm{h}_{\mathrm{i}}{ }^{*} \mathrm{~m}_{\mathrm{i}}\right) /\left(\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{i}}\right)=4.979 \mathrm{ft}$
wall fixity condition is pinned at roof \& fixed at floor:
wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $\mathrm{k}=\mathrm{Ec}^{*}\left(\mathrm{tw} \mathrm{w}^{*} \mathrm{Hw} / \mathrm{h}\right)^{3} /\left(\right.$ 12 $\left.^{*}\left(4^{*} \mathrm{Hw}-\mathrm{h}\right)^{*}(\mathrm{Hw}-\mathrm{h})^{2}\right)=2799.85 \mathrm{k} / \mathrm{ft} / \mathrm{ft}$

$$
\omega_{i}=\sqrt{\frac{k}{m_{w}+m_{i}}}=\quad(2799.85 /(0.0582+0.1016))^{\wedge} 1 / 2=132.3522 \mathrm{rad} / \mathrm{sec}
$$

period of tank plus impulsive mass, $\mathrm{T}_{\mathrm{i}}=2 \pi / \omega_{\mathrm{i}}=2 \pi / 132.3522=0.0475 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $\mathrm{S}_{\mathrm{ai}}=\mathrm{S}_{\mathrm{DS}}=0.744 \mathrm{~g}$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

BY:	BS	DATE: Aug-21	CLIENT: City of Wilsonville	SHEET:
CHKD:		DESCRIPTION:	Sludge Storage and Biofilters	JOB NO: 11962 A .00Loading (BSE-2E)
DESIGN	ASK:		WAS Storage Basin Tran	

$\mathrm{L}=$	12.67	ft
B	$=1$	ft
H_{L}	$=10.89$	ft
W_{L}	$=8.61$	kip

$L / H_{L}=1.16345$
$H_{L} / L=0.85951$
3). lateral fluid impulsive force: Dynamic Model

$$
\begin{aligned}
& \mathrm{Wi}=\text { equivalent mass of the impulsive component of liquid. } \\
& \mathrm{W}_{\mathrm{i}}=\mathrm{W}_{\mathrm{L}}\binom{\tanh \left(0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right)}{0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}}=\quad 8.61^{*}\left(\tanh \left(0.866^{*}(1.1635)\right) / 0.866^{*}(1.1635)\right)= 6.54 \quad \mathrm{kip} \\
& \text { hi }(\mathrm{EBP})=\mathrm{HL} \mathrm{HL}^{*}\left(0.5-0.09375^{*}(\mathrm{~L} / \mathrm{HL})\right)=10.89^{*}\left(0.5-0.09375^{*}(1.1635)\right)= 4.257 \mathrm{ft} \\
& \mathrm{hi}(\mathrm{IBP})=\mathrm{HL} \mathrm{HL}^{*}\left\{\left(\left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right) /\left(2^{*} \tanh \left(0.866^{*} \mathrm{~L} / \mathrm{HL}\right)\right)\right\}-1 / 8\right\}=5.813 \mathrm{ft} \\
& \text { impulsive force, } \mathrm{P}_{\mathrm{i}}=\left(\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I}}{\mathrm{R}_{\mathrm{wi}}}\right) \mathrm{W}_{\mathrm{i}}=\quad(0.744 * 1 / 3)^{*} 6.54=1.6 \quad \mathrm{kip}
\end{aligned}
$$

4). lateral fluid convective force:

$$
\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{L}}\left(0.264\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right) \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)\right)=\quad 8.61^{*}\left(0.264^{*}(1.1635)^{*} \tanh \left(3.16^{*}(0.8595)\right)\right)=2.62 \quad \mathrm{kip}
$$

$$
\begin{gathered}
h_{c(\text { EBP })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)-1}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=7.378 \mathrm{ft} \\
\mathrm{~h}_{\mathrm{c}(\text { (IBP) })}=\mathrm{H}_{\mathrm{L}}\left(1-\frac{\cosh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)-2.01}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=7.916 \mathrm{ft}
\end{gathered}
$$

$$
\text { convective force, } \mathrm{P}_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{a}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=\quad(0.2727 * 1 / 1)^{* 2.62=} 0.7 \quad \text { kip }
$$

BY:	BS	DATE: Aug-21	CLIENT: Slu	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Sludge Storage and Biofilters	JOB NO:	11962A. 00
DESIGN	ASK:			WAS Storage Basin Tran	Loading	

5). lateral inertia force of the accelerating wall:
unit width wall mass, $\mathrm{W}_{\mathrm{w}}=1.87 \mathrm{kip}$
wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=6.240 \mathrm{ft}$
wall inertia force, $P_{w}=\left(\frac{S_{a i} I \varepsilon}{R_{w i}}\right) W_{w}=\quad\left(0.744^{*} 1^{*} 0.8195 / 3\right)^{*} 1.87=0.38 \quad$ kip
6). maximum wave slosh height displacement:

$$
d_{(\text {max })}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.4} \mathrm{I}\right)=(12.67 / 2)^{*}(0.2727 / 1.0 * 1)=1.72 \mathrm{ft}
$$

7). vertical acceleration:

$$
\begin{array}{r}
\text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}= \\
\text { vertical spectral response acceleration (per ACI } 350 \text { para 9.4.3), } \mathrm{S}_{\mathrm{av}}=\mathrm{C}_{\mathrm{t}}=0.744 \quad{ }^{*} \mathrm{~S}_{\mathrm{DS}}= \\
0.2976 \mathrm{~g} \\
\text { per ASCE 7-10 para. 15.7.7.2(b), use } \mathrm{I}=\mathrm{R}_{\mathrm{i}}=\mathrm{b}=1.0
\end{array}
$$

$$
\text { Design vertical acceleration, ü }=\frac{\mathrm{S}_{\mathrm{av}} \mathrm{I} \mathrm{~b}}{R_{\mathrm{i}}}=0.2976^{*} 1^{*} 1 / 1=0.2976 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of $\mathrm{ACl} 350 \sec 5.3$:

convective
impulsive:

$$
p_{\mathrm{iy}}=\frac{P_{i}\left[4 H_{L}-6 h_{\mathrm{i}}-\left(6 \mathrm{H}_{\llcorner }-12 h_{i}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

convective:

$$
p_{o y}=\frac{P_{c}\left[4 H_{L}-6 h_{c}-\left(6 H_{L}-12 h_{c}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

$$
\begin{array}{rll}
\mathrm{P}_{\mathrm{i}} & =1.60 & \mathrm{kip} \\
\mathrm{~h}_{\mathrm{i}} & =4.257 & \mathrm{ft} \\
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{iy}} & =0.025 & \mathrm{ksf} \\
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{iy}} & =0.122 \mathrm{ksf}
\end{array}
$$

$$
P_{c}=0.70 \quad \text { kip }
$$

$$
\mathrm{h}_{\mathrm{c}}=7.378 \mathrm{ft}
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{L}}, \mathrm{p}_{\mathrm{cy}}=0.066 \mathrm{ksf}
$$

$$
\text { at base } y=0, p_{c y}=-0.002 \mathrm{ksf}
$$

BY:	BS	DATE: \quad Aug-21	CLIENT: \quad City of Wilsonville	SHEET:		
CHKD:		Sludge Storage and Biofilters	JOB NO:	11962A.00		
DESIGN TASK:					WAS Storage Basin Transverse Loading (BSE-2E)	

vertical acceleration:

$$
p_{v y}=\ddot{u} \gamma_{L}\left(H_{L}-y\right)=
$$

$$
\begin{array}{rlrl}
u ̈ & =0.2976 \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } y=0, p_{v y} & =0.202 & \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
\mathrm{p}_{\mathrm{wy}}=\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon \gamma_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{\mathrm{R}_{\mathrm{wi}}}=
$$

$$
p_{w y}=0.2032 * \gamma_{c} *\left(t_{w} / 12\right)
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.030 \mathrm{ksf}
$$

$$
\text { at base } \mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.030 \mathrm{ksf}
$$

hydrostatic:

$$
q_{h y}=\gamma_{L}\left(H_{L}-y\right)=
$$

at $y=H_{L}, q_{h y}=0.000 \mathrm{ksf}$ at base $\mathrm{y}=0, \mathrm{q}_{\mathrm{hy}}=0.680 \mathrm{ksf}$
combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{y y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{y}}=0.087 \mathrm{ksf}$ at base $y=0, p_{y}=0.253 \mathrm{ksf}$

9). wall design pressures for hydrostatic + dynamic:

$\begin{array}{rlr}\text { wall height, } H_{w} & =12.48 & \mathrm{ft} \\ \text { liquid height, } H_{L} & =10.89 \mathrm{ft}\end{array}$

unfactored load $=0.181 \mathrm{ksf}$ resultant dynamic pressures

BY: BS	DATE: Aug-21	CLIENT: City of Wilsonville	SHEET:
CHKD:	DESCRIPTION:	Sludge Storage and Biofilters	JOB NO: 11962A.00
DESIGN TASK:		WAS Storage Basin Trans	Loading (BSE-2E)

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

=

The site has no groundwater.
wall height $=12.48 \mathrm{ft}$
soil height above top of base $=0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$
dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
sat. soil lateral pressure $=0.000 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000$ ksf
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000 \mathrm{ksf}$ unfactored soil, q3 $=0.0000$ ksf
equivalent soil loadings:
unfactored q5 $=0.0000 \mathrm{ksf}$
unfactored q6 $=0.0000 \mathrm{ksf}$
soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq)}}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

unfactored equivalent soil seismic, q8 $=0 / 1.4=0.0000 \mathrm{ksf}$ unfactored equivalent soil seismic, q9 $=0 / 1.4=0.0000 \mathrm{ksf}$
unfactored wall seismic, q10 $=0.0305 / 1.4=0.0218$ ksf
unfactored equivalent soil seismic, q11 $=0 / 1.4=0.0000 \mathrm{ksf}$ unfactored equivalent soil seismic, q12 $=0 / 1.4=0.0000 \mathrm{ksf}$

BY:	BS	DATE: Aug-21	CLIENT:	: City of Wilsonville	SHEET:	
CHKD:		DESCRIPTION:		Sludge Storage and Biofilters		11962 A .00
DESIGN	ASK:			WAS Storage Basin Trans	Loading (B)	

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:

Load Cases:

case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case $4=$ soil + soil seismic + wall seismic
a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

equivalent static soil \& surcharge loadings...
 $=$

$\begin{array}{rll}\text { LL lateral surcharge, q1 }= & 0.000 & \mathrm{ksf} \\ \text { unfactored soil, q2 }= & 0.000 & \mathrm{ksf} \\ \text { unfactored soil, q3 }= & 0.000 & \mathrm{ksf}\end{array}$
equivalent soil loadings:
unfactored q5 $=0.000 \mathrm{ksf}$
unfactored q6 $=0.000 \mathrm{ksf}$
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...
wall height $=12.48 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$

unfactored equivalent soil seismic, q8 $=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, $q 9=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, q10 $=0.022$ ksf unfactored equivalent soil seismic, q11 $=0.000$ ksf unfactored equivalent soil seismic, q12 $=0.000$ ksf

Engineers...Working Wonders With Water ${ }^{\text {sw }}$

Choice of Available Loadings					
	load type	load height, (ft) .only for custom loads 100 or $\mathbf{4 0 0}$	unfactored loads: q, M, or F (ksf, ft-k/ft, k/ft)	concrete load factors	
	Loading Selection Number			$\begin{gathered} \text { for } \\ \text { moment } \end{gathered}$	for shear
A	100	10.890	0.087	1	1
B	400	10.890	0.166	1	1
C	400	10.890	0.680	1	1

Notes: 1). Load $100=$ uniform load of any load height $\geq b / 3 ;$ Load $400=$ triangular load of any load height $\geq b / 6$.
2). load height must be less than or equal to "b", and uniform load height \geq " $\mathrm{b} / 3$ ", and triangular load height $\geq \mathrm{kb} / 6$ ".
3). loads may be positive or negative.

plate thickness, $\mathrm{h}=$	12	in
concrete strength, $\mathrm{f}^{\prime} \mathrm{c}=$	3	ksi
reinforcing steel strength, fy	$=$	60
ksi		
cear cover to face of concrete	$=$	2

bar locations	d (in)	d^{\prime} (in)
Mx bending	$9^{\prime \prime}$	$3^{\prime \prime}$
My bending	$9.5^{\prime \prime}$	$2.5^{\prime \prime}$

reinforcing clear cover to face of concrete $=2$ in number of curtains of reinforcing, (1 or 2) $=2$
Are bars in "x" or "y" direction closest to face of concrete ? y minimum ratio of horizontal shrinkage-temperature steel $=\mathbf{0 . 0 0 5 0 0}$ minimum ratio of vertical shrinkage-temperature steel $=\mathbf{0 . 0 0 5 0 0}$

BY: BS	DATE: Aug-21	LIENT	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Sludge Storage and Biofilters Basin	JOB NO:	11962A. 00
DESIGN TASK:		Bio	Basin Dividing Wall along WAS Stora	E-2E)	

Engineers...Working Wonders With Water ${ }^{\text {wh }}$

$$
\begin{aligned}
& \text { Concrete strength reduction factor for shear, } \phi=1.00 \\
& \mathrm{~d}=9.0 \text { in } \\
& \text { maximum shear, } \mathrm{V}_{\mathrm{u}}=4.73 \mathrm{k} / \mathrm{ft}
\end{aligned}
$$

Reference:
"Moments and Reactions for Rectangular Plates"
Engineering Monograph No. 27
By: W. T. Moody, United States Bureau of Reclamation

Notes:
Quadratic interpolation is used for intermediate values within the Moody tables and between Moody figures.
The positive sign convention for moments M_{x} and M_{y} is tension on the loaded face of the plate.
The M_{x} moment is in the direction of the x-axis and the M_{y} moment is in the direction of the y-axis by plate sign convention.

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville
CHKD:	DESCRIPTION:		SHEET:		

DESIGN TASK:
Biofilter Dividing Wall along WAS Storage Basin (Vertical Reinforcing) (BSE-2E)

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

Compression width of wall, $\mathrm{b}=$	12	inch
Thickness of wall, $\mathrm{h}=$	12	inch
Depth to reinforcing, $\mathrm{d}=$	9	inch
factored design moment, $\mathrm{M}_{\mathrm{u}}=$	8.74	ft-k
factored design shear, $\mathrm{V}_{\mathrm{u}}=$	4.73	kip

$$
\begin{aligned}
\mathrm{f}^{\prime}{ }_{\mathrm{c}}(\mathrm{psi}) & =3000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =\mathbf{6 0 0 0 0} \\
\phi, \text { Bending } & =1 \\
\phi, \text { Shear } & =\mathbf{1} \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3122019 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =9.29 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 11.83 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

comment : existing 12" wall w/ \#6@12" \& \#7@12" alternating for 6" effective spacing
Area steel provided, $\mathrm{A}_{\mathrm{s}}=$

$$
\rho=A_{s} / b d=0.00963
$$

$$
\rho(\min)<\mathrm{As} / \mathrm{bd}<\rho(\max)-\mathrm{OK}
$$

$$
\begin{array}{rlll}
\mathrm{A}_{s_{(\text {min })}} & =0.19 & \mathrm{in}^{2} & \rho_{(\text {min })}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)} & =1.73 & \text { in }^{2} & \rho_{(\text {max })}=0.01604
\end{array}
$$

$$
\text { bending strength, } \quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)
$$

$$
\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00963^{*} 60^{*} 12^{*} 9^{2} *\left(1-0.588^{*} 0.00963^{*} 60 / 3\right)^{*}(\mathrm{ft} / 12)=41.498 \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}
$$

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Sludge Storage and Biofilter Basin	JOB NO:	11962A. 00
DESIGN TASK:	Biofilter Dividing Wall along WAS Storage Basin (Horizontal Reinforcing) (BSE-2E)				

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

Compression width of wall, $\mathrm{b}=$	12	inch
Thickness of wall, $\mathrm{h}=$	12	inch
Depth to reinforcing, $\mathrm{d}=$	9	inch
factored design moment, $\mathrm{M}_{\mathrm{u}}=$	5.97	ft-k
factored design shear, $\mathrm{V}_{\mathrm{u}}=$	2.14	kip

$$
\begin{aligned}
\mathrm{f}_{\mathrm{c}}(\mathrm{psi}) & =3000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =\mathbf{6 0 0 0 0} \\
\phi, \text { Bending } & =\mathbf{1} \\
\phi, \text { Shear } & =\mathbf{1} \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3122019 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =9.29 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 11.83 & \mathrm{kip} \geq \mathrm{Vu} \\
\text { stirrup spacing, } \mathrm{s}= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

Area steel provided, $\mathrm{A}_{\mathrm{s}}=$

$$
\begin{aligned}
& \rho=A_{s} / b d=0.00287 \\
& \quad \rho(\min)<A s / b d<\rho(\max)-\text { OK }
\end{aligned}
$$

$$
\begin{array}{rlll}
\mathrm{A}_{\mathrm{s}(\min)} & =0.19 & \mathrm{in}^{2} & \rho_{(\min)}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)}=1.73 & \mathrm{in}^{2} & \rho_{(\max)}=0.01604
\end{array}
$$

bending strength, $\quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)$

$$
\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00287^{*} 60^{*} 12^{*} 9^{2 *}\left(1-0.588^{*} 0.00287^{*} 60 / 3\right)^{*}(\mathrm{ft} / 12)=13.479 \quad \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}
$$

Engineers...Working Wonders With Water '"

Static, Seismic, and Hydrodynamic Seismic Wall Pressures using ACI 350.3-06 and an IBC 2012:
wall connection fixity = pinned at roof \& fixed at floor

Seismic:
Deisgn, 5% damped, spectral response acceleration at the short period of 0.2 -second, $S_{D S}=$
Deisgn, 5% damped, spectral response acceleration at a period of $1-$ second, $S_{D 1}=$
$\mathbf{0 . 4 4 6}$$\quad{ }^{*} \mathrm{~g} g$.332 $\mathrm{*g}$

Engineers...Working Wonders With Water '"

BY: BS	DATE: Aug-21	CLIENT: City of Wilsonville	SHEET:
CHKD:	DESCRIPTION:	Sludge Storage and Biofilters	JOB NO: 11962A.00
DESIGN TASK:		WAS Storage Basin Tr	Loading (CSZ)

Weights:
unit 1-ft width wall mass, $\mathrm{W}_{\mathrm{w}}=$ wall c.g. relative to base, $\mathrm{h}_{\mathrm{w}}=$
$(12 / 12) *(12.48) * 0.15=1.87$ kip
$12.48 / 2=6.240 \mathrm{ft}$
unit width liquid mass, $\mathrm{W}_{\mathrm{L}}=(12.67)^{*}(1)^{*}(10.89) * 32.17=8.61$ kip

Seismic:

1). structure stiffness and dynamic property:

Note: per ASCE 7-10 and IBC 2012, the terms $S_{a i}$ and $S_{a c}$ have been appropriatetly substituted into the seismic equation of $A C I 350$.

Note: Wi and hi are impulsive component variables calculated on page 3.
wall mass, $\mathrm{m}_{\mathrm{w}}=\mathrm{H}_{\mathrm{w}}{ }^{*}\left(\mathrm{t}_{\mathrm{w}} / 12\right)^{*} \rho_{\mathrm{c}}=0.05819 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
liquid mass, $m_{i}=\left(W_{i} / W_{L}\right)^{*}(L / 2)^{*} H_{L}^{*} \rho_{L}=0.10164 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
 centroidal distance of masses, $\mathrm{h}=\left(\mathrm{h}_{\mathrm{w}}{ }^{*} \mathrm{~m}_{\mathrm{w}}+\mathrm{h}_{\mathrm{i}}{ }^{*} \mathrm{~m}_{\mathrm{i}}\right) /\left(\mathrm{m}_{\mathrm{w}}+\mathrm{m}_{\mathrm{i}}\right)=4.979 \mathrm{ft}$
wall fixity condition is pinned at roof \& fixed at floor:
wall stiffness is determined using a unit mass load located at the centroidal distance h. wall flexure stiffness, $\mathrm{k}=\mathrm{Ec}^{*}\left(\mathrm{tw} \mathrm{w}^{*} \mathrm{Hw} / \mathrm{h}\right)^{3} /\left(12^{*}\left(4^{*} \mathrm{Hw}-\mathrm{h}\right)^{*}(\mathrm{Hw}-\mathrm{h})^{2}\right)=2799.85 \mathrm{k} / \mathrm{ft} / \mathrm{ft}$

$$
\omega_{i}=\sqrt{\frac{k}{m_{w}+m_{i}}}=\quad(2799.85 /(0.0582+0.1016))^{\wedge} 1 / 2=132.3522 \mathrm{rad} / \mathrm{sec}
$$

period of tank plus impulsive mass, $T_{i}=2 \pi / \omega_{i}=2 \pi / 132.3522=0.0475 \mathrm{sec}$
(note: acceleration values to be from a maximum considered earthquake response spectra which will produce a factored load) design factored spectral response acceleration for impulsive mass (5% damping), $S_{a i}=S_{D S}=0.446 \quad g$
2). Dynamic properties, Spectral amplification factors, and Effective mass coefficient:

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:		DESC			rage and Biofilters	JOB NO:	11962A.00

DESIGN TASK: WAS Storage Basin Transverse Loading (CSZ)

$\mathrm{L}=$	12.67	ft
B	$=1$	ft
H_{L}	$=10.89$	ft
W_{L}	$=8.61$	kip

$L / H_{L}=1.16345$
$H_{L} / L=0.85951$
3). lateral fluid impulsive force: Dynamic Model

$$
\begin{aligned}
& W_{i}=W_{L}\left(\frac{\tanh \left(0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right)}{0.866 \frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}}\right)= \\
& \mathrm{Wi}=\text { equivalent mass of the impulsive component of liquid. } \\
& \text { hi }(E B P)=H L^{*}\left(0.5-0.09375^{*}(\mathrm{~L} / \mathrm{HL})\right)=10.89^{*}\left(0.5-0.09375^{*}(1.1635)\right)=4.257 \mathrm{ft} \\
& \text { hi } \left.(I B P)=H L *\left\{\left(0.866^{*} L / H L\right) /\left(2^{*} \tanh \left(0.866^{*} L / H L\right)\right)\right\}-1 / 8\right\}=5.813 \mathrm{ft} \\
& \text { impulsive force, } P_{i}=\left(\frac{S_{\mathrm{ai}} \mathrm{I}}{\mathrm{R}_{\mathrm{wi}}}\right) \mathrm{W}_{\mathrm{i}}=(0.446 * 1.25 / 3) * 6.54=1.2 \quad \mathrm{kip}
\end{aligned}
$$

4). lateral fluid convective force:

$$
\mathrm{W}_{\mathrm{c}}=\mathrm{W}_{\mathrm{L}}\left(0.264\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{L}}}\right) \tanh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)\right)=\quad 8.61^{*}\left(0.264^{*}(1.1635)^{*} \tanh \left(3.16^{*}(0.8595)\right)\right)=2.62 \quad \mathrm{kip}
$$

$$
\begin{gathered}
h_{c(\text { EBP })}=H_{L}\left(1-\frac{\cosh \left(3.16\left(\frac{H_{L}}{\mathrm{~L}}\right)\right)-1}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=7.378 \mathrm{ft} \\
\mathrm{~h}_{\mathrm{c} \text { (IBP) })}=\mathrm{H}_{\mathrm{L}}\left(1-\frac{\cosh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)-2.01}{3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right) \sinh \left(3.16\left(\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{~L}}\right)\right)}\right)=7.916 \mathrm{ft}
\end{gathered}
$$

convective force, $P_{\mathrm{c}}=\left(\frac{\mathrm{S}_{\mathrm{a}} \mathrm{I}}{\mathrm{R}_{\mathrm{wc}}}\right) \mathrm{W}_{\mathrm{c}}=\quad(0.2235 * 1.25 / 1)^{* 2.62=} \quad 0.7 \quad$ kip

BY:	BS	DATE:	Aug-21	CLIENT:	City of Wilsonville	SHEET:
CHKD:			Sludge Storage and Biofilters	JOB NO:	$11962 A .00$	

5). lateral inertia force of the accelerating wall:

$$
\begin{array}{rll}
\text { unit width wall mass, } \mathrm{W}_{\mathrm{w}} & =1.87 & \mathrm{kip} \\
\text { wall } \mathrm{c} . \mathrm{g} \text {. relative to base, } \mathrm{h}_{\mathrm{w}} & =6.240 & \mathrm{ft}
\end{array}
$$

wall inertia force, $P_{w}=\left(\frac{S_{a i} I \varepsilon}{R_{w i}}\right) W_{w}=\quad\left(0.446^{* 1} 1.25^{*} 0.8195 / 3\right)^{*} 1.87=0.28 \quad$ kip
6). maximum wave slosh height displacement:

$$
d_{(\max)}=\left(\frac{\mathrm{L}}{2}\right)\left(\frac{\mathrm{S}_{\mathrm{ac}}}{1.4} \mathrm{I}\right)=(12.67 / 2) *(0.2235 / 1.0 * 1.25)=1.77 \mathrm{ft}
$$

7). vertical acceleration:

$$
\begin{array}{r}
\text { design horizontal accereration, } \mathrm{S}_{\mathrm{DS}}=\begin{array}{lll}
0.446 & \text { *g } \\
\text { vertical spectral response acceleration (per ACI } 350 \text { para 9.4.3), } \mathrm{S}_{\mathrm{av}}=\mathrm{C}_{\mathrm{t}}=0.4^{*} \mathrm{~S}_{\mathrm{DS}}= & 0.1784 \mathrm{~g}
\end{array} \\
\text { per ASCE 7-10 para. 15.7.7.2(b), use } \mathrm{I}=\mathrm{R}_{\mathrm{i}}=\mathrm{b}=1.0
\end{array}
$$

$$
\text { Design vertical acceleration, ü }=\frac{\mathrm{S}_{\mathrm{av}} \mathrm{I} \mathrm{~b}}{\mathrm{R}_{\mathrm{i}}}=0.1784^{* 1 * 1 / 1}=0.1784 \mathrm{~g}
$$

8). vertical force distribution on a unit width using the linear distribution of $\mathrm{ACI} 350 \sec 5.3$:

convective

hydrostatic
impulsive:

$$
p_{\mathrm{iy}}=\frac{P_{i}\left[4 H_{L}-6 h_{i}-\left(6 H_{L}-12 h_{i}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

convective:

$$
p_{o f}=\frac{P_{c}\left[4 H_{L}-6 h_{c}-\left(6 H_{L}-12 h_{c}\right)\left(\frac{y}{H_{L}}\right)\right]}{2 B H_{L}^{2}}=
$$

BY:	BS	DATE	Aug-21	CLIENT:		City of Wilsonville	SHEET:	
CHKD:		DESC			Sludg	rage and Biofilters	JOB NO:	11962A.00

DESIGN TASK: ESCRIPTION: WAS Storage Basin Transverse Loading (CSZ)
vertical acceleration:

$$
p_{\mathrm{wy}}=\ddot{u} \gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

$$
\begin{array}{rlrl}
u ̈ & =0.1784 \\
\text { at } y=H_{L}, p_{v y} & =0.000 & \mathrm{ksf} \\
\text { at base } y=0, p_{v y} & =0.121 & \mathrm{ksf}
\end{array}
$$

wall inertia:

$$
\mathrm{p}_{\mathrm{wy}}=\frac{\mathrm{S}_{\mathrm{ai}} \mathrm{I} \varepsilon \gamma_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{w}} / 12\right)}{\mathrm{R}_{\mathrm{wi}}}=
$$

$$
p_{w y}=0.1523 * \gamma_{c} *\left(t_{w} / 12\right)
$$

$$
\text { at } \mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{wy}}=0.023 \mathrm{ksf}
$$ at base $\mathrm{y}=0, \mathrm{p}_{\mathrm{wy}}=0.023 \mathrm{ksf}$

hydrostatic:

$$
\mathrm{a}_{\mathrm{ny}}=\gamma_{\mathrm{L}}\left(\mathrm{H}_{\mathrm{L}}-\mathrm{y}\right)=
$$

at $y=H_{L}, q_{h y}=0.000 \mathrm{ksf}$ at base $y=0, q_{\text {hy }}=0.680 \mathrm{ksf}$
combine the effects of the dynamic pressures on the wall:

$$
p_{y}=\sqrt{\left(p_{y y}+p_{w y}\right)^{2}+p_{c y}^{2}+p_{w y}^{2}}=
$$

at $\mathrm{y}=\mathrm{H}_{\mathrm{w}}, \mathrm{p}_{\mathrm{y}}=0.078 \mathrm{ksf}$ at base $y=0, p_{y}=0.166 \mathrm{ksf}$

9). wall design pressures for hydrostatic + dynamic:

wall height, $\mathrm{H}_{\mathrm{w}}=12.48 \mathrm{ft}$
liquid height, $H_{L}=10.89 \mathrm{ft}$

10). wall design pressures for external soil loading:
static soil:

equivalent static soil loadings:

$=$

The site has no groundwater.
wall height $=12.48 \mathrm{ft}$
soil height above top of base $=0 \quad \mathrm{ft}$ groundwater ht. above base $=0 \quad \mathrm{ft}$
dry soil lateral pressure $=0.000 \mathrm{k} / \mathrm{ft}^{3}$
sat. soil lateral pressure $=0.000 \quad \mathrm{k} / \mathrm{ft}^{3}$
live load lateral surcharge $=0.000$ ksf
LL lateral surcharge, q1 $=0.0000 \mathrm{ksf}$ unfactored soil, q2 $=0.0000$ ksf unfactored soil, q3 $=0.0000$ ksf
equivalent soil loadings:
unfactored q5 $=0.0000 \mathrm{ksf}$
unfactored q6 $=0.0000 \mathrm{ksf}$
soil seismic:
resultant factored soil seismic load per foot of wall width, $\mathrm{P}_{\mathrm{u}(\mathrm{eq})}=\mathbf{0} \mathrm{k} / \mathrm{ft}$
centroid location of the resultant soil seismic from the bottom of wall, $\mathrm{h}_{\mathrm{eq}}=\mathbf{0} \mathrm{ft}$
The resultant soil seismic load will be resolved into an equivalent pressure loading...

Equivalent factored seismic soil pressure loading \& seismic wall loadings...

unfactored equivalent soil seismic, q8 =0 / 1.4 = 0.0000 ksf unfactored equivalent soil seismic, q9 $=0 / 1.4=0.0000 \mathrm{ksf}$
unfactored wall seismic, q10 $=0.0228 / 1.4=0.0163 \mathrm{ksf}$
unfactored equivalent soil seismic, q11 $=0 / 1.4=0.0000 \mathrm{ksf}$ unfactored equivalent soil seismic, q12 $=0 / 1.4=0.0000 \mathrm{ksf}$

11). Summary of equivalent unfactored pressure loadings for wall load cases 1 thru 4:

Load Cases:

case 1 = water
case 2 = water + water seismic + wall seismic
case 3 = soil + lateral surcharge
case 4 = soil + soil seismic + wall seismic
a). load case 1: hydrostatic water

b). load case 2: hydrostatic + dynamic:

equivalent static soil \& surcharge loadings...
 $=$

$\begin{array}{rll}\text { LL lateral surcharge, q1 }= & 0.000 & \mathrm{ksf} \\ \text { unfactored soil, q2 }= & 0.000 & \mathrm{ksf} \\ \text { unfactored soil, q3 }= & 0.000 & \mathrm{ksf}\end{array}$
equivalent soil loadings:
unfactored q5 $=0.000 \mathrm{ksf}$
unfactored q6 $=0.000 \mathrm{ksf}$
d). load case 4: soil seismic: (*note: add static soil pressure $q 6 \& q 7$ to the seismic soil shown below) equivalent seismic soil pressure loading \& seismic wall loadings...
wall height $=12.48 \mathrm{ft}$ soil height on wall $=0 \mathrm{ft}$

unfactored equivalent soil seismic, q8 $=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, $q 9=0.000 \mathrm{ksf}$ unfactored equivalent soil seismic, q10 $=0.016$ ksf unfactored equivalent soil seismic, q11 $=0.000$ ksf unfactored equivalent soil seismic, q12 $=0.000$ ksf

Engineers...Working Wonders With Water ${ }^{\text {sw }}$

Choice of Available Loadings					
	load type	load height, (ft) .only for custom loads 100 or 400	unfactored loads: q, M, or F (ksf, ft-k/ft, k/ft)	concrete load factors	
	Loading Selection Number			$\begin{gathered} \text { for } \\ \text { moment } \end{gathered}$	for shear
A	100	10.890	0.078	1	1
B	400	10.890	0.088	1	1
C	400	10.890	0.680	1	1

Notes: 1). Load $100=$ uniform load of any load height $\geq b / 3 ;$ Load $400=$ triangular load of any load height $\geq b / 6$.
2). load height must be less than or equal to "b", and uniform load height \geq " $\mathrm{b} / 3$ ", and triangular load height \geq " $\mathrm{b} / 6$ " .
3). loads may be positive or negative.

plate thickness, $\mathrm{h}=$	12	in
concrete strength, $\mathrm{f}^{\prime} \mathrm{c}=$	3	ksi
reinforcing steel strength, fy	$=$	60
ksi		
cear cover to face of concrete	$=$	2

bar locations	d (in)	d^{\prime} (in)
$M x$ bending	$9^{\prime \prime}$	$3^{\prime \prime}$
$M y$ bending	$9.5^{\prime \prime}$	$2.5^{\prime \prime}$

reinforcing clear cover to face of concrete $=2$ in number of curtains of reinforcing, (1 or 2) $=2$
Are bars in "x" or "y" direction closest to face of concrete ? y minimum ratio of horizontal shrinkage-temperature steel $=\mathbf{0 . 0 0 5 0 0}$ minimum ratio of vertical shrinkage-temperature steel $=\mathbf{0 . 0 0 5 0 0}$

Engineers...Working Wonders With Water ${ }^{\text {wh }}$

BY: BS	DATE: Aug-21	LIENT	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Sludge Storage and Biofilters Basin	JOB NO:	11962A. 00
DESIGN TASK:			r Basin Dividing Wall along WAS Stor	SZ)	

Engineers...Working Wonders With Water ${ }^{\text {wh }}$

BY: BS	DATE: Aug-21	LIENT	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Sludge Storage and Biofilters Basin	JOB NO:	11962A. 00
DESIGN TASK:			r Basin Dividing Wall along WAS Stor	SZ)	

Engineers...Working Wonders With Water ${ }^{\text {sw }}$

BY:	BS	DATE: Aug-2	CLIENT	City of Wilsonville	SHEET:	
CHKD:		DESCRIPTIO		Sludge Storage and Biofilters Basin	JOB NO:	11962A. 00
DESIG	ASK:			Basin Dividing Wall along WAS Stor	SZ)	

$$
\begin{aligned}
& \text { Concrete strength reduction factor for shear, } \phi=1.00 \\
& d=9.0 \quad \text { in } \\
& \text { maximum shear, } \mathrm{V}_{\mathrm{u}}=4.28 \mathrm{k} / \mathrm{ft} \\
& \phi V_{c}=\phi^{*} 2^{*}\left(f f^{\prime} c\right)^{1 / 2 *} b^{*} d=\left(1.00^{*} 2^{*}(3000)^{1 / 2} 2^{* 1} 2^{*} 9.0\right) / 1000=11.83 \mathrm{k} / \mathrm{ft}
\end{aligned}
$$

Reference:
"Moments and Reactions for Rectangular Plates"
Engineering Monograph No. 27
By: W. T. Moody, United States Bureau of Reclamation

Notes:
Quadratic interpolation is used for intermediate values within the Moody tables and between Moody figures.
The positive sign convention for moments M_{x} and M_{y} is tension on the loaded face of the plate.
The M_{x} moment is in the direction of the x-axis and the M_{y} moment is in the direction of the y-axis by plate sign convention.

Chin
Biofilter Dividing Wall along WAS Storage Basin (Vertical Reinforcing) (CSZ)

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

Compression width of wall, $b=$	12	inch
Thickness of wall, $h=$	12	inch
Depth to reinforcing, $d=$	9	inch
factored design moment, $M_{u}=$	$\mathbf{7 . 9 1}$	ft-k
factored design shear, $V_{u}=$	4.28	kip

$$
\begin{aligned}
\mathrm{f}^{\prime} \mathrm{c}(\mathrm{psi}) & =3000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =\mathbf{6 0 0 0 0} \\
\phi, \text { Bending } & =1 \\
\phi, \text { Shear } & =1 \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3122019 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =9.29 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACl 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 11.83 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

comment : existing 12" wall w/ \#6@12" \& \#7@12" alternating for 6" effective spacing
Area steel provided, $\mathrm{A}_{\mathrm{s}}=$

$$
\rho=A_{s} / b d=0.00963
$$

$$
\rho(\min)<\mathrm{As} / \mathrm{bd}<\rho(\max)-\mathrm{OK}
$$

$$
\begin{array}{rlll}
\mathrm{A}_{\mathrm{s}(\text { min })}=0.19 & \mathrm{in}^{2} & \rho_{(\text {min })}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)} & =1.73 & \mathrm{in}^{2} & \rho_{(\max)}=0.01604
\end{array}
$$

$$
\text { bending strength, } \quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)
$$

$$
\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00963^{*} 60^{*} 12^{*} 9^{2} *\left(1-0.588^{*} 0.00963^{*} 60 / 3\right)^{*}(\mathrm{ft} / 12)=41.498 \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}
$$

BY: BS	DATE: Aug-21	CLIENT:	City of Wilsonville	SHEET:	
CHKD:	DESCRIPTION:		Sludge Storage and Biofilter Basin	JOB NO:	11962A. 00

DESIGN TASK:
Biofilter Dividing Wall along WAS Storage Basin (Horizontal Reinforcing) (CSZ)

Concrete Shear and Moment Strength Capacity

Design for ... beam, slab, wall ? wall

Properties and Geometry

| | | |
| ---: | :---: | :--- | :--- |
| Compression width of wall, $\mathrm{b}=$ | 12 | inch |
| Thickness of wall, $\mathrm{h}=$ | 12 | inch |
| Depth to reinforcing, $\mathrm{d}=$ | 9 | inch |
| factored design moment, $\mathrm{M}_{\mathrm{u}}=$ | 5.4 | ft-k |
| factored design shear, $\mathrm{V}_{\mathrm{u}}=$ | 1.94 | kip |

$$
\begin{aligned}
\mathrm{f}_{\mathrm{c}}(\mathrm{psi}) & =3000 \\
\mathrm{f}_{\mathrm{y}}(\mathrm{psi}) & =\mathbf{6 0 0 0 0} \\
\phi, \text { Bending } & =\mathbf{1} \\
\phi, \text { Shear } & =\mathbf{1} \\
\mathrm{E}_{\mathrm{s}}(\mathrm{psi}) & =29000000 \\
\mathrm{E}_{\mathrm{c}}(\mathrm{psi}) & =3122019 \\
\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} & =9.29 \\
\beta_{1} & =0.85
\end{aligned}
$$

Nominal Shear Strength (Based on ACI 318-11.3.1.1)

$$
\begin{array}{rccl}
\text { concrete shear strength, } \quad \phi \mathrm{V}_{\mathrm{c}} & =\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}= & 11.83 & \text { kip } \geq \mathrm{Vu} \\
\text { stirrup spacing, s }= & \mathbf{0} & \text { in } \\
\text { stirrup U-bar size }= & \mathbf{0} &
\end{array}
$$

Area steel provided, $\mathrm{A}_{\mathrm{s}}=$

$$
\begin{aligned}
& \rho=A_{s} / b d=0.00287 \\
& \quad \rho(\min)<A s / b d<\rho(\max)-\text { OK }
\end{aligned}
$$

$$
\begin{array}{rlll}
\mathrm{A}_{\mathrm{s}(\min)} & =0.19 & \mathrm{in}^{2} & \rho_{(\min)}=0.00180 \\
\mathrm{~A}_{\mathrm{s}(\max)}=1.73 & \mathrm{in}^{2} & \rho_{(\max)}=0.01604
\end{array}
$$

bending strength, $\quad \phi M_{n}=\phi \rho f_{y} b d^{2}\left(1-\frac{0.588 \rho f_{y}}{f_{c}^{\prime}}\right)$

$$
\phi^{*} \mathrm{M}_{\mathrm{n}}=\quad 1^{*} 0.00287^{*} 60^{*} 12^{*} 9^{2 *}\left(1-0.588^{*} 0.00287^{*} 60 / 3\right)^{*}(\mathrm{ft} / 12)=13.479 \quad \mathrm{ft}-\mathrm{k} \geq \mathrm{Mu}
$$

ASCE 41-17 Tier 1 Checklists

FIRM:	Carollo Engineers
PROJECT NAME:	City of Wilsonville - Overall Plant Facilities
SEISMICITY LEVEL:	High
PROJECT NUMBER:	11962 A.00
COMPLETED BY:	B. Stuetzel
DATE COMPLETED:	$08 / 06 / 21$
REVIEWED BY:	James A. Doering, SE
REVIEW DATE:	$08 / 10 / 21$

Table 17-38. Nonstructural Checklist

The Performance Level is designated LS for Life Safety or PR for Position Retention. The level of seismicity is designated as "not required" or by L, M, or H, for Low, Moderate, and High.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Hazardous Materials

RATING					
C	NC	N/A	U	LS-LMH; PR-LMH. HAZARDOUS MATERIAL EQUIPMENT: Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Commentary: Sec. A.7.12.2. Tier 2: 13.7.1)	COMMENTS
	\square	X	\square		
C	NC	N/A	U	LS-LMH; PR-LMH. HAZARDOUS MATERIAL STORAGE: Breakable containers that hold hazardous material,	
\square	\square	X	\square	including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Commentary: Sec. A.7.15.1. Tier 2: Sec. 13.8.4)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

$\begin{aligned} & \mathrm{c} \\ & \boxtimes \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \square \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{u} \\ & \square \end{aligned}$	LS-MH; PR-MH. HAZARDOUS MATERIAL DISTRIBUTION: Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and 13.7.5)	
$\begin{gathered} c \\ \boxtimes \end{gathered}$	NC \square	N / A \square	U \square	LS-MH; PR-MH. SHUT-OFF VALVES: Piping containing hazardous material, including natural gas, has shut-off valves or other devices to limit spills or leaks. (Commentary: Sec. A.7.13.3. Tier 2: Sec. 13.7.3 and 13.7.5)	
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	$\begin{aligned} & \mathrm{u} \\ & \boxtimes \end{aligned}$	LS-LMH; PR-LMH. FLEXIBLE COUPLINGS: Hazardous material ductwork and piping, including natural gas piping, has flexible couplings. (Commentary: Sec. A.7.15.4, Tier 2: Sec.13.7.3 and 13.7.5)	Within the structures, there doesn't appear to be any flexible couplings. The natural gas piping does carry between the buildings underground, so it is possible for flexible couplings to be buried.
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-MH; PR-MH. PIPING OR DUCTS CROSSING SEISMIC JOINTS: Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A.7.13.6. Tier 2: Sec.13.7.3, 13.7.5, and 13.7.6)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Partitions

RATING				DESCRIPTION	COMMENTS
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{x} \end{gathered}$	U \square \square	LS-LMH; PR-LMH. UNREINFORCED MASONRY: Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft in Low or Moderate Seismicity, or at most 6 ft in High Seismicity. (Commentary: Sec. A.7.1.1. Tier 2: Sec. 13.6.2)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. HEAVY PARTITIONS SUPPORTED BY CEILINGS: The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)	
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-MH; PR-MH. DRIFT: Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Commentary A.7.1.2 Tier 2: Sec. 13.6.2)	
C	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-not required; PR-MH. LIGHT PARTITIONS SUPPORTED BY CEILINGS: The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Commentary: Sec. A.7.2.1. Tier 2: Sec. 13.6.2)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-not required; PR-MH. STRUCTURAL SEPARATIONS: Partitions that cross structural separations have seismic or control joints. (Commentary: Sec. A.7.1.3. Tier 2. Sec. 13.6.2)	
\square	\square	\boxed{X}	\square		
C	NC	N/A	U	LS-not required; PR-MH. TOPS: The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft. (Commentary: Sec. A.7.1.4. Tier 2. Sec. 13.6.2)	
\square	\square	X	\square		

Ceilings

RATING				DESCRIPTION	COMMENTS
$\begin{aligned} & \mathrm{C} \\ & \square \end{aligned}$	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-MH; PR-LMH. SUSPENDED LATH AND PLASTER: Suspended lath and plaster ceilings have attachments that resist seismic forces for every $12 \mathrm{ft}^{2}$ of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)	
C	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-MH; PR-LMH. SUSPENDED GYPSUM BOARD: Suspended gypsum board ceilings have attachments that resist seismic forces for every $12 \mathrm{ft}^{2}$ of area. (Commentary: Sec. A.7.2.3. Tier 2: Sec. 13.6.4)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-not required; PR-H. SEISMIC JOINTS: Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2500 ft² and has a ratio of long-to-short dimension no more than 4-to-1. (Commentary: Sec. A.7.2.7. Tier 2: 13.6.4)	\square
\square	\boxed{X}	\square			

Light Fixtures

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Cladding and Glazing

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{array}{\|c\|} \hline \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{array}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-MH; PR-MH. CLADDING ANCHORS: Cladding components weighing more than $10 \mathrm{lb} / \mathrm{ft}^{2}$ are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft ; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft . (Commentary: Sec. A.7.4.1. Tier 2: Sec. 13.6.1)	
C \square	NC	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-MH; PR-MH CLADDING ISOLATION: For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02 , and the rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.3. Tier 2: Sec. 13.6.1)	
C \square	NC	$\begin{array}{\|c\|} \hline N / A \\ x \end{array}$	$\begin{aligned} & \mathrm{U} \\ & \square \end{aligned}$	LS-MH; PR-MH MULTI-STORY PANELS: For multi-story panels attahed at more than one floor level panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02 , and the rods have a length-to-diameter ratio of 4.0 or less. (Commentary: Sec. A.7.4.4. Tier 2: Sec. 13.6.1)	
C	NC \square	$\begin{array}{\|c\|} \hline N / A \\ x \end{array}$	U	LS-MH; PR-MH THREADED RODS: Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and for Position Retention in any seismicity. (Commentary: Sec. A.7.4.9. Tier 2: Sec. 13.6.1)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-MH; PR-MH. PANEL CONNECTIONS: Cladding panels are anchored out-of-plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Commentary: Sec. A.7.4.5. Tier 2: Sec. 13.6.1.4)	\square
\boldsymbol{x}	$\boxed{\square}$				

C	NC	N/A	U	LS-MH; PR-MH. BEARING CONNECTIONS: Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Commentary: Sec. A.7.4.6. Tier 2: Sec. 13.6.1.4)	
C					

Masonry Veneer

RATING				DESCRIPTION	COMMENTS
C \square	$\begin{array}{r} \mathrm{NC} \\ \square \end{array}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. TIES: Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every $2-2 / 3 \mathrm{ft}^{2}$, and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in.; for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (Commentary: Sec. A.7.5.1. Tier 2: Sec. 13.6.1.2)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Parapets, Cornices, Ornamentation, and Appendages

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-LMH; PR-LMH. URM PARAPETS OR CORNICES: Laterally unsupported unreinforced masonry parapets or cornices have height-to-thickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Commentary: Sec. A.7.8.1. Tier 2: Sec. 13.6.5)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Contents and Furnishings

RATING				DESCRIPTION	COMMENTS
C \square	NC \square	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{X} \end{gathered}$	U \square	LS-MH; PR-MH. INDUSTRIAL STORAGE RACKS: Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/MH 16.1 as modified by ASCE 7 Chapter 15. (Commentary: Sec. A.7.11.1. Tier 2: Sec. 13.8.1)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-H; PR-MH. TALL NARROW CONTENTS: Contents more than 6 fthigh with a height-to-depth or height-to-width	Storage racks within the Headworks building appear to be unanchored to structure. ratio greater than 3-to-1 are anchored to the structure or to each other. (Commentary: Sec. A.7.11.2. Tier 2: Sec. 13.8.2)	
C						

Storage racks within the Headworks building appear to be unanchored to structure.

C	NC	N/A	U	LS-not required; PR-H. SUSPENDED CONTENTS: Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Commentary. A.7.11.6. Tier 2: Sec. 13.8.2)	\square
\square	\square				

Mechanical and Electrical Equipment

RATING				DESCRIPTION	COMMENTS
C X	NC \square	N/A \square	U \square	LS-H; PR-H. FALL-PRONE EQUIPMENT: Equipment weighing more than 20 lb whose center of mass is more than 4 ft above the adjacent floor level, and which is not in-line equipment, is braced. (Commentary: A.7.12.4. Tier 2: 13.7.1 and 13.7.7)	
C \square	$\begin{aligned} & \mathrm{NC} \\ & \boxtimes \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \square \end{gathered}$	U \square \square	LS-H; PR-H. IN-LINE EQUIPMENT: Equipment installed in-line with a duct or piping system, with an operating weight more than 75 lb , is supported and laterally braced independent of the duct or piping system. (Commentary: Sec. A.7.12.5. Tier 2: Sec. 13.7.1)	Recirculation pump at the Disk Filters is anchored to plate, but there doesn't seem to be any plate resistance to overturning. See next page for photo showing condition.
C X	NC \square	N / A	U \square	LS-H; PR-MH. TALL NARROW EQUIPMENT: Equipment more than 6 ft high with a height-to-depth or height-to width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Commentary: Sec. A.7.12.6. Tier 2: Sec. 13.7.1 and 13.7.7)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

Recirculation pump is anchored to plate below, but there doesn't appear to be any support for equipment overturning.

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

ACCU units lack anchorage to structural pad near Aeration Basins.

Piping

RATING	DESCRIPTION				
C	NC	N/A	U	LS-not required; PR-H. FLEXIBLE COUPLINGS: Fluid and gas piping has flexible couplings. (Commentary: Sec. A.7.13.2. Tier 2: Sec. 13.7.3 and 13.7.5)	
	\square	\square	\square		
C	NC	N/A	U	LS-not required; PR-H. FLUID AND GAS PIPING: Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Commentary: Sec. A.7.13.4. Tier 2: Sec. 13.7.3 and 13.7.5)	
	\square	\square	\square		

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-not required; PR-H. C-CLAMPS: One-sided C-clamps that support	
\square	\square	\boxed{X}	\square	liping larger than 2.5 in. in diameter are restrained. (Commentary: Sec. A.7.13.5. Tier 2: Sec. 13.7.3 and 13.7.5)	
C NC	N/A	U	LS-not required; PR-H. PIPING CROSSING SEISMIC JOINTS: Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A7.13.6. Tier 2: Sec.13.7.3 and Sec. 13.7.5)		
\square	\square	X	\square		

Ducts

RATING				DESCRIPTION	COMMENTS
C X	NC \square	N/A \square	U \square	LS-not required; PR-H. DUCT BRACING: Rectangular ductwork larger than $6 \mathrm{ft}^{2}$ in cross-sectional area and round ducts larger than 28 in. in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft . The maximum spacing of longitudinal bracing does not exceed 60 ft . (Commentary: Sec. A.7.14.2. Tier 2: Sec. 13.7.6)	
C Х	NC \square	N/A \square	U \square	LS-not required; PR-H. DUCT SUPPORT: Ducts are not supported by piping or electrical conduit. (Commentary: Sec. A.7.14.3. Tier 2: Sec. 13.7.6)	

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

C	NC	N/A	U	LS-not required; PR-H. DUCTS CROSSING SEISMIC JOINTS: Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Commentary: Sec. A.7.14.5. Tier 2: Sec. 13.7.6)	
\square	\square	\boxed{X}	\square		

Elevators

Legend: C = Compliant, NC = Noncompliant, N/A = Not Applicable, U = Unknown

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \text { C } & \text { NC } & \text { N/A } & \mathrm{U} & \begin{array}{l}\text { LS-not required; PR-H. } \\
\text { SPREADER BRACKET: Spreader brackets are not } \\
\text { used to resist seismic forces. (Commentary: Sec. }\end{array}
$$ \&

\square \& \square \& X \& \square \& \&

A.7.16.8. Tier 2: 13.8.6)\end{array}\right]\)| |
| :--- |
| C |

City of Wilsonville

Tier 2 Structural Calculations

Operations Building pg. 435
Seismic Base Shear (BSE-2E) pg. 436
CMU In-Plane Shear (BSE-2E) pg. 437
Seismic Base Shear (CSZ) pg. 448
CMU In-Plane Shear (CSZ) pg. 449
Diaphragm Check (CSZ) pg. 459
Process Gallery pg. 462
Seismic Base Shear (BSE-2E) pg. 463
CMU In-Plane Shear (BSE-2E) pg. 464
Vertical Irregularity Check (BSE-2E) pg. 474
Seismic Base Shear (CSZ) pg. 489
CMU In-Plane Shear (CSZ) pg. 490
Vertical Irregularity Check (CSZ) pg. 499
Diaphragm Check (CSZ) pg. 503
Workshop pg. 506
Seismic Base Shear (BSE-2E) pg. 507
Narrow Shear Walls (BSE-2E) pg. 508
Seismic Base Shear (CSZ) pg. 520
Narrow Shear Walls (CSZ) pg. 521
Wood Diaphragm Check (CSZ) pg. 527

OPERATIONS BUILDING - TIER 2 CALCULATIONS

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION		Operations Building		11962A. 00
DESIGN TĀSK			ASCE 41-17 - Tier 2 (BSE-2E)		

SEISMIC BASE SHEAR FOR OPERATIONS BUILDING

7.4.1.3.1 Pseudo Seismic Force for LSP. The pseudo lateral force in a given horizontal direction of a building shall be determined using Eq. (7-21). This force shall be used to evaluate or retrofit the vertical elements of the seismic-force-resisting system.

$$
\begin{equation*}
V=C_{1} C_{2} C_{m} S_{a} W \tag{7-21}
\end{equation*}
$$

Table 7-3. Alternate Values for Modification Factors $C_{1} C_{2}$			
Fundamental			
Period	$m_{\max }<2$	$2 \leq m_{\max }<6$	$m_{\max } \geq 6$
$T \leq 0.3$	1.1	1.4	1.8
$0.3<T \leq 1.0$	1.0	1.1	1.2
$T>1.0$	1.0	1.0	1.1

Na. of Sacries	Concreta Moment Frame	Cencroto 8hear Eat	Concrato Kier-Spanden	Stool Moesert Frame	Stoel Concertricaly Braced Frame	Stoel Eccertrically Braced Frime	Oener
5-2	10	10	5.0	5.9	1.9	1.9	1.0
3 or mox	0.9	0.0	0.9	0.9	0.3	0.9	1.0

spectral response acceleration, S_{xs}	$=$	0.744 g
spectral response acceleration, $\mathrm{S}_{\mathrm{x} 1}=$	0.405 g	(BSE-2E seismic hazard)
building period, $\mathrm{T}=$	0.114 s	
(BSE-2E seismic hazard)		
response spectrum acceleration, $\mathrm{S}_{\mathrm{a}}=$	0.744 g	
effective seismic weight, $\mathrm{W}=$	190.9 kip	
$\mathrm{C}_{1} \mathrm{C}_{2}=$	1.4	(Table 11-6 for masonry walls, $\mathrm{m}=2.5$)
effective mass factor, $\mathrm{C}_{\mathrm{m}}=$	1.0	
seismic lateral force, $\mathrm{V}=$	198.8 kip	

9310014

WWTP UPGRADE

Mon

usconay

人m

 netan decalina;

 12 Hz

 ecunations:

2. No

RECORD DRAWINGS

REMNFORCNG NOTES:

 -

4. 1.

DETALL OF REINFORCEMENT - LAP LENGTHS

| (1) | \% Of SWNuT | * | * | * | ** | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | She.ath

(20)

 Lac sergive zone : MEALDEOXITR

Sckewt AT TO spiciva. A

3. NiL ofen wes joists shall have dovele anale chofdos.

BY: BS	DATE Sep-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION		Operations Building		11962A. 00
DESIGN TASK			ASCE 41-17-Tier 2 (BSE-2E)		

CMU IN-PLANE SHEAR WALL CHECK IN BUILDING N-S DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.
11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.
11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced

 Masonry Walls. The shear required to develop the expectedflexural strength of RM walls and wall piers shall be compared with the lower-bound shear strengh. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.
7.5.2 Linear Procedures
7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.
7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, $Q_{U D}$, shall be calculated in accordance with Eq. (7-34):

$$
\begin{equation*}
Q_{U D}=Q_{G}+Q_{E} \tag{7-34}
\end{equation*}
$$

where
$Q_{U D}=$ Deformation-controlled action caused by gravity loads and earthquake forces.
$Q_{G}=$ Action caused by gravity loads as defined in Section 7.2.2; and
$Q_{E}=$ Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

Shear wall 1

Roof seismic load, $\mathrm{V}=$	198.8 kip
diaphragm span, $\mathrm{L}=$	60.00 ft
roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=$	8 ft
tributary seismic load on shear wall, $\mathrm{Q}_{\mathrm{E}}=$	26.5 kip

$$
\begin{array}{rlc}
\text { wall height, } \mathrm{h} & = & 10.17 \mathrm{ft} \\
\text { tributary seismic moment on shear wall, } \mathrm{Mu} & = & 269.6 \mathrm{kip} \mathrm{ft}^{\prime} \\
\text { masonry strength, } \mathrm{f}_{\mathrm{m}} & = & 1500 \mathrm{psi} \\
\text { shear wall length, } \mathrm{d}= & 40 \mathrm{ft} \\
\text { vertitcal shear wall grout spacing } & = & 32 \mathrm{in} \\
\text { horizontal shear wall grout spacing } & = & 48 \mathrm{in} \\
\text { shear wall thickness, } \mathrm{t} & = & 7.625 \mathrm{in} \\
\mathrm{~A}_{\mathrm{n}} & = & 1692.0 \mathrm{in}^{<} \\
\Phi & = & 1.0 \text { (assumed per Tier 2) }
\end{array}
$$

$$
\phi V_{m}=\phi\left[\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{~V} \mathrm{~d}_{v}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{~F}_{\mathrm{m}}}+0.25 \mathrm{P}_{\mathrm{u}}\right]
$$

masonry shear wall strength, $\phi Q C E_{m}=233.0$ kip horizontal masonry shear wall strength, $\phi Q C E_{s}=\quad 28.7 \mathrm{kip}$ combined masonry shear wall strength, ϕ QCE $=261.6 \mathrm{kip}$

Determining m-factor for wall governed by flexure

roof axial load on wall, $\mathrm{P}=5544.0 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=1.5 \mathrm{psi}$ factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{\star} f_{m}=1950.0$ psi

$$
f_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.001
$$

$$
\mathrm{h} / \mathrm{L}=\quad 0.25
$$

$$
\text { steel reinforcing ratio, } \rho_{\mathrm{g}}=0.003
$$

$$
\rho_{\mathrm{g}}{ }^{*} \mathrm{f}_{\mathrm{ye}} / f_{\mathrm{me}}=\quad 0.08
$$

$$
\text { m-factor }=\quad 7.0 \text { (interpolated between LS \& CP. ASCE 41-17 Table 11-6) }
$$

$$
\text { knowledge factor, } \mathrm{k}=\quad 0.90
$$

$$
\text { masonry shear wall strength, } \text { kmфQCE }=\quad 1648.3 \text { kip }
$$

$$
\text { demand capacity ratio, } D C R=0.02 \quad O K
$$

Shear wall 2

Determining m-factor for wall governed by flexure

roof axial load on wall, $\mathrm{P}=49500.0 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=12.3 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{*} f_{m}^{\prime}=1950.0 \mathrm{psi}$
$\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\text {me }}=0.006$
$\mathrm{h} / \mathrm{L}=\quad 0.23$
steel reinforcing ratio, $\rho_{g}=0.003$
$\rho_{\mathrm{g}}{ }^{*} \mathrm{ff}_{\mathrm{ye}} / \mathrm{f}_{\mathrm{me}}=\quad 0.08$
m-factor $=\quad 7.0$ (interpolated between LS \& CP. ASCE 41-17 Table 11-6)
knowledge factor, $\mathrm{k}=\quad 0.90$
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=1806.3 \mathrm{kip}$
demand capacity ratio, $D C R=0.05 \quad O K$
Shear wall 3

Roof seismic load, $\mathrm{V}=$ diaphragm span, $\mathrm{L}=$ roof tributary width for seismic, $T_{w}=$	$\begin{aligned} & 198.8 \mathrm{kip} \\ & 60.00 \mathrm{ft} \\ & 22 \mathrm{ft} \end{aligned}$
tributary seismic load on shear wall, $\mathrm{Q}_{\mathrm{E}}=$	72.9 kip
wall height, $\mathrm{h}=$	10.17 ft
tributary seismic moment on shear wall, $\mathrm{Mu}=$	741.3 kip*ft
masonry strength, $\mathrm{f}_{\mathrm{m}}=$	1500 psi
shear wall length, $\mathrm{d}=$	40.67 ft
vertitcal shear wall grout spacing =	32 in

Roof seismic load, $\mathrm{V}=\quad 198.8 \mathrm{kip}$
diaphragm span, $\mathrm{L}=\quad 60.00 \mathrm{ft}$
roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=$
tributary seismic load on shear wall, $\mathrm{Q}_{\mathrm{E}}=\quad 82.8 \mathrm{kip}$
wall height, $\mathrm{h}=\quad 10.17 \mathrm{ft}$
tributary seismic moment on shear wall, $\mathrm{Mu}=\quad 842.4$ kip*ft
masonry strength, $\mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi}$
shear wall length, $\mathrm{d}=\quad 44 \mathrm{ft}$
vertitcal shear wall grout spacing $=\quad 32$ in
horizontal shear wall grout spacing $=\quad 48$ in
$\begin{aligned} \text { shear wall thickness, } \mathrm{t} & =\quad 7.625 \mathrm{in} \\ \mathrm{A}_{\mathrm{n}} & =\quad 1853.0 \mathrm{in}^{<}\end{aligned}$
$\mathrm{A}_{\mathrm{n}}=1853.0$
$\Phi=\quad 1.0$ (assumed per Tier 2)
$\phi \mathrm{V}_{\mathrm{m}}=\phi\left[\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{Vd}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{m}}}+0.25 \mathrm{P}_{\mathrm{u}}\right]$
masonry shear wall strength, $\phi Q C E_{m}=258.0$ kip
horizontal masonry shear wall strength, $\phi Q C E_{s}=\quad 28.7 \mathrm{kip}$
combined masonry shear wall strength, $\phi Q C E=286.7 \mathrm{kip}$

```
    horizontal shear wall grout spacing = 48 in
        shear wall thickness, t= 7.625 in
        An}=1712.1 in <
    \Phi= 1.0 (assumed per Tier 2)
    \phi\mp@subsup{V}{m}{}=\phi[[4.0-1.75(\frac{M}{V\mp@subsup{d}{v}{}})]|\mp@subsup{A}{n}{}\sqrt{}{\mp@subsup{f}{m}{\prime}}+0.25\mp@subsup{P}{u}{}}
    masonry shear wall strength, \phiQCE m}=236.2 kip
horizontal masonry shear wall strength, \phiQCE 
    combined masonry shear wall strength, \phiQCE = 264.9 kip
Determining m-factor for wall governed by flexure
            roof axial load on wall, P = 43560.0 lbs
        vertical compressive stress, fae = P/(d*t)= 11.7 psi
            factor for expected strength, F}\mp@subsup{\textrm{Fexp}}{}{\mathrm{ e}
```



```
                            fae}/\mp@subsup{f}{me}{}=0.006 ps
                            h/L = 0.25
            steel reinforcing ratio, }\mp@subsup{\rho}{\textrm{g}}{=}=0.00
            \rhog}\mp@subsup{}{}{*}\mp@subsup{\textrm{fye}}{\textrm{y}}{}/\mp@subsup{f}{me}{}=0.0
                    m-factor = 7.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
            knowledge factor, к=
        masonry shear wall strength, кm\phiQCE = 1668.8 kip
            demand capacity ratio, DCR = 0.04 OK
Shear wall 4
Roof seismic load, \(V=\quad 198.8\) kip
                        diaphragm span, L = }60.00\textrm{ft
            roof tributary width for seismic, T }\mp@subsup{T}{\textrm{w}}{=}\quad5\textrm{ft
        tributary seismic load on shear wall, Q Q = 16.6 kip
                            wall height, h = }\quad10.17\textrm{ft
        tributary seismic moment on shear wall, Mu= 168.5 kip*ft
            masonry strength, f'm}=\quad1500 ps
                        shear wall length, d= 24.67 ft
            vertitcal shear wall grout spacing=
            horizontal shear wall grout spacing =
            shear wall thickness, t= 7.625 in
            An}=1068.1 in <
                        \Phi= 1.0 (assumed per Tier 2)
                    \phiV
            masonry shear wall strength, \phiQCE 
    horizontal masonry shear wall strength, \phiQCE 
    combined masonry shear wall strength, \phiQCE = 164.3 kip
Determining m-factor for wall governed by flexure
roof axial load on wall, \(\mathrm{P}=2587.5 \mathrm{lbs}\)
vertical compressive stress, \(\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=1.1 \mathrm{psi}\)
factor for expected strength, \(\mathrm{F}_{\text {exp }}=\quad 1.3\) (ASCE 41-17 Table 11-1)
expected compressive strength, \(f_{m e}=F_{\text {exp }}{ }^{*} f_{m}=1950.0\) psi
\(\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.001 \mathrm{psi}\)
\(\mathrm{h} / \mathrm{L}=0.41\)
steel reinforcing ratio, \(\rho_{g}=0.003\)
\(\rho_{\mathrm{g}}{ }^{*} \mathrm{ffe}_{\mathrm{ye}} / \mathrm{f}_{\text {me }}=\quad 0.08\)
```

```
                                    m-factor = 7.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
    knowledge factor, }\textrm{\kappa}=\quad0.9
masonry shear wall strength, km\phiQCE = 1035.1 kip
    demand capacity ratio, DCR = 0.02 OK
```


BY: BS	DATE Sep-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION		Operations Building		11962A. 00
DESIGN TĀSK			ASCE 41-17 - Tier 2 (BSE-2E)		

CMU IN-PLANE SHEAR WALL CHECK IN BUILDING E-W DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.
11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.
11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced

 Masonry Walls. The shear required to develop the expected with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.7.5.2 Linear Procedures
7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2
7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, $Q_{U D}$, shall be calculated in accordance with Eq. (7-34):

$$
\begin{equation*}
Q_{U D}=Q_{G}+Q_{E} \tag{7-34}
\end{equation*}
$$

where
$Q_{U D}=$ Deformation-controlled action caused by gravity loads and earthquake forces.
$Q_{G}=$ Action caused by gravity loads as defined in Section 7.2.2; and
$Q_{E}=$ Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

```
Shear wall A
                Roof seismic load, V = 198.8 kip
                diaphragm span, L = 102.00 ft
            roof tributary width for seismic, T
        tributary seismic load on shear wall, Q Q = 11.7 kip
            wall height, h = }\quad10.17\textrm{ft
        tributary seismic moment on shear wall, Mu= 118.9 kip*ft
            masonry strength, f'm}=\quad1500 ps
                        shear wall length, d=}\quad20 f
        vertitcal shear wall grout spacing =
        horizontal shear wall grout spacing =
        shear wall thickness, t= 7.625 in
                        An= 887.0 in
                        Ф = 1.0 (assumed per Tier 2)
            \phi\mp@subsup{V}{m}{\prime}}=\phi[[4.0-1.75(\frac{M}{V\mp@subsup{d}{v}{\prime}})]]\mp@subsup{A}{n}{}\sqrt{}{\mp@subsup{\textrm{F}}{\textrm{m}}{\prime}}+0.25\mp@subsup{P}{u}{}
        masonry shear wall strength, \phiQCE 
        horizontal masonry shear wall strength, \phiQCE 
        combined masonry shear wall strength, \phiQCE = 135.5 kip
        Determining m-factor for wall governed by flexure
            roof axial load on wall, P = 3564.0 lbs
            vertical compressive stress, fae = P/(d*t)= 0.3 psi
        factor for expected strength, F}\mp@subsup{\textrm{F}}{\mathrm{ exp }}{}=\square1.3\mathrm{ (ASCE 41-17 Table 11-1)
    expected compressive strength, fme }=\mp@subsup{F}{\mathrm{ exp }}{*}\mp@subsup{\textrm{f}}{\textrm{m}}{\prime}=1950.0 ps
```

$$
\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.000
$$

$$
h / L=\quad 0.51
$$

$$
\text { steel reinforcing ratio, } \rho_{\mathrm{g}}=0.003
$$

$$
\rho_{\mathrm{g}}{ }^{\star} \mathrm{fye}_{\mathrm{ye}} / f_{\mathrm{me}}=0.08
$$

$$
\text { m-factor }=\quad 7.0 \text { (interpolated between LS \& CP. ASCE 41-17 Table 11-6) }
$$

$$
\text { knowledge factor, } \mathrm{k}=\quad 0.90
$$

$$
\text { masonry shear wall strength, } \mathrm{km} \mathrm{\phi QCE}=\quad 853.8 \mathrm{kip}
$$

$$
\text { demand capacity ratio, } D C R=0.01 \quad O K
$$

Shear wall B

$\begin{array}{r} \text { Roof seismic load, } \mathrm{V}= \\ \text { diaphragm span, } \mathrm{L}= \\ \text { roof tributary width for seismic, } T_{w}= \end{array}$	$\begin{gathered} 198.8 \mathrm{kip} \\ 102.00 \mathrm{ft} \\ 25 \mathrm{ft} \end{gathered}$
tributary seismic load on shear wall, $\mathrm{Q}_{\mathrm{E}}=$	48.7 kip
wall height, $\mathrm{h}=$	10.17 ft
tributary seismic moment on shear wall, $\mathrm{Mu}=$	495.5 kip*ft
masonry strength, $\mathrm{f}_{\mathrm{m}}=$	1500 psi
shear wall length, $d=$	20.67 ft
vertitcal shear wall grout spacing =	32 in
horizontal shear wall grout spacing =	48 in
shear wall thickness, $\mathrm{t}=$	7.625 in
$\mathrm{A}_{\mathrm{n}}=$	$907.1 \mathrm{in}^{\text {c }}$
$\Phi=$	1.0 (assumed per Tier 2)

$$
\left.\phi V_{m}=\phi\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{Vdv}}\right)\right] \mathrm{A}_{n} \sqrt{\mathrm{f}_{\mathrm{m}}}+0.25 P_{u}\right]
$$

masonry shear wall strength, $\phi Q C E_{m}=110.3$ kip

$$
\text { horizontal masonry shear wall strength, } \phi Q C E_{s}=\quad 28.7 \text { kip }
$$

$$
\text { combined masonry shear wall strength, } \phi Q C E=139.0 \text { kip }
$$

Determining m-factor for wall governed by flexure

roof axial load on wall, $P=28710.0 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=2.4 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $\mathrm{f}_{\mathrm{me}}=\mathrm{F}_{\text {exp }}{ }^{*} \mathrm{f}_{\mathrm{m}}=1950.0 \mathrm{psi}$
$\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\text {me }}=0.001$
$\mathrm{h} / \mathrm{L}=\quad 0.49$
steel reinforcing ratio, $\rho_{\mathrm{g}}=0.003$
$\rho_{g}{ }^{*} f_{y e} / f_{m e}=0.08$
m-factor $=\quad 7.0$ (interpolated between LS \& CP. ASCE 41-17 Table 11-6)
knowledge factor, $\mathrm{k}=\quad 0.90$
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=875.4 \mathrm{kip}$
demand capacity ratio, $D C R=0.06 \quad O K$
Shear wall C

$\begin{array}{r} \text { Roof seismic load, } \mathrm{V}= \\ \text { diaphragm span, } \mathrm{L}= \\ \text { roof tributary width for seismic, } \mathrm{T}_{\mathrm{w}}= \end{array}$	$\begin{gathered} 198.8 \mathrm{kip} \\ 102.00 \mathrm{ft} \\ 45 \mathrm{ft} \end{gathered}$
tributary seismic load on shear wall, $Q_{E}=$	87.7 kip
wall height, $\mathrm{h}=$	10.17 ft
tributary seismic moment on shear wall, $\mathrm{Mu}=$	892.0 kip*ft
masonry strength, $\mathrm{f}_{\mathrm{m}}^{\prime}=$	1500 psi
shear wall length, $d=$	28.67 ft

```
    vertitcal shear wall grout spacing =}\quad32 i
    horizontal shear wall grout spacing =
        shear wall thickness, }\textrm{t}=\quad7.625\mathrm{ in
            An}=1229.1 in <
            \Phi= 1.0 (assumed per Tier 2)
                \phiV
            masonry shear wall strength, \phiQCE 
horizontal masonry shear wall strength, \phiQCE 
    combined masonry shear wall strength, \phiQCE = 189.5 kip
Determining m-factor for wall governed by flexure
                            roof axial load on wall, P = 40788.0 lbs
        vertical compressive stress, fae }=\textrm{P}/(\mp@subsup{\textrm{d}}{}{*}\textrm{t})=2.5\textrm{psi
            factor for expected strength, F}\mp@subsup{\textrm{Fexp}}{}{\mathrm{ = }}\quad1.3\mathrm{ (ASCE 41-17 Table 11-1)
expected compressive strength, f}\mp@subsup{f}{me}{}=\mp@subsup{F}{\mathrm{ exp }}{}\mp@subsup{}{}{*\prime}\mp@subsup{f}{m}{\prime}=1950.0 ps
                                    fae
                                    h/L= 0.35
            steel reinforcing ratio, }\mp@subsup{\rho}{\textrm{g}}{}=0.00
                \rhog}\mp@subsup{}{}{*}\mp@subsup{f}{\textrm{ye}}{}/\mp@subsup{f}{me}{}=0.0
                m-factor = 7.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
            knowledge factor, к = 0.90
        masonry shear wall strength, }\textrm{km\phiQCE}=\quad1194.1\textrm{kip
            demand capacity ratio, DCR = 0.07 OK
```

Shear wall D
Roof seismic load, V = $\quad 198.8$ kip
diaphragm span, $\mathrm{L}=102.00 \mathrm{ft}$
roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=$
tributary seismic load on shear wall, $Q_{E}=\quad 50.7$ kip
wall height, $\mathrm{h}=\quad 10.17 \mathrm{ft}$
tributary seismic moment on shear wall, $\mathrm{Mu}=\quad 515.4$ kip*ft
masonry strength, $\mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi}$
shear wall length, $d=\quad 26.67 \mathrm{ft}$
$\begin{aligned} \text { vertitcal shear wall grout spacing }= & 32 \text { in } \\ \text { horizontal shear wall grout spacing }= & 48 \text { in }\end{aligned}$
shear wall thickness, $\mathrm{t}=\quad 7.625$ in
$A_{n}=1128.1 \mathrm{in}^{\kappa}$
$\Phi=\quad 1.0$ (assumed per Tier 2)
$\left.\phi V_{m}=\phi\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{Vd}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{m}}}+0.25 \mathrm{P}_{\mathrm{u}}\right]$
masonry shear wall strength, $\phi Q C E_{m}=145.6$ kip
horizontal masonry shear wall strength, $\phi Q C E_{s}=\quad 28.7 \mathrm{kip}$
combined masonry shear wall strength, ϕ QCE $=\quad 174.3 \mathrm{kip}$
Determining m-factor for wall governed by flexure
roof axial load on wall, $\mathrm{P}=17820.0 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=1.2 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{*} f_{m}^{\prime}=1950.0$ psi
$\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.001$
$\mathrm{h} / \mathrm{L}=0.38$
steel reinforcing ratio, $\rho_{g}=0.003$
$\rho_{\mathrm{g}}{ }^{*} \mathrm{f}_{\mathrm{ye}} / f_{\mathrm{me}}=\quad 0.08$
m-factor $=\quad 7.0$ (interpolated between LS \& CP. ASCE 41-17 Table 11-6) knowledge factor, $\mathrm{\kappa}=\quad 0.90$
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=1098.0$ kip
demand capacity ratio, $D C R=0.05 \quad O K$

BY: BS	DATE Aug-21	CLIENT	City of Wilsonville	SHEET JOB NO.	
CHKD BY	DESCRIPTION		Operations Building		11962A. 00
DESIGN TASK			ASCE 41-17 - Tier 2 (CSZ)		

SEISMIC BASE SHEAR FOR OPERATIONS BUILDING

7.4.1.3.1 Pseudo Seismic Force for LSP. The pseudo lateral force in a given horizontal direction of a building shall be determined using Eq. (7-21). This force shall be used to evaluate or retrofit the vertical elements of the seismic-force-resisting system.

$$
\begin{equation*}
V=C_{1} C_{2} C_{m} S_{a} W \tag{7-21}
\end{equation*}
$$

Table 7-3. Alternate Values for Modification Factors $c_{1} C_{2}$			
Fundamental			
Period	$m_{\max }<2$	$2 \leq m_{\max }<6$	$m_{\max } \geq 6$
$T \leq 0.3$	1.1	1.4	1.8
$0.3<T \leq 1.0$	1.0	1.1	1.2
$T>1.0$	1.0	1.0	1.1

Na. of sacries	Concreta Momert Frame	Cencrato Shear Eat	Concrato Her-Spanden	Stool Monert Frame	Stael Concertricaly Braced Frame	Stoel Eccertrically Braced frime	Ceber
5-2	10	10	5.0	5.9	1.9	19	1.0
3 ot mow	0.9	0.0	0.9	0.9	0.9	0.9	1.0

spectral response acceleration, $\mathrm{S}_{\mathrm{xs}}=$	0.446 g	$(\mathrm{CSZ}$ seismic hazard)
spectral response acceleration, $\mathrm{S}_{\mathrm{x} 1}=$	0.332 g	$(\mathrm{CSZ}$ seismic hazard)
building period, $\mathrm{T}=$	0.114 s	
response spectrum acceleration, $\mathrm{S}_{\mathrm{a}}=$	0.446 g	
effective seismic weight, $\mathrm{W}=$	190.9 kip	
$\mathrm{C}_{1} \mathrm{C}_{2}=$	1.4	(Table 11-6 for masonry walls, $\mathrm{m}=2.0)$
effective mass factor, $\mathrm{C}_{\mathrm{m}}=$	1.0	
seismic lateral force, $\mathrm{V}=$	119.2 kip	

BY:	BS	DATE	Sep-21	CLIENT	City of Wilsonville	SHEET	
CHKD BY		DESC			Operations Building	JOB NO.	11962A. 00

DESIGN TASK
ASCE 41-17 - Tier 2 (CSZ)

CMU IN-PLANE SHEAR WALL CHECK IN BUILDING N-S DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.
11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.
11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced

 Masonry Walls. The shear required to develop the expectedflexural strength of RM walls and wall piers shall be compared with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.

7.5.2 Linear Procedures

7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.
7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, $Q_{U D}$, shall be calculated in accordance with Eq. (7-34):

$$
\begin{equation*}
Q_{U D}=Q_{G}+Q_{E} \tag{7-34}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q_{U D}= \text { Deformation-controlled action caused by gravity loads } \\
& \text { and earthquake forces. } \\
& Q_{G}= \text { Action caused by gravity loads as defined in } \\
& \text { Section 7.2.2; and } \\
& Q_{E}= \text { Action caused by the response to the selected Seismic } \\
& \text { Hazard Level calculated using either Section 7.4.1 or } \\
& \text { Section 7.4.2; }
\end{aligned}
$$

Shear wall 1

$$
\begin{aligned}
& \text { Roof seismic load, V = } 119.2 \text { kip } \\
& \text { diaphragm span, } L=\quad 60.00 \mathrm{ft} \\
& \text { roof tributary width for seismic, } \mathrm{T}_{\mathrm{w}}=\quad 8 \mathrm{ft} \\
& \text { tributary seismic load on shear wall, } Q_{E}=\quad 15.9 \text { kip } \\
& \text { wall height, } \mathrm{h}=\quad 10.17 \mathrm{ft} \\
& \text { tributary seismic moment on shear wall, } \mathrm{Mu}=\quad 161.6 \text { kip*ft } \\
& \text { masonry strength, } \mathrm{f}_{\mathrm{m}}= \\
& \text { shear wall length, } d=\quad 40 \mathrm{ft} \\
& \text { vertitcal shear wall grout spacing }= \\
& \text { horizontal shear wall grout spacing }=\quad 48 \text { in } \\
& \text { shear wall thickness, } t=\quad 7.625 \text { in } \\
& \begin{aligned}
\mathrm{A}_{\mathrm{n}}= & 1692.0 \mathrm{in}^{2} \\
\Phi= & 1.0 \text { (assumed per Tier 2) }
\end{aligned} \\
& \left.\phi V_{m}=\phi\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{Vd}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{m}}}+0.25 \mathrm{P}_{\mathrm{u}}\right] \\
& \text { masonry shear wall strength, } \phi Q C E_{m}=233.0 \text { kip } \\
& \text { horizontal masonry shear wall strength, } \phi Q C E_{s}=\quad 28.7 \mathrm{kip} \\
& \text { combined masonry shear wall strength, } \phi Q C E=261.6 \text { kip }
\end{aligned}
$$

Determining m-factor for wall governed by flexure
roof axial load on wall, $\mathrm{P}=\quad 5544.0 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{*} \mathrm{t}\right)=\quad 1.5 \mathrm{psi}$

```
    factor for expected strength, F}\mp@subsup{\textrm{F}}{\mathrm{ exp }}{}=\quad1.3\mathrm{ (ASCE 41-17 Table 11-1)
expected compressive strength, fme }=\mp@subsup{F}{\mathrm{ exp }}{}\mp@subsup{}{}{*f}\mp@subsup{f}{m}{\prime}=1950.0 ps
                            fae}/\mp@subsup{f}{me}{}=\quad0.00
                            h/L = 0.25
            steel reinforcing ratio, \rhog}=0.00
            \rhog}\mp@subsup{}{g}{*}\mp@subsup{f}{ye}{}/\mp@subsup{f}{me}{}=0.0
                            m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-6)
                            knowledge factor, к = 0.90
        masonry shear wall strength, km\phiQCE = 1177.4 kip
            demand capacity ratio, DCR = 0.01 OK
```

Shear wall 2
Roof seismic load, $\mathrm{V}=\quad 119.2$ kip
diaphragm span, $L=\quad 60.00 \mathrm{ft}$
roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=\quad 25 \mathrm{ft}$
tributary seismic load on shear wall, $Q_{E}=\quad 49.7$ kip
wall height, $\mathrm{h}=\quad 10.17 \mathrm{ft}$
tributary seismic moment on shear wall, $\mathrm{Mu}=\quad 505.1 \mathrm{kip}$ *ft
masonry strength, $\mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi}$
shear wall length, $\mathrm{d}=\quad 44 \mathrm{ft}$
vertitcal shear wall grout spacing $=$
horizontal shear wall grout spacing $=$
shear wall thickness, $t=\quad 7.625$ in
$\mathrm{A}_{\mathrm{n}}=1853.0 \mathrm{in}^{<}$
$\Phi=\quad 1.0$ (assumed per Tier 2)
$\phi \mathrm{V}_{\mathrm{m}}=\phi\left[\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{V} \mathrm{d}_{\mathrm{v}}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{m}}^{\prime}}+0.25 \mathrm{P}_{\mathrm{u}}\right]$
masonry shear wall strength, $\phi Q C E_{m}=258.0$ kip
horizontal masonry shear wall strength, ϕ QCE $_{s}=\quad 28.7 \mathrm{kip}$
combined masonry shear wall strength, ϕ QCE $=286.7$ kip
Determining m-factor for wall governed by flexure
roof axial load on wall, $\mathrm{P}=49500.0 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=\quad 12.3 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{*} f_{m}{ }_{m}=1950.0 \mathrm{psi}$
$\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.006$
$\mathrm{h} / \mathrm{L}=\quad 0.23$
steel reinforcing ratio, $\rho_{g}=0.003$
$\rho_{\mathrm{g}}{ }^{*} \mathrm{f}_{\mathrm{ye}} / \mathrm{f}_{\mathrm{me}}=\quad 0.08$
m-factor $=\quad 5.0$ (interpolated between LS \& IO. ASCE 41-17 Table 11-6)
knowledge factor, $\mathrm{k}=$
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=1290.2$ kip
demand capacity ratio, $D C R=0.04 \quad O K$

Shear wall 3
Roof seismic load, V = 119.2 kip
diaphragm span, $\mathrm{L}=\quad 60.00 \mathrm{ft}$
roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=$
tributary seismic load on shear wall, $Q_{E}=\quad 43.7 \mathrm{kip}$
wall height, $\mathrm{h}=\quad 10.17 \mathrm{ft}$
tributary seismic moment on shear wall, $\mathrm{Mu}=\quad 444.5 \mathrm{kip}^{*} \mathrm{ft}$
masonry strength, $\mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi}$
shear wall length, $\mathrm{d}=\quad 40.67 \mathrm{ft}$
vertitcal shear wall grout spacing $=$
horizontal shear wall grout spacing $=$
shear wall thickness, $\mathrm{t}=\quad 7.625$ in
$\mathrm{A}_{\mathrm{n}}=\quad 1712.1 \mathrm{in}^{<}$
$\Phi=\quad 1.0$ (assumed per Tier 2)

$$
\phi V_{m}=\phi\left[\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{Vd} d_{v}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{m}}^{\prime}}+0.25 \mathrm{P}_{\mathrm{u}}\right]
$$

masonry shear wall strength, $\phi Q C E_{m}=\quad 236.2$ kip
horizontal masonry shear wall strength, $\phi Q C E_{s}=\quad 28.7 \mathrm{kip}$ combined masonry shear wall strength, ϕ QCE $=264.9 \mathrm{kip}$
Determining m-factor for wall governed by flexure
roof axial load on wall, $\mathrm{P}=43560.0 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{*} \mathrm{t}\right)=11.7 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $\mathrm{f}_{\mathrm{me}}=\mathrm{F}_{\text {exp }}{ }^{*} \mathrm{f}_{\mathrm{m}}{ }_{\mathrm{m}}=1950.0 \mathrm{psi}$
$\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.006 \mathrm{psi}$
$\mathrm{h} / \mathrm{L}=\quad 0.25$
steel reinforcing ratio, $\rho_{g}=0.003$
$\rho_{g}{ }^{*} f_{y e} / f_{m e}=\quad 0.08$
m-factor $=\quad 5.0$ (interpolated between LS \& IO. ASCE 41-17 Table 11-6)
knowledge factor, $\mathrm{\kappa}=\quad 0.90$
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=1192.0 \mathrm{kip}$
demand capacity ratio, $D C R=0.04 \quad O K$

Shear wall 4


```
            roof axial load on wall, P = 2587.5 lbs
    vertical compressive stress, fae = P/(d*t)= 1.1 psi
        factor for expected strength, F}\mp@subsup{F}{\mathrm{ exp }}{}=\square1.3 (ASCE 41-17 Table 11-1)
expected compressive strength, f
            fae
                        h/L = 0.41
            steel reinforcing ratio, }\mp@subsup{\rho}{g}{}=0.00
                            \rhog}\mp@subsup{}{g}{*}\mp@subsup{f}{ye}{}/\mp@subsup{f}{me}{}=0.0
                            m-factor = 5.0 (interpolated between LS & IO. ASCE 41-17 Table 11-6)
    knowledge factor, к = 0.90
    masonry shear wall strength, кmфQCE = 739.4 kip
    demand capacity ratio, DCR = 0.01 OK
```


BY:	BS	DATE	Sep-21	CLIENT	City of Wilsonville		SHEET	
			Operations Building	JOB NO.	11962A.00			

DESIGN TĀSK
ASCE 41-17 - Tier 2 (CSZ)

CMU IN-PLANE SHEAR WALL CHECK IN BUILDING E-W DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.
11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.
11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced

 Masonry Walls. The shear required to develop the expected flexural strength of RM walls and wall piers shall be compared with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.
7.5.2 Linear Procedures

7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.
7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, $Q_{U D}$, shall be calculated in accordance with Eq. (7-34):

$$
\begin{equation*}
Q_{U D}=Q_{G}+Q_{E} \tag{7-34}
\end{equation*}
$$

where
$Q_{U D}=$ Deformation-controlled action caused by gravity loads and earthquake forces.
$Q_{G}=$ Action caused by gravity loads as defined in Section 7.2.2; and
$Q_{E}=$ Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

[^0]```
 vertical compressive stress, fae}=P/(\mp@subsup{d}{}{*}t)= 0.3 ps
 factor for expected strength, F}\mp@subsup{\textrm{F}}{\mathrm{ exp }}{}=\quad1.3\mathrm{ (ASCE 41-17 Table 11-1)
```



```
 fae
 h/L = 0.51
 steel reinforcing ratio, 的= 0.003
 \rhog}\mp@subsup{}{g}{*}\mp@subsup{f}{ye}{}/\mp@subsup{f}{me}{}=0.0
 m-factor = }5.0\mathrm{ (interpolated between LS & IO. ASCE 41-17 Table 11-6)
 knowledge factor, к = 0.90
masonry shear wall strength, km\phiQCE = 609.8 kip
 demand capacity ratio, DCR = 0.01 OK
```

Shear wall B
Roof seismic load, $\mathrm{V}=\quad 119.2$ kip
diaphragm span, $L=102.00 \mathrm{ft}$
roof tributary width for seismic, $T_{w}=\quad 25 \mathrm{ft}$
tributary seismic load on shear wall, $\mathrm{Q}_{\mathrm{E}}=\quad 29.2$ kip
wall height, $\mathrm{h}=\quad 10.17 \mathrm{ft}$
tributary seismic moment on shear wall, $\mathrm{Mu}=297.1 \mathrm{kip}$ *ft
masonry strength, $\mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi}$
shear wall length, $d=\quad 20.67 \mathrm{ft}$
vertitcal shear wall grout spacing $=$
horizontal shear wall grout spacing $=\quad 48$ in
shear wall thickness, $t=\quad 7.625$ in
$\mathrm{A}_{\mathrm{n}}=\quad 907.1 \mathrm{in}^{<}$
$\Phi=\quad 1.0$ (assumed per Tier 2)
$\left.\phi \mathrm{V}_{\mathrm{m}}=\phi\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{V} \mathrm{d}_{\mathrm{v}}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{m}}^{\prime}}+0.25 \mathrm{P}_{\mathrm{u}}\right]$
masonry shear wall strength, $\phi Q C E_{m}=110.3 \mathrm{kip}$
horizontal masonry shear wall strength, $\phi Q C E_{s}=\quad 28.7 \mathrm{kip}$
combined masonry shear wall strength, $\phi Q C E=139.0$ kip
Determining m-factor for wall governed by flexure
roof axial load on wall, $\mathrm{P}=28710.0 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=\quad 2.4 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{*} f_{m}{ }_{m}=1950.0 \mathrm{psi}$
$\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.001$
$h / L=0.49$
steel reinforcing ratio, $\rho_{g}=0.003$
$\rho_{\mathrm{g}}{ }^{*} \mathrm{f}_{\mathrm{ye}} / \mathrm{f}_{\mathrm{me}}=\quad 0.08$
$m$-factor $=\quad 5.0$ (interpolated between LS \& IO. ASCE 41-17 Table 11-6)
knowledge factor, $\mathrm{k}=\quad 0.90$
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=625.3 \mathrm{kip}$
demand capacity ratio, $D C R=0.05 \quad O K$
Shear wall C

| Roof seismic load, $V=$ | 119.2 kip |
| ---: | ---: |
| diaphragm span, $L=$ | 102.00 ft |
| roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=$ | 45 ft |

tributary seismic load on shear wall, $\mathrm{Q}_{\mathrm{E}}=\quad 52.6 \mathrm{kip}$

| wall height, $\mathrm{h}=$ | 10.17 ft |
| :---: | :---: |
| tributary seismic moment on shear wall, $\mathrm{Mu}=$ | 534.8 kip*ft |
| masonry strength, $\mathrm{f}_{\mathrm{m}}=$ | 1500 psi |
| shear wall length, d = | 28.67 ft |
| vertitcal shear wall grout spacing = | 32 in |
| horizontal shear wall grout spacing = | 48 in |
| shear wall thickness, $t=$ | 7.625 in |
| $\mathrm{A}_{\mathrm{n}}=$ | $1229.1 \mathrm{in}^{\text {c }}$ |
| $\Phi=$ | 1.0 (assu |

$$
\phi V_{m}=\phi\left[\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{Vd} d_{v}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{m}}^{\prime}}+0.25 \mathrm{P}_{\mathrm{u}}\right]
$$

masonry shear wall strength, $\phi Q C E_{m}=\quad 160.9$ kip
horizontal masonry shear wall strength, $\phi Q C E_{s}=28.7 \mathrm{kip}$
combined masonry shear wall strength, $\phi$ QCE $=\quad 189.5$ kip

## Determining m-factor for wall governed by flexure

roof axial load on wall, $\mathrm{P}=40788.0 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=\quad 2.5 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $\mathrm{f}_{\mathrm{me}}=\mathrm{F}_{\text {exp }}{ }^{*} \mathrm{f}_{\mathrm{m}}=1950.0 \mathrm{psi}$
$\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.001$
$\mathrm{h} / \mathrm{L}=\quad 0.35$
steel reinforcing ratio, $\rho_{g}=0.003$
$\rho_{g}{ }^{*} f_{y e} / f_{m e}=0.08$
$m$-factor $=\quad 5.0$ (interpolated between LS \& IO. ASCE 41-17 Table 11-6)
knowledge factor, $\mathrm{\kappa}=\quad 0.90$
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=\quad 852.9$ kip
demand capacity ratio, $D C R=0.06 \quad O K$

## Shear wall D

```
 Roof seismic load, V = 119.2 kip
 diaphragm span, L = }102.00\textrm{ft
 roof tributary width for seismic, T }\mp@subsup{\textrm{w}}{\textrm{w}}{=}\quad26\textrm{ft
 tributary seismic load on shear wall, Q Q = 30.4 kip
 wall height, h = }10.17\textrm{ft
 tributary seismic moment on shear wall, Mu= 309.0 kip*ft
 masonry strength, f'm}=\quad1500 ps
 shear wall length, d = }26.67\textrm{ft
 vertitcal shear wall grout spacing =
 horizontal shear wall grout spacing = 48 in
 shear wall thickness, t = 7.625 in
 An}=1128.1 in
 \Phi= 1.0 (assumed per Tier 2)
 |V
 masonry shear wall strength, \phiQCE m}=145.6 kip
 horizontal masonry shear wall strength, \phiQCE }= = 28.7 kip
 combined masonry shear wall strength, \phiQCE = 174.3 kip
```

Determining m-factor for wall governed by flexure
roof axial load on wall, $P=17820.0 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=1.2 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $\mathrm{f}_{\mathrm{me}}=\mathrm{F}_{\text {exp }}{ }^{* \mathrm{f}_{\mathrm{m}}}=1950.0 \mathrm{psi}$
$\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.001$
$\mathrm{h} / \mathrm{L}=\quad 0.38$
steel reinforcing ratio, $\rho_{g}=0.003$
$\rho_{g}{ }^{*} f_{y e} / f_{m e}=0.08$
$m$-factor $=\quad 5.0$ (interpolated between LS \& IO. ASCE 41-17 Table 11-6)
knowledge factor, $\mathrm{k}=\quad 0.90$
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=784.3 \mathrm{kip}$
demand capacity ratio, $D C R=0.04 \quad O K$



## DIAPHRAGM METAL DECK CHECK

9.10.1.3 Strength of Bare Metal Deck Diaphragms. The strength of bare metal deck diaphragms shall be determined in accordance with Section 9.3.2 and the requirements of this section.

Expected strength, $Q_{C E}$, for bare metal deck diaphragms shall be taken as 2 times allowable values specified in approved codes and standards, unless a larger value is justified by test data. Altematively, lower-bound strength shall be taken as nominal strength published in approved codes or standards, except that the strength reduction factor, $\phi$, shall be taken as equal to 1.0 .

Lower-bound strengths, $Q_{C L}$, of welded connectors shall be as specified in AWS D1.3, or other approved standard.

```
 Roof seismic load, V = 119.2 kip
 diaphragm span, L = }102.00\textrm{ft
 roof unit diaphragm load, v = 1.17 kip/ft
Roof span between shear walls, L}\mp@subsup{L}{1}{}
 Roof depth, d= 36.00 ft
 diaphragm shear, v
 diaphragm strength, Q Qllow = 530 lbs/ft
expected diaphragm strength, 罡 = 1060 lbs/ft (expected strength shall be 2x the allowable
 per ASCE 41-17 Section 9.10.1.3)
 m-factor = 1.625 (interpolated between LS & IO. ASCE 41-17 Table 9-6)
 knowledge factor, к=
diaphragm strength, кm\phi\mp@subsup{Q}{CE}{}=}\quad1.550\textrm{kip}/\textrm{ft
demand capacity ratio, DCR = 0.52 OK
```

- 36/5 Weld Pattern at Supports
- Sidelaps Connected with \#10 Screws


Allowable Diaphragm Shear Strength, $q$ (plf) and Flexibility Factors, F ((in./lb) $\times 10^{6}$ )

| DECK <br> GAGE | SIDELAP ATTACHMENT | SPAN (ft-in.) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 4'-0" | 5'-0" | 6'-0" | 7'-0" | 8'-0" | 9'-0" | 10'-0" | 11'-0" | 12'-0" |
| $22$ | \#10 @ 24" | q | 431 | 378 | 310 | 289 | 249 | 242 | 218 |  |  |
|  |  | F | -2.3+190R | 0.2+152R | 2.9+126R | 3.9+108R | 5.6+94R | 6.1+83R | 7.4+75R |  |  |
|  | \#10 @ 18" | q | 480 | 417 | 343 | 317 | 298 | 264 | 257 |  |  |
|  |  | F | -3.3+190R | -0.7+152R | 1.8+126R | $3+108 \mathrm{R}$ | 3.8+95R | $5.2+84 \mathrm{R}$ | 5.7+75R |  |  |
|  | \#10 @ 12" | q | 527 | 456 | 408 | 373 | 347 | 329 | 316 |  |  |
|  |  | F | -4+190R | -1.3+152R | 0.5+127R | 1.8+109R | 2.8+95R | 3.5+84R | 4.1+76R |  |  |
|  | \#10 @ 8" | q | 607 | 565 | 506 | 485 | 445 | 438 | 414 |  |  |
|  |  | F | -4.8+191R | -2.5+153R | -0.6+127R | 0.4+109R | 1.5+95R | 2.1+85R | $2.8+76 \mathrm{R}$ |  |  |
|  | \#10 @ 6" | q | 682 | 627 | 589 | 561 | 539 | 522 | 509 |  |  |
|  |  | F | -5.4+191R | -2.9+153R | -1.3+127R | -0.1+109R | 0.8+95R | 1.5+85R | 2+76R |  |  |
|  | \#10 @ 4" | q | 817 | 769 | 736 | 712 | 693 | 678 | 666 |  |  |
|  |  | F | -6+191R | -3.6+153R | -2+127R | -0.9+109R | 0+96R | $0.7+85 \mathrm{R}$ | 1.2+76R |  |  |
| 20 | \#10 @ 24" | q | 601 | 526 | 433 | 403 | 349 | 335 | 301 | 297 | 272 |
|  |  | F | 0.9+120R | $2.5+95 \mathrm{R}$ | 4.5+79R | $5.1+68 \mathrm{R}$ | 6.5+59R | 6.7+52R | 7.7+47R | 7.8+43R | 8.6+39R |
|  | \#10 @ 18" | q | 662 | 577 | 476 | 440 | 413 | 363 | 352 | 344 | 315 |
|  |  | F | 0+120R | 1.7+96R | 3.5+79R | 4.3+68R | 4.8+60R | 5.9+53R | $6.2+47 \mathrm{R}$ | $6.4+43 \mathrm{R}$ | 7.1+39R |
|  | \#10 @ 12" | q | 716 | 629 | 561 | 513 | 477 | 449 | 430 | 414 | 401 |
|  |  | F | -0.6+120R | 1.1+96R | $2.3+80 \mathrm{R}$ | 3.2+68R | 3.8+60R | 4.3+53R | $4.8+48 \mathrm{R}$ | $5.1+43 \mathrm{R}$ | $5.4+40 \mathrm{R}$ |
|  | \#10 @ 8" | q | 820 | 760 | 683 | 658 | 606 | 592 | 558 | 554 | 530 |
|  |  | F | -1.5+121R | 0+96R | $1.3+80 \mathrm{R}$ | 2+69R | 2.7+60R | $3+54 \mathrm{R}$ | $3.5+48 \mathrm{R}$ | 3.7+44R | 4.1+40R |
|  | \#10 @ 6" | q | 916 | 841 | 788 | 750 | 720 | 697 | 678 | 662 | 649 |
|  |  | F | -2+121R | -0.4+97R | $0.7+80 \mathrm{R}$ | 1.4+69R | 2+60R | 2.5+54R | $2.8+48 \mathrm{R}$ | $3.1+44 \mathrm{R}$ | 3.4+40R |
|  | \#10 @ 4" | q | 1089 | 1024 | 979 | 945 | 920 | 899 | 883 | 869 | 857 |
|  |  | F | -2.5+121R | -1+97R | 0+81R | 0.8+69R | 1.3+60R | 1.7+54R | $2.1+48 \mathrm{R}$ | $2.4+44 \mathrm{R}$ | $2.6+40 \mathrm{R}$ |
| 18 | \#10 @ 24" | q | 1002 | 885 | 731 | 677 | 588 | 562 | 502 | 491 | 450 |
|  |  | F | $3.2+58 \mathrm{R}$ | 4+46R | $5.4+38 \mathrm{R}$ | $5.6+33 \mathrm{R}$ | 6.6+28R | 6.6+25R | 7.4+22R | 7.4+20R | $8+18 \mathrm{R}$ |
|  | \#10 @ 18" | q | 1085 | 956 | 797 | 734 | 687 | 606 | 581 | 563 | 516 |
|  |  | F | $2.4+58 \mathrm{R}$ | $3.3+46 \mathrm{R}$ | 4.5+38R | 4.9+33R | 5.2+29R | $6+25 \mathrm{R}$ | $6.1+23 \mathrm{R}$ | $6.2+21 \mathrm{R}$ | 6.7+19R |
|  | \#10 @ 12" | q | 1166 | 1024 | 925 | 847 | 786 | 738 | 700 | 670 | 647 |
|  |  | F | 1.9+58R | $2.8+47 \mathrm{R}$ | 3.5+39R | 4+33R | 4.3+29R | 4.6+26R | $4.9+23 \mathrm{R}$ | 5.1+21R | 5.2+19R |
|  | \#10 @ 8" | q | 1321 | 1219 | 1094 | 1049 | 973 | 951 | 898 | 886 | 845 |
|  |  | F | 1.1+59R | 1.9+47R | $2.6+39 \mathrm{R}$ | $2.9+34 \mathrm{R}$ | 3.3+29R | 3.5+26R | $3.8+23 \mathrm{R}$ | $3.9+21 \mathrm{R}$ | 4.1+19R |
|  | \#10 @ 6" | q | 1465 | 1340 | 1253 | 1189 | 1139 | 1100 | 1068 | 1042 | 1020 |
|  |  | F | 0.7+59R | 1.5+47R | 2.1+39R | $2.5+34 \mathrm{R}$ | 2.8+29R | $3+26 \mathrm{R}$ | $3.2+24 \mathrm{R}$ | $3.3+21 R$ | 3.4+20R |
|  | \#10 @ 4" | q | 1721 | 1615 | 1540 | 1484 | 1441 | 1407 | 1379 | 1356 | 1337 |
|  |  | F | 0.2+59R | 1+47R | 1.5+39R | $1.9+34 \mathrm{R}$ | 2.1+30R | $2.4+26 \mathrm{R}$ | $2.5+24 \mathrm{R}$ | 2.7+21R | 2.8+20R |
| 16 | \#10 @ 24" | q | 1277 | 1139 | 946 | 884 | 768 | 739 | 661 | 647 | 590 |
|  |  | F | 3.8+33R | 4.3+26R | $5.3+21 R$ | $5.4+18 \mathrm{R}$ | $6.2+16 \mathrm{R}$ | $6.2+14 \mathrm{R}$ | 6.9+12R | $6.8+11 \mathrm{R}$ | 7.3+10R |
|  | \#10 @ 18" | q | 1393 | 1235 | 1038 | 963 | 906 | 801 | 771 | 748 | 683 |
|  |  | F | 3.1+33R | 3.7+26R | $4.6+22 \mathrm{R}$ | 4.8+18R | 5+16R | 5.6+14R | 5.7+13R | $5.7+12 \mathrm{R}$ | $6.2+10 \mathrm{R}$ |
|  | \#10 @ 12" | q | 1505 | 1330 | 1208 | 1118 | 1044 | 985 | 937 | 899 | 867 |
|  |  | F | $2.6+33 \mathrm{R}$ | $3.2+26 \mathrm{R}$ | 3.6+22R | 4+19R | 4.2+16R | 4.4+15R | 4.6+13R | $4.7+12 \mathrm{R}$ | 4.8+11R |
|  | \#10 @ 8" | q | 1717 | 1597 | 1440 | 1389 | 1292 | 1268 | 1200 | 1188 | 1138 |
|  |  | F | 2+33R | 2.4+27R | 2.9+22R | 3+19R | 3.3+17R | 3.4+15R | $3.6+13 \mathrm{R}$ | 3.6+12R | $3.8+11 \mathrm{R}$ |
|  | \#10 @ 6" | q | 1914 | 1763 | 1658 | 1580 | 1520 | 1472 | 1433 | 1402 | 1375 |
|  |  | F | 1.6+34R | 2.1+27R | $2.4+22 \mathrm{R}$ | 2.6+19R | 2.8+17R | 2.9+15R | 3.1+13R | 3.2+12R | 3.2+11R |
|  | \#10 @ 4" | q | 2258 | 2132 | 2043 | 1977 | 1926 | 1886 | 1853 | 1825 | 1802 |
|  |  | F | 1.1+34R | 1.6+27R | $1.9+22 R$ | 2.1+19R | 2.3+17R | 2.4+15R | $2.5+13 \mathrm{R}$ | 2.6+12R | 2.6+11R |

See footnotes on page 28.
Deck Span = 6'-8"
q = 530 psf (interpolated)

## PROCESS GALLERY - TIER 2 CALCULATIONS

| BY: BS | DATE Aug-21 | CLIENT | City of Wilsonville | SHEET |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CHKD BY | DESCRIPTION |  | Process Gallery | JOB NO. | 11962A. 00 |
| DESIGN TĀSK |  |  | ASCE 41-17 - Tier 2 (BSE-2E) |  |  |

## SEISMIC BASE SHEAR FOR PROCESS GALLERY

7.4.1.3.1 Pseudo Seismic Force for LSP. The pseudo lateral force in a given horizontal direction of a building shall be determined using Eq. (7-21). This force shall be used to evaluate or retrofit the vertical elements of the seismic-force-resisting system.

$$
\begin{equation*}
V=C_{1} C_{2} C_{m} S_{a} W \tag{7-21}
\end{equation*}
$$

| Table 7-3. Alternate Values for Modification Factors $C_{1} C_{2}$ |  |  |  |
| :--- | :---: | :---: | :---: |
| Fundamental |  |  |  |
| Period | $\boldsymbol{m}_{\max }<2$ | $2 \leq m_{\max }<6$ | $\boldsymbol{m}_{\max } \geq 6$ |
| $T \leq 0.3$ | 1.1 | 1.4 | 1.8 |
| $0.3<T \leq 1.0$ | 1.0 | 1.1 | 1.2 |
| $T>1.0$ | 1.0 | 1.0 | 1.1 |


| Na. of Sacries | Concreta Moment Frame | Cencroto 8hear Eat | Concrato Kier-Spanden | Stool <br> Moesert <br> Frame | Stoel Concertricaly Braced Frame | Stoel <br> Eccertrically Braced Frime | Oener |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5-2 | 10 | 10 | 5.0 | 5.9 | 1.9 | 1.9 | 1.0 |
| 3 or mox | 0.9 | 0.0 | 0.9 | 0.9 | 0.3 | 0.9 | 1.0 |


| spectral response acceleration, $\mathrm{S}_{\mathrm{xs}}=$ | 0.744 g | (BSE-2E seismic hazard) |
| ---: | :---: | :--- |
| spectral response acceleration, $\mathrm{S}_{\mathrm{x} 1}=$ | 0.405 g | $(\mathrm{BSE}-2 \mathrm{E}$ seismic hazard) |
| building period, $\mathrm{T}=$ | 0.114 s |  |
| response spectrum acceleration, $\mathrm{S}_{\mathrm{a}}=$ | 0.744 g |  |
| effective seismic weight, $\mathrm{W}=$ | 1267.3 kip |  |
| $\mathrm{C}_{1} \mathrm{C}_{2}=$ | 1.4 | (Table 11-6 for masonry walls, $\mathrm{m}=2.5$ ) |
| effective mass factor, $\mathrm{C}_{\mathrm{m}}=$ | 1.0 |  |
| seismic lateral force, $\mathrm{V}=$ | 1320.0 kip |  |


| Story | Weight, <br> $w_{x}(k i p)$ | Floor <br> Height, $h_{x}$ <br> $(\mathrm{ft})$ | $k$ factor | $w_{x} h_{x}{ }^{k}$ <br> $\left(k^{\prime}{ }^{*} \mathrm{ft}^{2}\right)$ | $C_{v x}$ | Force on <br> Level, $F_{x}$ <br> $(k i p)$ | Story <br> Force, $V_{j}$ <br> $(k i p)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Roof | 189.8 | 32.63 | 1.0 | 6193.2 | 0.242 | 319.5 | 319.5 |
| 1 st | 1077.5 | 18.00 | 1.0 | 19395.0 | 0.758 | 1000.5 | 1320.0 |

$\Sigma w_{x} h_{x}{ }^{k}=25588.2$

## 9310014

## WWTP UPGRADE

## Chtarex <br>  <br>   <br>  








"wity

 chnctituchay




 ecunations:






usconty













RECORD DRAWINGS

ITHCTVRN SEES
-
細 stax






 netan decalina;

## 






REMNFORCNG NOTES:




 -

№ngway


5.





 BAR size STREVETH






| BY: BS | DATE Sep-21 | CLIENT | City of Wilsonville | SHEET JOB NO. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CHKD BY | DESCRIPTION |  | Process Gallery |  | 11962A. 00 |
| DESIGN TASK |  |  | ASCE 41-17 - Tier 2 (BSE-2E) |  |  |

## CMU IN-PLANE SHEAR WALL CHECK IN BUILDING N-S DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.
11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.
11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

### 11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced

 Masonry Walls. The shear required to develop the expectedflexural strength of RM walls and wall piers shall be compared with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.
7.5.2 Linear Procedures
7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.
7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, $Q_{U D}$, shall be calculated in accordance with Eq. (7-34):

$$
\begin{equation*}
Q_{U D}=Q_{G}+Q_{E} \tag{7-34}
\end{equation*}
$$

where
$Q_{U D}=$ Deformation-controlled action caused by gravity loads and earthquake forces.
$Q_{G}=$ Action caused by gravity loads as defined in Section 7.2.2; and
$Q_{E}=$ Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

Shear wall 1

| Roof seismic load, $\mathrm{V}=$ | 319.5 kip |
| ---: | ---: |
| diaphragm span, $\mathrm{L}=$ | 52.00 ft |
| roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=$ | 15 ft |
| tributary seismic load on shear wall, $\mathrm{Q}_{\mathrm{E}}=$ | 92.2 kip |


| wall height, h | $=$ | 14.63 ft |
| ---: | :--- | :---: |
| tributary seismic moment on shear wall, Mu | $=$ | 1348.4 kip ft |
| masonry strength, $\mathrm{f}_{\mathrm{m}}$ | $=$ | 1500 psi |
| shear wall length, $\mathrm{d}=$ | 46 ft |  |
| vertitcal shear wall grout spacing | $=$ | 24 in |
| horizontal shear wall grout spacing | $=$ | 48 in |
| shear wall thickness, t | $=$ | 7.625 in |
| $\mathrm{A}_{\mathrm{n}}$ | $=$ | 2077.0 in |
| $\Phi$ | $=$ | 1.0 (assumed per Tier 2) |

$$
\phi V_{m}=\phi\left[\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{Vd}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{~V}_{\mathrm{m}}}+0.25 P_{u}\right]
$$

masonry shear wall strength, $\phi Q C E_{m}=277.0$ kip horizontal masonry shear wall strength, $\phi Q C E_{s}=\quad 28.7$ kip combined masonry shear wall strength, $\phi$ QCE $=305.7 \mathrm{kip}$

## Determining m-factor for wall governed by flexure

roof axial load on wall, $\mathrm{P}=13608.3 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{*} \mathrm{t}\right)=0.5 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{\star} f_{m}=1950.0$ psi

$$
\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.000
$$

```
 h/L= 0.32
 steel reinforcing ratio, }\mp@subsup{\rho}{g}{}=0.00
 \rhog}\mp@subsup{}{}{*}\mp@subsup{f}{ye}{}/\mp@subsup{f}{me}{}=0.1
 m-factor = 7.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
 knowledge factor, к = 0.90
 masonry shear wall strength, kmфQCE = 1925.7 kip
 demand capacity ratio, DCR = 0.05 OK
Shear wall 2
 Roof seismic load, V =
 wall height, h = 14.63 ft
 tributary seismic moment on shear wall, Mu= 2337.1 kip*ft
 masonry strength, f'm}=\quad1500 ps
 shear wall length, d=}\quad48\textrm{ft
 vertitcal shear wall grout spacing =
 horizontal shear wall grout spacing =
 shear wall thickness, t= 7.625 in
 An}=2014.0 in <
 \Phi = 1.0 (assumed per Tier 2)
 \phi\mp@subsup{V}{m}{\prime}=\phi[[4.0-1.75(\frac{M}{V\mp@subsup{d}{v}{\prime}})]\mp@subsup{A}{n}{}\mp@subsup{A}{|}{}\sqrt{}{\mp@subsup{\boldsymbol{F}}{m}{\prime}}+0.25\mp@subsup{P}{u}{}}
 masonry shear wall strength, \phiQCE
 horizontal masonry shear wall strength, \phiQCE
 combined masonry shear wall strength, \phiQCE = 299.1 kip
Determining m-factor for wall governed by flexure
 roof axial load on wall, P = 23369.7 lbs
 vertical compressive stress, fae = P/(d*t)= 0.8 psi
 factor for expected strength, F}\mp@subsup{\textrm{F}}{\mathrm{ exp }}{}
 expected compressive strength, f}\mp@subsup{\textrm{m}}{me}{}=\mp@subsup{F}{\mathrm{ exp }}{}\mp@subsup{}{}{*}\mp@subsup{f}{m}{\prime}=1950.0 ps
 fae
 h/L = 0.30
 steel reinforcing ratio, 的= 0.003
 \rhog}\mp@subsup{}{\textrm{g}}{}\mp@subsup{}{}{\textrm{fye}
 m-factor = 7.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
 knowledge factor, }\textrm{\kappa}
 masonry shear wall strength, kmфQCE = 1884.2 kip
 demand capacity ratio, DCR = 0.08 OK
 Shear wall 3
 Roof seismic load, V = 319.5 kip
 diaphragm span, L =
 roof tributary width for seismic, Tw
```



```
 wall height, h = }14.63\textrm{ft
 tributary seismic moment on shear wall, Mu = 959.1 kip*ft
 masonry strength, f'm}=\quad1500 ps
 shear wall length, d=}\quad28\textrm{ft
 vertitcal shear wall grout spacing =
```

$$
\begin{array}{rlr}
\text { horizontal shear wall grout spacing } & = & 48 \mathrm{in} \\
\text { shear wall thickness, } \mathrm{t} & = & 7.625 \mathrm{in} \\
\mathrm{~A}_{\mathrm{n}} & = & 1291.0 \mathrm{in}^{く} \\
\Phi & \\
& \\
\phi \mathrm{~V}_{\mathrm{m}}=\phi[.0 \text { (assumed per Tier 2) } \\
&
\end{array}
$$

masonry shear wall strength, $\phi Q C E_{m}=154.3 \mathrm{kip}$ horizontal masonry shear wall strength, $\phi Q C E_{\text {s }}=\quad 28.7 \mathrm{kip}$ combined masonry shear wall strength, $\phi$ QCE $=183.0 \mathrm{kip}$

Determining m-factor for wall governed by flexure
roof axial load on wall, $\mathrm{P}=\quad 9761.4 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=0.6 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{*} f_{m}^{\prime}=1950.0$ psi

$$
\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.000
$$

$\mathrm{h} / \mathrm{L}=0.52$
steel reinforcing ratio, $\rho_{g}=0.004$
$\rho_{g}{ }^{*} f_{y e} / f_{m e}=\quad 0.11$
$m$-factor $=\quad 2.5$ (interpolated between LS \& CP. ASCE 41-17 Table 11-6)
knowledge factor, к = 0.90
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=411.7 \mathrm{kip}$
demand capacity ratio, $D C R=0.16 \quad O K$


| BY: BS | DATE Sep-21 | CLIENT | City of Wilsonville | SHEET JOB NO. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CHKD BY | DESCRIPTION |  | Process Gallery |  | 11962A. 00 |
| DESIGN TĀSK |  |  | ASCE 41-17-Tier 2 (BSE-2E) |  |  |

## CMU IN-PLANE SHEAR WALL CHECK IN BUILDING E-W DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.
11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.
11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

### 11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced

 Masonry Walls. The shear required to develop the expected with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.7.5.2 Linear Procedures
7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2.
7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, $Q_{U D}$, shall be calculated in accordance with Eq. (7-34):

$$
\begin{equation*}
Q_{U D}=Q_{G}+Q_{E} \tag{7-34}
\end{equation*}
$$

where
$Q_{U D}=$ Deformation-controlled action caused by gravity loads and earthquake forces.
$Q_{G}=$ Action caused by gravity loads as defined in Section 7.2.2; and
$Q_{E}=$ Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

## Shear wall A

Roof seismic load, $\mathrm{V}=\quad 319.5 \mathrm{kip}$ diaphragm span, $\mathrm{L}=\quad 56.67 \mathrm{ft}$
roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=\quad 4 \mathrm{ft}$
tributary seismic load on shear wall, $\mathrm{Q}_{\mathrm{E}}=\quad 22.6 \mathrm{kip}$
wall height, $\mathrm{h}=\quad 14.63 \mathrm{ft}$
tributary seismic moment on shear wall, $\mathrm{Mu}=\quad 329.9$ kip*ft
masonry strength, $\mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi}$
shear wall length, $\mathrm{d}=\quad 50 \mathrm{ft}$
vertitcal shear wall grout spacing $=$
horizontal shear wall grout spacing $=\quad 48$ in
shear wall thickness, $t=7.625$ in
$\mathrm{A}_{\mathrm{n}}=2238.0 \mathrm{in}^{<}$
$\Phi=\quad 1.0$ (assumed per Tier 2)
$\left.\phi V_{m}=\phi\left[4.0-1.75\left(\frac{M}{V d_{v}}\right)\right] A_{n} \sqrt{\boldsymbol{f}_{m}}+0.25 P_{u}\right]$
masonry shear wall strength, $\phi Q C E_{m}=302.3 \mathrm{kip}$
horizontal masonry shear wall strength, $\phi Q C E_{\text {s }}=\quad 28.7$ kip
combined masonry shear wall strength, $\phi Q C E=331.0 \mathrm{kip}$
Determining m-factor for wall governed by flexure
roof axial load on wall, $\mathrm{P}=\quad 3537.1 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=\quad 0.1 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{*} f_{m}^{\prime}=1950.0$ psi

$$
\begin{array}{rr}
\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}= & 0.000 \\
\mathrm{~h} / \mathrm{L}= & 0.29 \\
\text { steel reinforcing ratio, } \rho_{\mathrm{g}}= & 0.004 \\
\rho_{\mathrm{g}}{ }^{*} \mathrm{f}_{\mathrm{ye}} / \mathrm{f}_{\mathrm{me}}= & 0.11 \\
\text { m-factor }= & \\
\text { knowledge factor, } \mathrm{K}= & 0.9 \text { (interpolated between LS \& CP. ASCE 41-17 Table 11-6) } \\
\text { masonry shear wall strength, } \mathrm{Km} \phi \mathrm{QCE}= & 2085.3 \mathrm{kip} \\
\text { demand capacity ratio, } D C R= & 0.01 \quad \text { OK }
\end{array}
$$

Shear wall B

```
 Roof seismic load, V = 319.5 kip
 diaphragm span, L = }56.67\textrm{ft
 roof tributary width for seismic, T
 tributary seismic load on shear wall, Q Q = 67.7 kip
 wall height, }\textrm{h}=\quad14.63\textrm{ft
tributary seismic moment on shear wall, Mu = 989.8 kip*ft
 masonry strength, f'm}=\quad1500 ps
 shear wall length, d= 26.67 ft
 32 in
 48 in
 7.625 in
 128.1 in
 \Phi = 1.0 (assumed per Tier 2)
 \phi\mp@subsup{V}{m}{\prime}}=\phi[[4.0-1.75(\frac{M}{V\mp@subsup{d}{v}{\prime}})]|\mp@subsup{A}{n}{}\sqrt{}{\mp@subsup{\boldsymbol{F}}{m}{\prime}}+0.25\mp@subsup{P}{u}{}
 masonry shear wall strength, \phiQCE
 horizontal masonry shear wall strength, \phiQCE
 combined masonry shear wall strength, \phiQCE = 161.5 kip
Determining m-factor for wall governed by flexure
 roof axial load on wall, P = 10064.7 lbs
 vertical compressive stress, fae = P/(}\mp@subsup{\textrm{d}}{}{\star}\textrm{t})=\quad0.7\textrm{psi
 factor for expected strength, F}\mp@subsup{\textrm{Fexp}}{}{=}\quad1.3\mathrm{ (ASCE 41-17 Table 11-1)
expected compressive strength, fme }=\mp@subsup{F}{\mathrm{ exp }}{}\mp@subsup{}{}{*\prime}\mp@subsup{f}{m}{\prime}=1950.0 ps
 fae
 h/L = 0.55
 steel reinforcing ratio, 的= 0.004
 \rhog}\mp@subsup{}{}{*}\mp@subsup{f}{ye}{}/\mp@subsup{f}{me}{}=\quad0.1
 m-factor = 7.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
 knowledge factor, }\textrm{k}=\quad0.9
 masonry shear wall strength, km\phiQCE = 1017.4 kip
 demand capacity ratio, DCR = 0.07 OK
```


## Shear wall C

| Roof seismic load, $\mathrm{V}=$ diaphragm span, L = roof tributary width for seismic, $T_{w}=$ | $\begin{aligned} & 319.5 \mathrm{kip} \\ & 56.67 \mathrm{ft} \\ & 24.33 \mathrm{ft} \end{aligned}$ |
| :---: | :---: |
|  |  |
| wall height, $\mathrm{h}=$ | 14.63 ft |
| tributary seismic moment on shear wall, $\mathrm{Mu}=$ | 2006.8 kip*ft |
| masonry strength, $\mathrm{f}_{\mathrm{m}}=$ | 1500 psi |
| shear wall length, $d=$ | 21.33 ft |

vertitcal shear wall grout spacing $=\quad 32$ in
horizontal shear wall grout spacing $=\quad 48$ in
shear wall thickness, $\mathrm{t}=\quad 7.625$ in
$\mathrm{A}_{\mathrm{n}}=\quad 926.9 \mathrm{in}^{<}$
$\Phi=\quad 1.0$ (assumed per Tier 2)

$$
\phi V_{m}=\phi\left[\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{Vd}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{f}}}+0.25 P_{u}\right]
$$

masonry shear wall strength, $\phi Q C E_{m}=100.5 \mathrm{kip}$
horizontal masonry shear wall strength, $\phi Q C E_{s}=\quad 28.7 \mathrm{kip}$ combined masonry shear wall strength, $\phi Q C E=129.2$ kip

## Determining m-factor for wall governed by flexure

roof axial load on wall, $\mathrm{P}=19994.8 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=1.6 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{*} f_{m}=1950.0$ psi
$\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.001$
$\mathrm{h} / \mathrm{L}=0.69$
steel reinforcing ratio, $\rho_{\mathrm{g}}=0.004$
$\rho_{g}{ }^{*} \mathrm{f}_{\mathrm{ye}} / \mathrm{f}_{\mathrm{me}}=\quad 0.11$
$m$-factor $=\quad 7.0$ (interpolated between LS \& CP. ASCE 41-17 Table 11-6)
knowledge factor, $\mathrm{k}=\quad 0.90$
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=813.8 \mathrm{kip}$
demand capacity ratio, $D C R=0.17 \quad O K$

> Shear wall D
> Roof seismic load, $\mathrm{V}=\quad 319.5 \mathrm{kip}$
> diaphragm span, $\mathrm{L}=\quad 56.67 \mathrm{ft}$
> roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=\quad 16.33 \mathrm{ft}$
> tributary seismic load on shear wall, $\mathrm{Q}_{\mathrm{E}}=\quad 92.1 \mathrm{kip}$
> wall height, $\mathrm{h}=\quad 14.63 \mathrm{ft}$
> tributary seismic moment on shear wall, $\mathrm{Mu}=1346.9 \mathrm{kip}{ }^{*} \mathrm{ft}$
> masonry strength, $\mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi}$
> shear wall length, $\mathrm{d}=\quad 38 \mathrm{ft}$
> vertitcal shear wall grout spacing $=\quad 24$ in
> horizontal shear wall grout spacing $=\quad 48$ in
> shear wall thickness, $\mathrm{t}=\quad 7.625$ in
> $A_{n}=1714.0 \mathrm{in}^{<}$
> $\Phi=\quad 1.0$ (assumed per Tier 2)
> $\phi \mathrm{V}_{\mathrm{m}}=\phi\left[\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{V} \mathrm{d}_{\mathrm{v}}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{m}}}+0.25 \mathrm{P}_{\mathrm{u}}\right]$
> masonry shear wall strength, $\phi Q C E_{m}=220.8$ kip
> horizontal masonry shear wall strength, $\phi Q C E_{\text {s }}=\quad 28.7 \mathrm{kip}$
> combined masonry shear wall strength, $\phi$ QCE $=\quad 249.5 \mathrm{kip}$
> Determining m-factor for wall governed by flexure
> roof axial load on wall, $\mathrm{P}=13463.2 \mathrm{lbs}$
> vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=0.6 \mathrm{psi}$
> factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
> expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{* f} f_{m}=1950.0$ psi
> $\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.000$
> $\mathrm{~h} / \mathrm{L}=\quad 0.39$
> steel reinforcing ratio, $\rho_{g}=0.004$
$\rho_{g}{ }^{*} f_{y e} / f_{m e}=\quad 0.11$
$m$-factor $=\quad 7.0$ (interpolated between LS \& CP. ASCE 41-17 Table 11-6) knowledge factor, $\mathrm{\kappa}=\quad 0.90$
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=1571.7 \mathrm{kip}$
demand capacity ratio, $D C R=0.06 \quad O K$



兆


| BY: BS | DATE Aug-21 | CLIENT | City of Wilsonville | SHEET <br> JOB NO. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CHKD BY | DESCRIPTION |  | Process Gallery |  | 11962A. 00 |
| DESIGN TĀSK |  |  | ASCE 41-17 - Tier 2 (B |  |  |

BEAM AND COLUMN CHECK SUPPORTING CMU WALL ABOVE (VERTICAL IRREGULARITY TIER 1 FINDING)
5.4.2.3 Vertical Irregularities. An analysis shall be performed in accordance with Section 5.2.4, and the demand-capacity ratio (DCR) shall be determined in accordance with Section 7.3.1.1 for all elements of the seismic-force-resisting system in the noncompliant stories. The adequacy of the elements and connections below the vertical discontinuities shall be evaluated in accordance with Section 5.2.5 as force-controlled elements. The adequacy of struts and diaphragms to transfer loads to adjacent seismic-force-resisting elements as forcecontrolled elements shall be evaluated.
7.5.2.1.2 Force-Controlled Actions for LSP or LDP. Force-
controlled actions, $Q_{U F}$, shall be calculated using one of the following methods:

1. $Q_{U F}$ shall be taken as the maximum action that can be developed in a component based on a limit-state analysis considering the expected strength of the components delivering force to the component under consideration, or the maximum action developed in the component as limited by the nonlinear response of the building.
2. Altematively, $Q_{U F}$ shall be calculated in accordance with Eq. (7-35).

$$
\begin{equation*}
Q_{U F}=Q_{G} \pm \frac{\chi Q_{E}}{C_{1} C_{2} J} \tag{7-35}
\end{equation*}
$$

| Roof seismic load, $\mathrm{V}=$ | 319.5 kip |
| ---: | :--- |
| diaphragm span, L | $=$ |
| 56.67 ft |  |
| roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}$ | $=$ |
| 24.33 ft |  |
| wall height, $\mathrm{h}=$ | 14.63 ft |
| tributary seismic load on shear wall, $\mathrm{V}_{\mathrm{E}}=$ | 137.2 kip |
| seismic overturning on shear wall, $\mathrm{M}_{\mathrm{E}}=$ | $2006.8 \mathrm{kip}^{* \mathrm{ft}}$ |
| Wall length, $\mathrm{L}_{\mathrm{w}}=$ | 21.33 ft |
| Factor for adjusting action, $\mathrm{X}=$ | 1.15 (interpolated between LS \& CP) |
| $\mathrm{C}_{1} \mathrm{C}_{2}=$ | 1.4 |

## Beam B2 (16"x32") Check

| Roof unit weight, $\mathrm{w}_{\text {Droof }}=$ | 15.3 psf |  |
| :---: | :---: | :---: |
| Wall unit weight, $\mathrm{w}_{\text {Dwall }}=$ | $47.0 \mathrm{lb} / \mathrm{ft}$ |  |
| Floor unit weight, $\mathrm{w}_{\text {Dfloor }}=$ | 183 psf |  |
| Floor unit live load, $\mathrm{w}_{\text {Lfloor }}=$ | 200 psf |  |
| Tributary width to beam, $\mathrm{T}_{\text {wbeam }}=$ | 8 ft |  |
| supported gravity loads on beam, $Q_{D}=$ | 1633.4 lb/ft |  |
| supported live loads on beam, $\mathrm{Q}_{\mathrm{L}}=$ | $400 \mathrm{lb} / \mathrm{ft}$ | (assume only $25 \%$ of LL) |
| supported combined loads on beam, $\mathrm{Q}_{\mathrm{G}}=$ | $2236.7 \mathrm{lb} / \mathrm{ft}$ |  |
| Axial load on beam, $\mathrm{Q}_{\mathrm{UF}}=$ | 56.3 kip |  |
| Bending moment demand on beam, $Q_{\text {UF }}=$ | 127.2 kip*ft |  |
| Shear demand on beam, $\mathrm{Q}_{\mathrm{UF}}=$ | 23.9 kip |  |
| Beam axial strength, $\mathrm{Q}_{\mathrm{CL}}=$ | 1534.8 kip | (From TEDDS calculation) |
| Beam bending strength, $\mathrm{Q}_{\mathrm{CL}}=$ | 296.6 kip*ft | (From TEDDS calculation) |
| Beam shear strength, $Q_{C L}=$ | 58.7 kip | (From TEDDS calculation) |
| knowledge factor, $\mathrm{k}=$ | 0.90 |  |
| Beam axial strength, $\kappa^{*} \mathrm{Q}_{\mathrm{CL}}=$ | 1381.32 kip |  |
| Beam bending strength, $\kappa^{*} Q_{C L}=$ | 266.94 kip*ft |  |
| Beam shear strength, $\kappa^{*} \mathrm{Q}_{\mathrm{CL}}=$ | 52.83 kip |  |
| Axial $D C R=$ | 0.04 OK |  |
| Moment DCR = | 0.48 OK |  |
| Shear DCR = | 0.45 OK |  |

```
 Roof unit weight, w
 Wall unit weight, w}\mp@subsup{\textrm{w}}{\mathrm{ wall }}{}=\quad47.0 lb/f
 Floor unit weight, w
 Floor unit live load, w
 Tributary area to column, }\mp@subsup{T}{\mathrm{ wcolumn }}{=}\quad213.36\mp@subsup{\textrm{ft}}{}{<
 supported gravity loads on column, Q Q = 43.2 kip
 supported live loads on column, Q Q = 10.7 kip
 (assume only 25% of LL)
 supported combined loads on column, Q Q = 59.2 kip
```



```
Axial compression load on column, Q}\mp@subsup{\textrm{Q}}{\textrm{UF}\mathrm{ comp }}{=}\quad97.9\textrm{kip
 Axial tension load on column, Q QuFten = 0.2 kip
Bending moment demand on column, Q QuF = 48.9 kip*ft
 Shear demand on column, Q QuF }=\quad6.9\mathrm{ kip
 Column axial strength, Q Q CL = 1099.1 kip }\quad\mathrm{ (From TEDDS calculation)
 Column axial strength, }\mp@subsup{\kappa}{}{*}\mp@subsup{Q}{CL}{}= 989.19 kip
 Column bending strength, }\mp@subsup{\kappa}{}{*}\mp@subsup{Q}{CL}{}=207.45 kip*f
 Column shear strength, }\mp@subsup{\kappa}{}{*}\mp@subsup{Q}{CL}{}= 30.42 kip
 Axial DCR = 0.10 OK
 Moment DCR = 0.24 OK
 Shear DCR = 0.23 OK
```

| Tekla.Tedds <br> Carollo Engineers <br> 3150 Bristol St. Suite 500, Costa Mesa, CA, 92626 | Project <br> City of Wilsonville - Process Gallery |  |  |  | $\begin{aligned} & \hline \text { Job Ref. } \\ & 11962 A \end{aligned}$ | 478 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Section <br> Beam B-2 Check (Vertical Irregularity) |  |  |  | Sheet no <br> 1 |  |
|  | Calc. by BS | $\begin{array}{\|l\|} \hline \text { Date } \\ 8 / 23 / 2021 \end{array}$ | Chk'd by | Date | App'd by | Date |

RC RECTANGULAR COLUMN DESIGN (ACI318-14)


## Applied loads

Ultimate axial force acting on column
Ultimate smaller end moment about $x$ axis
Ultimate larger end moment about x axis
Column curvature about x axis
Ratio of DL moment to total moment
Geometry of column
Depth of column (larger dimension of column)
Width of column (smaller dimension of column)
Clear cover to reinforcement (both sides)
Unsupported height of column about $x$ axis
Effective height factor about $x$ axis
Column state about the x axis
Unsupported height of column about $y$ axis
Effective height factor about y axis
Column state about the $y$ axis

## Check on overall column dimensions

$P_{\text {u_act }}=\mathbf{5 6 . 3} \mathbf{k i p s}$
$M_{1 x \_a c t}=0.001$ kips_ft
$M_{2 x \_a c t}=127.2$ kips_ft
single curvature
$\beta_{d}=0.600$
$h=32.0$ in
$b=16.0$ in
$c_{c}=1.5 \mathrm{in}$
$l_{u x}=21.3 \mathrm{ft}$
$k_{x}=1.00$
Braced
$l_{\text {uy }}=21.3 \mathrm{ft}$
$k_{y}=1.00$
Braced

Reinforcement of column
Numbers of bars of longitudinal steel
Longitudinal steel bar diameter number
$N=4$
$D_{\text {bar_num }}=8$

| Tekla.Tedds <br> Carollo Engineers <br> 3150 Bristol St. Suite 500, Costa Mesa, CA, 92626 | Project <br> City of Wilsonville - Process Gallery |  |  |  | $\begin{aligned} & \text { Job Ref. } \\ & \text { 11962A } \end{aligned}$ | 479 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Section <br> Beam B-2 Check (Vertical Irregularity) |  |  |  | Sheet no $2$ |  |
|  | Calc. by BS | $\begin{aligned} & \hline \text { Date } \\ & 8 / 23 / 2021 \end{aligned}$ | Chk'd by | Date | App'd by | Date |

Diameter of longitudinal bar
Stirrup bar diameter number
Diameter of stirrup bar
Specified yield strength of reinforcement
Specified compressive strength of concrete
Modulus of elasticity of bar reinforcement
Modulus of elasticity of concrete
Yield strain
Ultimate design strain
Check for minimum area of steel - 10.6.1.1
Gross area of column
Area of steel
Minimum area of steel required

## Check for maximum area of steel - 10.6.1.1

Permissible maximum area of steel

## Slenderness check about x axis

Radius of gyration
Actual slenderness ratio
Permissible slenderness ratio

## Slenderness check about y axis

Radius of gyration
Actual slenderness ratio
Permissible slenderness ratio

Magnified moments about y axis
Moment of inertia of section
Euler's buckling load
Correction factor for actual to equiv. mmt.diagram
Moment magnifier
Minimum factored moment about y axis
Minimum magnified moment about y axis
Axial load capacity of axially loaded column
Strength reduction factor
Area of steel on compression face
Area of steel on tension face
Net axial load capacity of column
Ultimate axial load capacity of column
$D_{\text {long }}=1.000$ in
$D_{\text {stir_num }}=4$
$D_{\text {stir }}=0.500$ in
$\mathrm{f}_{\mathrm{y}}=\mathbf{6 0 0 0 0} \mathrm{psi}$
$\mathrm{f}_{\mathrm{c}}{ }^{\prime}=4000 \mathrm{psi}$
$\mathrm{E}_{\mathrm{s}}=29 \times 10^{6} \mathrm{psi}$
$\mathrm{E}_{\mathrm{c}}=57000 \times \mathrm{f}^{\prime} \mathrm{c}^{1 / 2} \times(1 \mathrm{psi})^{1 / 2}=\mathbf{3 6 0 4 9 9 7} \mathrm{psi}$
$\varepsilon_{y}=f_{y} / E_{s}=0.00207$
$\varepsilon_{c}=0.003 \mathrm{in} / \mathrm{in}$
$\mathrm{A}_{\mathrm{g}}=\mathrm{h} \times \mathrm{b}=512.000 \mathrm{in}^{2}$
$A_{\text {st }}=N \times\left(\pi \times D_{\text {long }}{ }^{2}\right) / 4=3.142$ in $^{2}$
$\mathrm{A}_{\text {st_min }}=0.01 \times \mathrm{A}_{\mathrm{g}}=5.120 \mathrm{in}^{2}$
$A_{s t}<A_{\text {st_min }}$, FAIL- Minimum steel check
$A_{\text {st_max }}=0.08 \times A_{g}=40.960 \mathrm{in}^{2}$
$A_{s t}<A_{\text {st_max }}$, PASS - Maximum steel check
$r_{x}=0.3 \times h=9.6$ in
$S_{\text {rx_act }}=k_{x} \times l_{\text {ux }} / r_{x}=26.66$
$\mathrm{S}_{\text {rx_perm }}=\min \left(34-12\right.$ * $\left.\left(\mathrm{M}_{1 \text { x_act }} / \mathrm{M}_{2 \times \_ \text {_att }}\right), 40\right)=34$
Slenderness effects may be neglected about the $X$ axis
$r_{y}=0.3 \times b=4.8$ in
$S_{\text {ry_act }}=k_{y} \times l_{\text {luy }} / r_{y}=53.33$
$S_{\text {ry_perm }}=\min \left(34-12\right.$ * $\left.\left(\mathrm{M}_{1 y \_ \text {_act }} / \mathrm{M}_{2 y \_ \text {_act }}\right), 40\right)=34$
Column is slender about the $Y$ axis
$\mathrm{I}_{\mathrm{gy}}=\left(\mathrm{h} \times \mathrm{b}^{3}\right) / 12=10922.667 \mathrm{in}^{4}$
$\mathrm{P}_{\mathrm{cy}}=\left(\pi^{2} /\left(\mathrm{k}_{\mathrm{y}} \times \mathrm{l}_{\mathrm{uy}}\right)^{2}\right) \times\left(0.4 \times \mathrm{E}_{\mathrm{c}} \times \mathrm{I}_{\mathrm{gy}} /\left(1+\beta_{\mathrm{d}}\right)\right)=1482.96 \mathrm{kips}$
$\mathrm{C}_{\mathrm{my}}=1.0$
$\delta_{\text {nsy }}=\max \left(C_{m y} /\left(1-\left(P_{u \_a c t} /\left(0.75 \times P_{c y}\right)\right)\right), 1.0\right)=1.053$
$M_{2 y \_ \text {min }}=P_{u \_ \text {_act }} \times(0.6$ in $+0.03 \times b)=5.07 \mathrm{kip} \_f t$
$\mathrm{M}_{\text {cy_min }}=\delta_{\text {nsy }} \times \mathrm{M}_{2 y \_ \text {min }}=5.34 \mathrm{kip}$ _ft
$\phi=1.00$
$\mathrm{A}_{\mathrm{s}}=\mathrm{A}_{\mathrm{st}} / 2=1.571 \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{s}}=\mathrm{A}_{\mathrm{st}} / 2=1.571 \mathrm{in}^{2}$
$P_{n}=0.8 \times\left(0.85 \times f_{c}^{\prime} \times\left(A_{g}-A_{s t}\right)+f_{y} \times A_{s t}\right)=1534.891$ kips
$\mathrm{P}_{\mathrm{u}}=\phi \times \mathrm{P}_{\mathrm{n}}=1534.891 \mathrm{kips}$
PASS : Column is safe in axial loading

| Tekla. Tedds <br> Carollo Engineers <br> 3150 Bristol St. Suite 500, Costa Mesa, CA, 92626 | Project <br> City of Wilsonville - Process Gallery |  |  |  | $\begin{array}{\|l\|} \hline \text { Job Ref. } \\ \text { 11962A } \end{array}$ | 480 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Section <br> Beam B-2 Check (Vertical Irregularity) |  |  |  | Sheet no./rev.$3$ |  |
|  | Calc. by BS | $\begin{array}{\|l\|} \hline \text { Date } \\ 8 / 23 / 2021 \end{array}$ | Chk'd by | Date | App'd by | Date |

Net moments for biaxial column

Assuming strength reduction factor
Net moment about major (X) axis
Net moment about minor ( Y ) axis
Uniaxially loaded column about major axis
Details of column cross-section
c/dt ratio
Effective cover to reinforcement
Spacing between bars
Depth of tension steel
Depth of NA from extreme compression face
Factor of depth of compressive stress block
Depth of equivalent rectangular stress block
Yield strain in steel
Strength reduction factor

## Details of concrete block

## Force carried by concrete

Forces carried by concrete

## Moment carried by concrete

Moment carried by concrete
Details of steel layer 1
Depth of layer
Strain of layer
Stress in layer
Force carried by layer
Moment carried by steel layer
Details of steel layer 2
Depth of layer
Strain of layer
Stress in layer
Force carried by layer
Moment carried by steel layer

## Force carried by steel

Sum of forces by steel
Total force carried by column
Nominal axial load strength
Strength reduction factor
Ultimate axial load carrying capacity of column
Total moment carried by column
Total moment carried by column

$$
\begin{aligned}
& \phi=0.65 \\
& \mathrm{M}_{\mathrm{nx}}=\mathrm{M}_{\mathrm{ux} \_ \text {act }} / \phi=0 \text { kips_ft } \\
& \mathrm{M}_{\mathrm{ny}}=\mathrm{M}_{\text {cy_min }} / \phi=8.21 \text { kips_ft }
\end{aligned}
$$

$$
\begin{aligned}
& r_{x b}=0.102 \\
& d^{\prime}=c_{c}+D_{\text {stir }}+\left(D_{\text {long }} / 2\right)=2.500 \text { in } \\
& s=\left(\left(h-\left(2 \times d^{\prime}\right)\right)\right) /((N / 2)-1)=27.000 \text { in } \\
& d_{t}=h-d^{\prime}=29.500 \text { in } \\
& c_{x}=r_{x b} \times d_{t}=3.008 \text { in } \\
& \beta_{1}=0.850 \\
& a_{x}=\min \left(\left(\beta_{1} \times c_{x}\right), h\right)=2.557 \text { in } \\
& \varepsilon_{s x}=f_{y} / E_{s}=0.002 \\
& \phi_{x}=0.900
\end{aligned}
$$

$$
P_{\text {xcon }}=0.85 \times f_{c}^{\prime} \times b \times a_{x}=139.079 \text { kips }
$$

$$
M_{x c o n}=P_{\text {xcon }} \times\left((h / 2)-\left(a_{x} / 2\right)\right)=170.624 \text { kip_ft }
$$

$$
\mathrm{x}_{\mathrm{x} 1}=2.500 \mathrm{in}
$$

$$
\varepsilon_{x} 1=\varepsilon_{c} *\left(1-x_{x 1} / c_{x}\right)=0.00051
$$

$$
\sigma_{x 1}=\min \left(f_{y}, E_{s}^{*} \varepsilon_{x 1}\right)-0.85^{*} f_{c}^{\prime}=11287.26 \mathrm{psi}
$$

$$
P_{x 1}=N_{x} * A_{b a r} * \sigma_{x 1}=17.730 \mathrm{kips}
$$

$$
M_{x 1}=P_{x 1} *\left((h / 2)-x_{x 1}\right)=19.946 \text { kip_ft }
$$

$$
\mathrm{x}_{\mathrm{x} 2}=\mathbf{2 9 . 5 0 0} \mathrm{in}
$$

$$
\varepsilon_{\mathrm{x} 2}=\varepsilon_{\mathrm{c}}{ }^{*}\left(1-\mathrm{x}_{\mathrm{x} 2} / \mathrm{C}_{\mathrm{x}}\right)=-\mathbf{0 . 0 2 6 4 2}
$$

$$
\sigma_{x 2}=\max \left(-1^{*} f_{y}, E_{s}^{*} \varepsilon_{x 2}\right)=-60000.00 \mathrm{psi}
$$

$$
P_{x 2}=N_{x} * A_{\text {bar }} * \sigma_{x 2}=-94.248 \mathrm{kips}
$$

$$
M_{x 2}=P_{x 2} *\left((h / 2)-x_{x 2}\right)=106.029 \text { kip_ft }
$$

$$
P_{x s}=-76.5 \mathrm{kips}
$$

$P_{n x}=62.561 \mathrm{kips}$
$\phi_{x}=1.000$
$P_{u x}=\phi x \times P_{n x}=56.305$ kips
$\mathrm{M}_{\mathrm{ox}}=296.599$ kip_ft

| Tekla.Tedds <br> Carollo Engineers <br> 3150 Bristol St. Suite 500, Costa Mesa, CA, 92626 | Project <br> City of Wilsonville - Process Gallery |  |  |  | $\begin{aligned} & \hline \text { Job Ref. } \\ & \text { 11962A } \end{aligned}$ | 481 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Section <br> Beam B-2 Check (Vertical Irregularity) |  |  |  | Sheet no./rev.$4$ |  |
|  | Calc. by BS | $\begin{aligned} & \hline \text { Date } \\ & 8 / 23 / 2021 \end{aligned}$ | Chk'd by | Date | App'd by | Date |

Ultimate moment strength capacity of column $\quad M_{u x}=\phi_{x} \times M_{o x}=296.599 \mathrm{kip} f t$
Equivalent required uniaxial moment about $x$ axis

Equivalent required uniaxial nominal moment
Equivalent required uniaxial ultimate moment
Check load capacity about the x axis
Factored axial load
Ultimate axial capacity

Equivalent required uniaxial factored moment Ultimate moment capacity about the x axis
$M_{n x e}=M_{n x}+M_{n y} \times h / b \times((1-\beta) / \beta)=16.422$ kip_ft
$M_{u x e}=M_{n x e} \times \phi_{x}=14.780 \mathrm{kip} \_f t$
$\mathrm{P}_{\text {u_act }}=56.3$ kips
$P_{u x}=56.3 \mathrm{kips}$
PASS - Ultimate axial capacity exceeds factored axial load
$M_{u x e}=14.8$ kip_ft
$\mathrm{M}_{\mathrm{ux}}=266.9 \mathrm{kip} \mathrm{ft}$
PASS - Ultimate moment capacity exceeds factored moment about x axis

## Uniaxially loaded column about minor axis

Details of column cross-section
c/dt ratio
$r_{y b}=0.151$
Effective cover to reinforcement
Spacing between bars
Depth of tension steel
Depth of NA from extreme compression face
Factor of depth of compressive stress block
Depth of equivalent rectangular stress block
Yield strain in steel
Strength reduction factor
Details of concrete block
Force carried by concrete
Forces carried by concrete
$P_{\text {ycon }}=0.85 \times \mathrm{f}_{\mathrm{c}} \times \mathrm{h} \times \mathrm{a}_{\mathrm{y}}=\mathbf{1 8 8 . 1 0 9}$ kips

## Moment carried by concrete

Moment carried by concrete
$M_{y c o n}=P_{\text {ycon }} \times\left((b / 2)-\left(a_{y} / 2\right)\right)=111.855 \mathrm{kip} \_f t$
Details of steel layer 1
Depth of layer
Strain of layer
$\mathrm{X}_{\mathrm{y} 1}=2.500$ in
$\varepsilon_{y 1}=\varepsilon_{c}{ }^{*}\left(1-X_{y 1} / c_{y}\right)=-0.00069$
$\sigma_{y} 1=\max \left(-1^{*} f_{y}, E_{s}{ }^{*} \varepsilon_{y} 1\right)=-19929.49 \mathrm{psi}$
$P_{y 1}=N_{y}{ }^{*} A_{\text {bar }}{ }^{*} \sigma_{y 1}=-31.305$ kips
$M_{y 1}=P_{y 1}$ * $\left((b / 2)-x_{y 1}\right)=-14.348 k i p \_f t$
Details of steel layer 2
Depth of layer
$\mathrm{x}_{\mathrm{y} 2}=13.500$ in
$\varepsilon_{\mathrm{y} 2}=\varepsilon_{\mathrm{c}}{ }^{*}\left(1-\mathrm{X}_{\mathrm{y} 2} / \mathrm{C}_{\mathrm{y}}\right)=\mathbf{- 0 . 0 1 6 9 1}$
$\sigma_{y 2}=\max \left(-1^{*} f_{y}, E_{s}{ }^{*} \varepsilon_{y 2}\right)=-60000.00 \mathrm{psi}$
$P_{y 2}=N_{y}{ }^{*} A_{\text {bar }}{ }^{*} \sigma_{y 2}=-94.248 \mathrm{kips}$
$M_{y 2}=P_{y 2}$ * ( $\left.\left.b / 2\right)-x_{y 2}\right)=43.197$ kip_ft

| Tekla.Tedds <br> Carollo Engineers <br> 3150 Bristol St. Suite 500, Costa Mesa, CA, 92626 | Project <br> City of Wilsonville - Process Gallery |  |  |  | $\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 11962 f \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Section <br> Beam B-2 Check (Vertical Irregularity) |  |  |  | Sheet no./rev.$5$ |  |
|  | Calc. by BS | $\begin{array}{\|l\|} \hline \text { Date } \\ 8 / 23 / 2021 \end{array}$ | Chk'd by | Date | App'd by | Date |

## Force carried by steel

Sum of forces by steel
Total force carried by column
Nominal axial load strength
Strength reduction factor
Ultimate axial load carrying capacity of column
Moment carried by biaxial column minor axis Nominal moment strength

Contour beta factor
Contour beta factor

Net moment along minor axis resisted by column
Ultimate moment along minor axis
Check load capacity about the y axis
Factored axial load
Ultimate axial capacity

Factored moment about the $y$ axis
Ultimate moment capacity about the $y$ axis

## Design of column ties-25.7.2

Spacing of lateral ties
16 times longitudinal bar diameter
48 times tie bar diameter
Least column dimension
Required tie spacing
$P_{n y}=62.556 \mathrm{kips}$
$\phi_{y}=1.000$
$P_{\text {uy }}=\phi_{y} \times P_{\text {ny }}=62.556 \mathrm{kips}$
$\mathrm{M}_{\mathrm{oy}}=140.703$ kip_ft
$P_{\text {u_act }}=\mathbf{5 6 . 3} \mathbf{~ k i p s}$
$P_{\text {uy }}=56.3$ kips
PASS - Ultimate axial capacity exceeds factored axial load
$M_{u y \_m a x}=\phi^{*} \mathrm{Mny}_{\text {ny }}=5.3 \mathrm{kip}$ ft
$M_{u y}=126.6$ kip_ft
PASS - Ultimate moment capacity exceeds factored moment about y axis
$P_{y s}=-125.6 \mathrm{kips}$
-
$\beta=0.500$
$\mathrm{M}_{\mathrm{nx}}$ upon_ $\mathrm{M}_{\mathrm{ox} 1}=\mathrm{M}_{\mathrm{nx}} / \mathrm{M}_{\mathrm{ox}}=\mathbf{0 . 0 0 0}$
$\mathrm{M}_{\text {ny__ }}$ upon_ $\mathrm{M}_{\text {oy }}=1.000$
$M_{\text {ny } 1}=M_{\text {oy }} \times\left(M_{\text {ny_ }}\right.$ upon_ $\left.M_{\text {oy }}\right)=140.703$ kip_ft
$M_{u y}=M_{n y 1} \times \phi_{y}=126.633$ kip_ft
$S_{v \_ \text {ties }}=\mathbf{9 . 0 0 0}$ in
$S_{v 1}=16 \times D_{\text {long }}=16.000$ in
$S_{v 2}=48 \times D_{\text {stir }}=\mathbf{2 4 . 0 0 0} \mathrm{in}$
$S_{v 3}=\min (h, b)=16.000 \mathrm{in}$
$S_{s}=\min \left(S_{v 1}, S_{v 2}, S_{v 3}\right)=16.000$ in
$S_{v}$ ties $<s$ PASS

| Tekla.Tedds <br> Carollo Engineers <br> 3150 Bristol St. Suite 500, Costa Mesa, CA, 92626 | Project <br> City of Wilsonville - Process Gallery |  |  |  | $\begin{aligned} & \hline \text { Job Ref. } \\ & 11962 A \end{aligned}$ | 483 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Section <br> Column Check (Vertical Irregularity) |  |  |  | Sheet no./rev. 1 |  |
|  | Calc. by BS | $\begin{aligned} & \text { Date } \\ & 8 / 23 / 2021 \end{aligned}$ | Chk'd by | Date | App'd by | Date |

## RC RECTANGULAR COLUMN DESIGN (ACl318-14)



## Applied loads

Ultimate axial force acting on column
Ultimate smaller end moment about $x$ axis
Ultimate larger end moment about x axis
Column curvature about $x$ axis
Ratio of DL moment to total moment

## Geometry of column

Depth of column (larger dimension of column)
Width of column (smaller dimension of column)
Clear cover to reinforcement (both sides)
Unsupported height of column about $x$ axis
Effective height factor about $x$ axis
Column state about the $x$ axis
Unsupported height of column about $y$ axis
Effective height factor about y axis
Column state about the $y$ axis
$\mathrm{Pu}_{\text {_act }=97.9 \mathrm{kips} \mathrm{c}}$
$\mathrm{M}_{1 \text { __act }}=0.001$ kips_ft
$\mathrm{M}_{2 \times \_ \text {_act }}=48.9$ kips_ft
single curvature
$\beta_{d}=0.600$
$h=18.0$ in
$b=18.0$ in
$c_{c}=1.5$ in
$\mathrm{l}_{\mathrm{ux}}=18.0 \mathrm{ft}$
$k_{x}=1.00$
Braced
$l_{u y}=18.0 \mathrm{ft}$
$k_{y}=1.00$
Braced

## Check on overall column dimensions

Column dimensions are OK - h < 4b

## Reinforcement of column

Numbers of bars of longitudinal steel
Longitudinal steel bar diameter number
Diameter of longitudinal bar
Stirrup bar diameter number
Diameter of stirrup bar
Specified yield strength of reinforcement
$N=8$
$D_{\text {bar_num }}=7$
$D_{\text {long }}=0.875$ in
$\mathrm{D}_{\text {stir_num }}=3$
$\mathrm{D}_{\text {stir }}=0.375$ in
$\mathrm{f}_{\mathrm{y}}=\mathbf{6 0 0 0 0} \mathrm{psi}$

| Tekla.Tedds <br> Carollo Engineers <br> 3150 Bristol St. Suite 500, Costa Mesa, CA, 92626 | Project <br> City of Wilsonville - Process Gallery |  |  |  | $\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 11962 f \end{array}$ | 484 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Section <br> Column Check (Vertical Irregularity) |  |  |  | Sheet no 2 |  |
|  | Calc. by BS | $\begin{array}{\|l\|} \hline \text { Date } \\ 8 / 23 / 2021 \end{array}$ | Chk'd by | Date | App'd by | Date |

Specified compressive strength of concrete
Modulus of elasticity of bar reinforcement
Modulus of elasticity of concrete
Yield strain
Ultimate design strain
Check for minimum area of steel - 10.6.1.1

Gross area of column
Area of steel
Minimum area of steel required

## Check for maximum area of steel - 10.6.1.1

Permissible maximum area of steel

## Slenderness check about x axis

Radius of gyration
Actual slenderness ratio
Permissible slenderness ratio
$\mathrm{f}_{\mathrm{c}}=4000 \mathrm{psi}$
$\mathrm{E}_{\mathrm{s}}=29 \times 10^{6} \mathrm{psi}$
$\mathrm{E}_{\mathrm{c}}=57000 \times \mathrm{f}_{\mathrm{c}}{ }^{1 / 2} \times(1 \mathrm{psi})^{1 / 2}=3604997 \mathrm{psi}$
$\varepsilon_{y}=\mathrm{f}_{\mathrm{y}} / \mathrm{E}_{\mathrm{s}}=0.00207$
$\varepsilon_{\mathrm{c}}=0.003 \mathrm{in} / \mathrm{in}$
$\mathrm{A}_{\mathrm{g}}=\mathrm{h} \times \mathrm{b}=324.000 \mathrm{in}^{2}$
$\mathrm{A}_{\text {st }}=\mathrm{N} \times\left(\pi \times \mathrm{D}_{\text {long }}{ }^{2}\right) / 4=4.811 \mathrm{in}^{2}$
$\mathrm{A}_{\text {st_min }}=0.01 \times \mathrm{A}_{\mathrm{g}}=3.240 \mathrm{in}^{2}$
$A_{\text {st }}>A_{\text {st_min }}$ PASS- Minimum steel check
$A_{\text {st_max }}=0.08 \times \mathrm{A}_{\mathrm{g}}=25.920 \mathrm{in}^{2}$
$A_{s t}<A_{s t \_m a x}$, PASS - Maximum steel check
$\mathrm{r}_{\mathrm{x}}=0.3 \times \mathrm{h}=5.4 \mathrm{in}$
$\mathrm{S}_{\mathrm{rx} \text { _act }}=\mathrm{k}_{\mathrm{x}} \times \mathrm{l}_{\mathrm{lx}} / \mathrm{r}_{\mathrm{x}}=40$
$\mathrm{~S}_{\text {rx_perm }}=\min \left(34-12^{*}\left(\mathrm{M}_{1 \times \text { _act }} / \mathrm{M}_{2 x \_ \text {_act }}\right), 40\right)=34$

Column is slender about the $X$ axis

## Magnified moments about x axis

Moment of inertia of section
Euler's buckling load
Correction factor for actual to equiv. mmt.diagram
Moment magnifier
Magnified moment about x axis
Minimum factored moment about x axis
Minimum magnified moment about $x$ axis

## Slenderness check about y axis

Radius of gyration
Actual slenderness ratio
Permissible slenderness ratio

## Magnified moments about y axis

Moment of inertia of section
Euler's buckling load
Correction factor for actual to equiv. mmt.diagram
Moment magnifier
Minimum factored moment about y axis
Minimum magnified moment about y axis
Axial load capacity of axially loaded column
Strength reduction factor

$$
\begin{aligned}
& \operatorname{lgx}=\left(b \times h^{3}\right) / 12=8748 \mathrm{in}^{4} \\
& P_{c x}=\left(\pi^{2} /\left(k_{x} \times l_{\mathrm{ux}}\right)^{2}\right) \times\left(0.4 \times \mathrm{E}_{\mathrm{c}} \times \mathrm{I}_{\mathrm{gx}} /\left(1+\beta_{\mathrm{d}}\right)\right)=1667.81 \mathrm{kips} \\
& \mathrm{C}_{\mathrm{mx}}=0.6+\left(0.4^{*} \mathrm{M}_{1 \text { x_act }} / \mathrm{M}_{2 x \_ \text {_act }}\right)=\mathbf{0 . 6 0 0}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{cx}}=\delta_{\text {nsx }} \times \mathrm{M}_{2 \text { 2_act }}=48.9 \mathrm{kip} \_\mathrm{ft} \\
& M_{2 x \_m i n}=P u \_ \text {act } \times(0.6 \mathrm{in}+0.03 \times h)=9.3 \mathrm{kip} \_\mathrm{ft} \\
& M_{\text {cx_min }}=\delta_{\text {nsx }} \times M_{2 x \_ \text {min }}=9.3 \text { kip_ft }
\end{aligned}
$$

$r_{y}=0.3 \times b=5.4$ in
$S_{\text {ry_act }}=\mathrm{k}_{\mathrm{y}} \times \mathrm{l}_{\mathrm{uy}} / \mathrm{r}_{\mathrm{y}}=\mathbf{4 0}$
$\mathrm{Sry}_{\text {ryperm }}=\min \left(34-12{ }^{*}\left(\mathrm{M}_{1 y \_ \text {_act }} / \mathrm{M}_{2 y \_ \text {_act }}\right), 40\right)=34$
Column is slender about the $Y$ axis

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{gy}}=\left(\mathrm{h} \times \mathrm{b}^{3}\right) / 12=8748 \mathrm{in}^{4} \\
& \mathrm{P}_{\mathrm{cy}}=\left(\pi^{2} /\left(\mathrm{k}_{\mathrm{y}} \times \mathrm{l}_{\mathrm{uy}}\right)^{2}\right) \times\left(0.4 \times \mathrm{E}_{\mathrm{c}} \times \mathrm{I}_{\mathrm{gy}} /\left(1+\beta_{\mathrm{d}}\right)\right)=1667.81 \mathrm{kips} \\
& \mathrm{C}_{\mathrm{my}}=1.0 \\
& \delta_{\text {nsy }}=\max \left(\mathrm{C}_{\mathrm{my}} /\left(1-\left(\mathrm{P}_{\mathrm{u} \_ \text {act }} /\left(0.75 \times \mathrm{P}_{\text {cy }}\right)\right)\right), 1.0\right)=1.085 \\
& \mathrm{M}_{2 y \_ \text {min }}=\mathrm{P}_{\mathrm{u} \_ \text {act }} \times(0.6 \mathrm{in}+0.03 \times \mathrm{b})=9.3 \mathrm{kip} \mathrm{ft} \\
& \mathrm{M}_{\text {cy_min }}=\delta_{\text {nsy }} \times \mathrm{M}_{2 y \_ \text {min }}=10.09 \mathrm{kip} \mathrm{ft} \\
& \phi=1.00
\end{aligned}
$$

| Tekla.Tedds <br> Carollo Engineers <br> 3150 Bristol St. Suite 500, Costa Mesa, CA, 92626 | Project <br> City of Wilsonville - Process Gallery |  |  |  | $\begin{aligned} & \text { Job Ref. } \\ & \text { 11962A } \end{aligned}$ | 485 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Section <br> Column Check (Vertical Irregularity) |  |  |  | Sheet no./rev.$3$ |  |
|  | Calc. by BS | $\begin{aligned} & \hline \text { Date } \\ & 8 / 23 / 2021 \end{aligned}$ | Chk'd by | Date | App'd by | Date |

Area of steel on compression face
Area of steel on tension face
Net axial load capacity of column
Ultimate axial load capacity of column

## Net moments for biaxial column

Assuming strength reduction factor
Net moment about major (X) axis
Net moment about minor ( Y ) axis

## Uniaxially loaded column about major axis

Details of column cross-section
c/dt ratio
Effective cover to reinforcement
Spacing between bars
Depth of tension steel
Depth of NA from extreme compression face
Factor of depth of compressive stress block
Depth of equivalent rectangular stress block
Yield strain in steel
Strength reduction factor

## Details of concrete block

## Force carried by concrete

Forces carried by concrete

## Moment carried by concrete

Moment carried by concrete

## Details of steel layer 1

Depth of layer
Strain of layer
Stress in layer
Force carried by layer
Moment carried by steel layer
Details of steel layer 2
Depth of layer
Strain of layer
Stress in layer
Force carried by layer
Moment carried by steel layer
Details of steel layer 3
Depth of layer
Strain of layer
Stress in layer

$$
\begin{aligned}
& A_{s}^{\prime}=A_{s t} / 2=2.405 \mathrm{in}^{2} \\
& A_{s}=A_{s t} / 2=2.405 \mathrm{in}^{2} \\
& P_{n}=0.8 \times\left(0.85 \times f^{\prime} c \times\left(A_{g}-A_{s t}\right)+f_{y} \times A_{s t}\right)=1099.102 \mathrm{kips} \\
& P_{u}=\phi \times P_{n}=1099.102 \mathrm{kips}
\end{aligned}
$$

PASS : Column is safe in axial loading

$$
\begin{aligned}
& \phi=0.65 \\
& \mathrm{M}_{\mathrm{nx}}=\mathrm{M}_{\mathrm{cx}} / \phi=\mathbf{7 5 . 2 3} \text { kips_ft } \\
& \mathrm{M}_{\mathrm{ny}}=\mathrm{M}_{\text {cy_min }} / \phi=\mathbf{1 5 . 5 2} \text { kips_ft }
\end{aligned}
$$

$$
\begin{aligned}
& r_{x b}=0.273 \\
& d^{\prime}=c_{c}+D_{\text {stir }}+\left(D_{\text {long }} / 2\right)=2.312 \text { in } \\
& s=\left(\left(h-\left(2 \times d^{\prime}\right)\right)\right) /((N / 2)-1)=4.458 \text { in } \\
& d_{t}=h-d^{\prime}=15.688 \text { in } \\
& c_{x}=r_{x b} \times d_{t}=4.287 \text { in } \\
& \beta_{1}=0.850 \\
& a_{x}=\min \left(\left(\beta_{1} \times c_{x}\right), h\right)=3.644 \text { in } \\
& \varepsilon_{s x}=f_{y} / E_{s}=0.002 \\
& \phi_{x}=1.000
\end{aligned}
$$

$$
P_{\text {xcon }}=0.85 \times f^{\prime} \times b \times a_{x}=223.022 \text { kips }
$$

$$
M_{x c o n}=P_{x c o n} \times\left((h / 2)-\left(a_{x} / 2\right)\right)=133.403 \text { kip_ft }
$$

$$
\mathrm{x}_{\mathrm{x} 1}=2.312 \text { in }
$$

$$
\varepsilon_{x 1}=\varepsilon_{c}{ }^{*}\left(1-x_{x 1} / c_{x}\right)=0.00138
$$

$$
\sigma_{x 1}=\min \left(f_{y}, E_{s}^{*} \varepsilon_{x 1}\right)-0.85^{*} f_{c}^{\prime}=36672.92 \mathrm{psi}
$$

$$
P_{x 1}=N_{x} * A_{\text {bar }} * \sigma_{\times 1}=66.157 \mathrm{kips}
$$

$$
M_{x 1}=P_{x 1} *\left((h / 2)-x_{x 1}\right)=36.868 \text { kip_ft }
$$

$$
x_{x 2}=9.000 \text { in }
$$

$$
\varepsilon_{x 2}=\varepsilon_{\mathrm{c}} *\left(1-x_{x 2} / c_{x}\right)=\mathbf{- 0 . 0 0 3 3 0}
$$

$$
\sigma_{x 2}=\max \left(-1^{*} f_{y}, E_{s}^{*} \varepsilon_{x 2}\right)=-60000.00 \mathrm{psi}
$$

$$
P_{\times 2}=2 * A_{b a r}{ }^{*} \sigma_{\times 2}=-72.158 \mathrm{kips}
$$

$$
M_{x 2}=P_{\times 2} *\left((h / 2)-x_{x 2}\right)=0.000 \text { kip_ft }
$$

$$
x_{x 3}=15.688 \text { in }
$$

$$
\varepsilon_{x 3}=\varepsilon_{c}^{*}\left(1-x_{x 3} / c_{x}\right)=-0.00798
$$

$$
\sigma_{x 3}=\max \left(-1^{*} f_{y}, E_{s}{ }^{*} \varepsilon_{x 3}\right)=-60000.00 \mathrm{psi}
$$

| Tekla.Tedds <br> Carollo Engineers <br> 3150 Bristol St. Suite 500, Costa Mesa, CA, 92626 | Project <br> City of Wilsonville - Process Gallery |  |  |  | $\begin{aligned} & \hline \text { Job Ref. } \\ & \text { 11962A } \end{aligned}$ | 486 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Section <br> Column Check (Vertical Irregularity) |  |  |  | Sheet no./rev.$4$ |  |
|  | Calc. by BS | $\begin{aligned} & \hline \text { Date } \\ & 8 / 23 / 2021 \end{aligned}$ | Chk'd by | Date | App'd by | Date |

Force carried by layer
Moment carried by steel layer
Force carried by steel
Sum of forces by steel
Total force carried by column
Nominal axial load strength
Strength reduction factor
Ultimate axial load carrying capacity of column
Total moment carried by column
Total moment carried by column
Ultimate moment strength capacity of column
$P_{x 3}=N_{x}{ }^{*} A_{\text {bar }}{ }^{*} \sigma_{x 3}=-108.238 \mathrm{kips}$
$\mathrm{M}_{\mathrm{x} 3}=\mathrm{P}_{\times 3}$ * $\left.(\mathrm{h} / 2)-\mathrm{x}_{\mathrm{x} 3}\right)=\mathbf{6 0 . 3 2 0} \mathrm{kip} \mathrm{ft}$
$P_{x s}=-114.2 \mathrm{kips}$
$P_{n x}=108.782 \mathrm{kips}$
$\phi_{x}=1.000$
$P_{u x}=\phi_{x} \times P_{n x}=97.904 \mathrm{kips}$

Mox $=230.591$ kip_ft
$M_{u x}=\phi_{x} \times M_{\mathrm{ox}}=230.591 \mathrm{kip} \mathrm{ft}$

Equivalent required uniaxial moment about $\mathbf{x}$ axis

Equivalent required uniaxial nominal moment
Equivalent required uniaxial ultimate moment

## Check load capacity about the x axis

Factored axial load
Ultimate axial capacity

Equivalent required uniaxial factored moment
Ultimate moment capacity about the $x$ axis
$M_{n x e}=M_{n x}+M_{n y} \times h / b \times((1-\beta) / \beta)=90.754$ kip_ft
$M_{u x e}=M_{n x e} \times \phi_{x}=90.754 \mathrm{kip} \_f t$
$P_{\text {u_act }}=97.9$ kips
$P_{\mathrm{ux}}=97.9 \mathrm{kips}$
PASS - Ultimate axial capacity exceeds factored axial load
$M_{u x e}=81.7$ kip_ft
Mux $=207.5$ kip_ft
PASS - Ultimate moment capacity exceeds factored moment about $x$ axis

## Uniaxially loaded column about minor axis

Details of column cross-section
$\mathrm{c} / \mathrm{d}_{\mathrm{t}}$ ratio
Effective cover to reinforcement
Spacing between bars
Depth of tension steel
Depth of NA from extreme compression face
Factor of depth of compressive stress block
Depth of equivalent rectangular stress block
Yield strain in steel
Strength reduction factor

## Details of concrete block

## Force carried by concrete

Forces carried by concrete

## Moment carried by concrete

Moment carried by concrete
Details of steel layer 1
Depth of layer
Strain of layer
$r_{y b}=0.273$
$d^{\prime}=c_{c}+D_{\text {stir }}+\left(D_{\text {long }} / 2\right)=2.312$ in
$\mathrm{s}=\left(\left(\mathrm{b}-\left(2 \times \mathrm{d}^{\prime}\right)\right)\right) /((\mathrm{N} / 2)-1)=4.458 \mathrm{in}$
$b_{t}=b-d^{\prime}=15.688$ in
$c_{y}=r_{y b} \times b_{t}=4.287 \mathrm{in}$
$\beta_{1}=0.850$
$a_{y}=\min \left(\left(\beta_{1} \times c_{y}\right), b\right)=3.644$ in
$\varepsilon_{s y}=f_{y} / E_{s}=0.002$
$\phi y=0.900$
$P_{\text {ycon }}=0.85 \times \mathrm{f}^{\prime} \mathrm{c} \times \mathrm{h} \times \mathrm{a}_{\mathrm{y}}=\mathbf{2 2 3 . 0 2 2}$ kips
$M_{\text {ycon }}=P_{\text {ycon }} \times\left((b / 2)-\left(a_{y} / 2\right)\right)=133.403$ kip_ft
$\mathrm{x}_{\mathrm{y} 1}=2.312$ in
$\varepsilon_{y} 1=\varepsilon_{c}{ }^{*}\left(1-\mathrm{X}_{\mathrm{y} 1} / \mathrm{C}_{\mathrm{y}}\right)=\mathbf{0 . 0 0 1 3 8}$

| Tekla.Tedds <br> Carollo Engineers <br> 3150 Bristol St. Suite 500, Costa Mesa, CA, 92626 | Project <br> City of Wilsonville - Process Gallery |  |  |  | $\begin{array}{\|l\|l\|} \hline \text { Job Ref. } \\ 11962 f \end{array}$ | 487 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Section <br> Column Check (Vertical Irregularity) |  |  |  | Sheet no./rev.$5$ |  |
|  | Calc. by BS | $\begin{array}{\|l\|} \hline \text { Date } \\ 8 / 23 / 2021 \end{array}$ | Chk'd by | Date | App'd by | Date |

Stress in layer
Force carried by layer
Moment carried by steel layer
Details of steel layer 2
Depth of layer
Strain of layer
Stress in layer
Force carried by layer
Moment carried by steel layer

## Details of steel layer 3

Depth of layer
Strain of layer
Stress in layer
Force carried by layer
Moment carried by steel layer

## Force carried by steel

Sum of forces by steel
Total force carried by column
Nominal axial load strength
Strength reduction factor
Ultimate axial load carrying capacity of column
Moment carried by biaxial column minor axis
Nominal moment strength

## Contour beta factor

Contour beta factor

Net moment along minor axis resisted by column
Ultimate moment along minor axis

## Check load capacity about the y axis

Factored axial load
Ultimate axial capacity

Factored moment about the $y$ axis
Ultimate moment capacity about the $y$ axis
$\sigma_{y} 1=\min \left(f_{y}, E_{s}{ }^{*} \varepsilon_{y 1}\right)-0.85{ }^{*} f_{c}=\mathbf{3 6 6 7 2 . 9 2} \mathrm{psi}$
$P_{y 1}=N_{y}{ }^{*} A_{\text {bar }}{ }^{*} \sigma_{y 1}=66.157$ kips
$M_{y 1}=P_{y 1}$ * ((b/2) $\left.-x_{y 1}\right)=36.868$ kip_ft
$\mathrm{x}_{\mathrm{y} 2}=9.000$ in
$\varepsilon_{y 2}=\varepsilon_{c} *\left(1-x_{y 2} / c_{y}\right)=-0.00330$
$\sigma_{\mathrm{y} 2}=\max \left(-1^{*} \mathrm{f}_{\mathrm{y}}, \mathrm{E}_{\mathrm{s}}{ }^{*} \varepsilon_{\mathrm{y} 2}\right)=-60000.00 \mathrm{psi}$
$P_{y 2}=2$ * $A_{\text {bar }}{ }^{*} \sigma_{\mathrm{y} 2}=-72.158 \mathrm{kips}$
$M_{y 2}=P_{y 2}{ }^{*}\left((b / 2)-x_{y 2}\right)=\mathbf{0 . 0 0 0} \mathrm{kip} f t$
$\mathrm{x}_{\mathrm{y} 3}=15.688$ in
$\varepsilon_{y 3}=\varepsilon_{c}{ }^{*}\left(1-x_{y 3} / c_{y}\right)=-0.00798$
$\sigma_{y 3}=\max \left(-1^{*} \mathrm{f}_{\mathrm{y}}, \mathrm{E}_{\mathrm{s}}{ }^{*} \varepsilon_{y 3}\right)=-60000.00 \mathrm{psi}$
$P_{y 3}=N_{y}{ }^{*} A_{\text {bar }}{ }^{*} \sigma_{y 3}=-108.238 \mathrm{kips}$
$\mathrm{M}_{\mathrm{y} 3}=\mathrm{P}_{\mathrm{y} 3}{ }^{*}\left((\mathrm{~b} / 2)-\mathrm{x}_{\mathrm{y} 3}\right)=\mathbf{6 0 . 3 2 0} \mathrm{kip} \mathrm{ft}$
$P_{y s}=-114.2 \mathrm{kips}$
$P_{\text {ny }}=108.782 \mathrm{kips}$
$\phi y=1.000$
$P_{\text {uy }}=\phi_{y} \times P_{\text {ny }}=97.904$ kips
$\mathrm{M}_{\text {oy }}=\mathbf{2 3 0 . 5 9 1}$ kip_ft
$\beta=0.500$
$M_{n x}$ _upon_ $M_{o x 1}=M_{n x} / M_{o x}=0.326$

Mny_upon_Moy $=0.674$
$M_{\text {ny } 1}=M_{\text {oy }} \times\left(M_{\text {ny__ }}\right.$ upon_Moy $)=155.419$ kip_ft
$M_{u y}=M_{n y 1} \times \phi_{y}=155.419 \mathrm{kip} f t$
$P_{\mathrm{u}_{-} \text {act }}=97.9 \mathrm{kips}$
$P_{u y}=97.9 \mathrm{kips}$
PASS - Ultimate axial capacity exceeds factored axial load
$M_{u y \_m a x}=\phi^{*} M_{n y}=10.1 \mathrm{kip} f t$
$\mathrm{Muy}_{\mathrm{uy}}=139.9 \mathrm{kip} \mathrm{ft}$
PASS - Ultimate moment capacity exceeds factored moment about y axis
Design of column ties - 25.7.2
Spacing of lateral ties
16 times longitudinal bar diameter
48 times tie bar diameter
Least column dimension
$S_{v_{-}}$ties $=12.000 \mathrm{in}$
$S_{\mathrm{v} 1}=16 \times \mathrm{D}_{\text {long }}=14.000 \mathrm{in}$
$\mathrm{S}_{\mathrm{v} 2}=48 \times \mathrm{D}_{\text {stir }}=18.000 \mathrm{in}$
$\mathrm{S}_{\mathrm{v} 3}=\min (\mathrm{h}, \mathrm{b})=18.000$ in

| Tekla.Tedds <br> Carollo Engineers <br> 3150 Bristol St. Suite 500, Costa Mesa, CA, 92626 | Project <br> City of Wilsonville - Process Gallery |  |  |  | $\begin{array}{\|l\|} \hline \text { Job Ref. } \\ 11962 / \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Section Column Check (Vertical Irregularity) |  |  |  | Sheet no $6$ |  |
|  | Calc. by BS | $\begin{array}{\|l\|} \hline \text { Date } \\ 8 / 23 / 2021 \end{array}$ | Chk'd by | Date | App'd by | Date |

$$
\mathrm{s}=\min \left(\mathrm{S}_{\mathrm{v} 1}, \mathrm{~S}_{\mathrm{v} 2}, \mathrm{~S}_{\mathrm{v} 3}\right)=14.000 \mathrm{in}
$$

| BY: BS | DATE Aug-21 | CLIENT | City of Wilsonville | SHEET‘JOB NO. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CHKD BY | DESCRIPTION |  | Process Gallery |  | 11962A. 00 |
| DESIGN TASK |  |  | ASCE 41-17 - Tier 2 (CSZ) |  |  |

## SEISMIC BASE SHEAR FOR PROCESS GALLERY

7.4.1.3.1 Pseudo Seismic Force for LSP. The pseudo lateral force in a given horizontal direction of a building shall be determined using Eq. (7-21). This force shall be used to evaluate or retrofit the vertical elements of the seismic-force-resisting system.

$$
\begin{equation*}
V=C_{1} C_{2} C_{m} S_{a} W \tag{7-21}
\end{equation*}
$$

| Table 7-3. Alternate Values for Modification Factors $C_{1} C_{2}$ |  |  |  |
| :--- | :---: | :---: | :---: |
| Fundamental |  |  |  |
| Period | $\boldsymbol{m}_{\max }<2$ | $2 \leq m_{\max }<6$ | $\boldsymbol{m}_{\max } \geq 6$ |
| $T \leq 0.3$ | 1.1 | 1.4 | 1.8 |
| $0.3<T \leq 1.0$ | 1.0 | 1.1 | 1.2 |
| $T>1.0$ | 1.0 | 1.0 | 1.1 |


| Na. of Szories | Concreta Monert Frime | Cencroto Shear Eat | Concrato Fier-Spanden | Stoel <br> Monere Frame | Stael Concertricaly Braced Frame | Stoel Eccertrically Braced Frime | Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5-2 | 10 | 10 | 5.0 | 5.9 | 1.9 | 199 | 1.0 |
| 3 or mox | 0.9 | 0.0 | 0.9 | 0.9 | 0.9 | 0.9 | 1.0 |


| spectral response acceleration, $\mathrm{S}_{\mathrm{xs}}=$ | 0.446 g | (CSZ seismic hazard) |
| ---: | :---: | :--- |
| spectral response acceleration, $\mathrm{S}_{\mathrm{x} 1}=$ | 0.332 g | (CSZ seismic hazard) |
| building period, $\mathrm{T}=$ | 0.114 s |  |
| response spectrum acceleration, $\mathrm{S}_{\mathrm{a}}=$ | 0.446 g |  |
| effective seismic weight, $\mathrm{W}=$ | 1267.3 kip |  |
| $\mathrm{C}_{1} \mathrm{C}_{2}=$ | 1.4 | (Table 11-6 for masonry walls, $\mathrm{m}=2.0$ ) |
| effective mass factor, $\mathrm{C}_{\mathrm{m}}$ | $=$ | 1.0 |
| seismic lateral force, $\mathrm{V}=$ | 791.3 kip |  |


| Story | Weight, <br> $w_{x}(k i p)$ | Floor <br> Height, $h_{x}$ <br> $(\mathrm{ft})$ | $k$ factor | $w_{x} h_{x}{ }^{k}$ <br> $\left(k^{2}{ }^{*} \mathrm{ft}^{2}\right)$ | $C_{v x}$ | Force on <br> Level, $F_{x}$ <br> $(k i p)$ | Story <br> Force, $V_{j}$ <br> $(k i p)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Roof | 189.8 | 32.63 | 1.0 | 6193.2 | 0.242 | 191.5 | 191.5 |
| 1 st | 1077.5 | 18.00 | 1.0 | 19395.0 | 0.758 | 599.8 | 791.3 |

$\Sigma w_{x} h_{x}{ }^{k}=25588.2$


| BY: BS | DATE Sep-21 | CLIENT | City of Wilsonville | SHEET <br> JOB NO. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CHKD BY | DESCRIPTION |  | Process Gallery |  | 11962A. 00 |
| DESIGN TASK |  |  | ASCE 41-17-Tier 2 (CSZ) |  |  |

## CMU IN-PLANE SHEAR WALL CHECK IN BUILDING N-S DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.
11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.
11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

### 11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced

 Masonry Walls. The shear required to develop the expectedflexural strength of RM walls and wall piers shall be compared with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.
7.5.2 Linear Procedures
7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2
7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, $Q_{U D}$, shall be calculated in accordance with Eq. (7-34):

$$
\begin{equation*}
Q_{U D}=Q_{G}+Q_{E} \tag{7-34}
\end{equation*}
$$

where
$Q_{U D}=$ Deformation-controlled action caused by gravity loads and earthquake forces.
$Q_{G}=$ Action caused by gravity loads as defined in Section 7.2.2; and
$Q_{E}=$ Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

## Shear wall 1

| Roof seismic load, $\mathrm{V}=$ | 191.5 kip |
| ---: | ---: |
| diaphragm span, $\mathrm{L}=$ | 52.00 ft |
| 15 ft |  |
| roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=$ | 55.2 kip |

$$
\begin{array}{rlc}
\text { wall height, } \mathrm{h} & = & 14.63 \mathrm{ft} \\
\text { tributary seismic moment on shear wall, } \mathrm{Mu} & = & 808.2 \mathrm{kip} \mathrm{kt}^{\prime} \\
\text { masonry strength, } \mathrm{f}_{\mathrm{m}} & = & 1500 \mathrm{psi} \\
\text { shear wall length, } \mathrm{d} & = & 46 \mathrm{ft} \\
\text { vertitcal shear wall grout spacing } & = & 24 \mathrm{in} \\
\text { horizontal shear wall grout spacing } & = & 48 \mathrm{in} \\
\text { shear wall thickness, } \mathrm{t} & = & 7.625 \mathrm{in} \\
\mathrm{~A}_{\mathrm{n}} & = & 2077.0 \mathrm{in}^{<} \\
\Phi & = & 1.0 \text { (assumed per Tier 2) }
\end{array}
$$

$$
\phi \mathrm{V}_{\mathrm{m}}=\phi\left[\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{Vd}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{m}}^{\prime}}+0.25 \mathrm{P}_{\mathrm{u}}\right]
$$

masonry shear wall strength, $\phi Q C E_{m}=277.0 \mathrm{kip}$ horizontal masonry shear wall strength, $\phi Q C E_{s}=\quad 28.7 \mathrm{kip}$ combined masonry shear wall strength, $\phi$ QCE $=305.7 \mathrm{kip}$

Determining m-factor for wall governed by flexure
roof axial load on wall, $P=13608.3 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{*} \mathrm{t}\right)=\quad 0.5 \mathrm{psi}$ factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{\star}{ }^{\prime \prime}{ }_{m}=1950.0$ psi

$$
\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=
$$

$$
0.000
$$

$$
\begin{array}{rr}
\mathrm{h} / \mathrm{L}= & 0.32 \\
\text { steel reinforcing ratio, } \rho_{\mathrm{g}}= & 0.004 \\
\rho_{\mathrm{g}}{ }^{* f} \mathrm{ffe}_{\mathrm{ye}} / \mathrm{f}_{\mathrm{me}}= & 0.11 \\
\mathrm{~m} \text {-factor }= & \\
\text { knowledge factor, } \mathrm{K}= & 0.0 \text { (interpolated between LS \& CP. ASCE 41-17 Table 11-6) } \\
\text { masonry shear wall strength, } \mathrm{km} \phi \mathrm{QCE}= & 1375.5 \mathrm{kip} \\
\text { demand capacity ratio, } D C R= & 0.04 \quad \text { OK }
\end{array}
$$

Shear wall 2

$$
\begin{aligned}
& \text { Roof seismic load, } V=\quad 191.5 \text { kip } \\
& \text { diaphragm span, } \mathrm{L}=\quad 52.00 \mathrm{ft} \\
& \text { roof tributary width for seismic, } \mathrm{T}_{\mathrm{w}}= \\
& \text { tributary seismic load on shear wall, } \mathrm{Q}_{\mathrm{E}}=\quad 95.8 \mathrm{kip} \\
& \text { wall height, } \mathrm{h}=\quad 14.63 \mathrm{ft} \\
& \text { tributary seismic moment on shear wall, } \mathrm{Mu}=1400.8 \text { kip*ft } \\
& \text { masonry strength, } \mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi} \\
& \text { shear wall length, } \mathrm{d}=\quad 48 \mathrm{ft} \\
& \text { vertitcal shear wall grout spacing }=\quad 32 \text { in } \\
& \text { horizontal shear wall grout spacing }=\quad 48 \text { in } \\
& \text { shear wall thickness, } \mathrm{t}=\quad 7.625 \text { in } \\
& A_{n}=2014.0 \mathrm{in}^{<} \\
& \Phi=\quad 1.0 \text { (assumed per Tier 2) } \\
& \phi \mathrm{V}_{\mathrm{m}}=\phi\left[\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{~V} d_{v}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{m}}}+0.25 \mathrm{P}_{\mathrm{u}}\right] \\
& \text { masonry shear wall strength, } \phi Q C E_{m}=270.4 \mathrm{kip} \\
& \text { horizontal masonry shear wall strength, } \phi Q C E_{s}=\quad 28.7 \mathrm{kip} \\
& \text { combined masonry shear wall strength, } \phi \text { QCE }=\quad 299.1 \mathrm{kip} \\
& \text { roof axial load on wall, } \mathrm{P}=23369.7 \mathrm{lbs} \\
& \text { vertical compressive stress, } \mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{*} \mathrm{t}\right)=0.8 \mathrm{psi} \\
& \text { factor for expected strength, } \mathrm{F}_{\text {exp }}=\quad 1.3 \text { (ASCE 41-17 Table 11-1) } \\
& \text { expected compressive strength, } f_{m e}=F_{\exp }{ }^{*} f_{m}=1950.0 \text { psi } \\
& \mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\text {me }}=0.000 \\
& \mathrm{~h} / \mathrm{L}=\quad 0.30 \\
& \text { steel reinforcing ratio, } \rho_{g}=0.003 \\
& \rho_{g}{ }^{*} f_{y e} / f_{m e}=0.09 \\
& \mathrm{~m} \text {-factor }=\quad 5.0 \text { (interpolated between LS \& CP. ASCE 41-17 Table 11-6) } \\
& \text { knowledge factor, } \mathrm{k}=\quad 0.90 \\
& \text { masonry shear wall strength, } \mathrm{km} \mathrm{\phi QCE}=1345.8 \mathrm{kip} \\
& \text { demand capacity ratio, } D C R=0.07 \quad O K
\end{aligned}
$$

## Shear wall 3

| Roof seismic load, $\mathrm{V}=$ | 191.5 kip |
| ---: | :---: |
| diaphragm span, $\mathrm{L}=$ | 52.00 ft |
| wall height, $\mathrm{h}=$ | 14.63 ft |
| roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=$ | 10.67 ft |
| tributary seismic load on shear wall, $\mathrm{Q}_{\mathrm{E}}=$ | 39.3 kip |
| tributary seismic moment on shear wall, $\mathrm{Mu}=$ | $574.9 \mathrm{kip}{ }^{*} \mathrm{ft}$ |
| masonry strength, $\mathrm{f}^{\prime}=$ | 1500 psi |
| shear wall length, $\mathrm{d}=$ | 28 ft |
| 24 in |  |

$$
\begin{array}{rlr}
\text { horizontal shear wall grout spacing } & = & 48 \mathrm{in} \\
\text { shear wall thickness, } \mathrm{t} & = & 7.625 \mathrm{in} \\
\mathrm{~A}_{\mathrm{n}} & = & 1291.0 \mathrm{in}^{く} \\
\Phi & \\
& \\
\phi \mathrm{~V}_{\mathrm{m}}=\phi[.0 \text { (assumed per Tier 2) } \\
&
\end{array}
$$

masonry shear wall strength, $\phi Q C E_{m}=154.3 \mathrm{kip}$ horizontal masonry shear wall strength, $\phi Q C E_{s}=\quad 28.7$ kip combined masonry shear wall strength, $\phi$ QCE $=183.0 \mathrm{kip}$

Determining m-factor for wall governed by flexure
roof axial load on wall, $\mathrm{P}=\quad 9761.4 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=0.6 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{*} f_{m}{ }_{m}=1950.0$ psi

$$
\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.000
$$

$\mathrm{h} / \mathrm{L}=0.52$
steel reinforcing ratio, $\rho_{g}=0.004$
$\rho_{g}{ }^{*} f_{y e} / f_{m e}=\quad 0.11$
$m$-factor $=\quad 5.0$ (interpolated between LS \& CP. ASCE 41-17 Table 11-6)
knowledge factor, к = 0.90
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=823.3 \mathrm{kip}$
demand capacity ratio, $D C R=0.05 \quad O K$


| BY: BS | DATE Sep-21 | CLIENT | City of Wilsonville | SHEET <br> JOB NO. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CHKD BY | DESCRIPTION |  | Process Gallery |  | 11962A. 00 |
| DESIGN TASK |  |  | ASCE 41-17 - Tier 2 (CSZ) |  |  |

## CMU IN-PLANE SHEAR WALL CHECK IN BUILDING E-W DIRECTION

11.3.4.2 Strength of Reinforced Masonry Walls and Wall Piers In-Plane Actions. The strength of existing, retrofitted, and new RM wall or wall pier components in flexure, shear, and axial compression shall be determined in accordance with this section. Design actions (axial, flexure, and shear) on components shall be determined in accordance with Chapter 7 of this standard, considering gravity loads and the maximum forces that can be transmitted based on a limit-state analysis.
11.3.4.2.1 Flexural Strength of Walls and Wall Piers. Expected flexural strength of an RM wall or wall pier shall be determined based on strength design procedures specified in TMS 402.
11.3.4.2.2 Shear Strength of Walls and Wall Piers. The expected and lower-bound shear strength of RM wall or wall pier components shall be determined based on strength design procedures specified in TMS 402.

### 11.3.4.3 Acceptance Criteria for In-Plane Actions of Reinforced

 Masonry Walls. The shear required to develop the expected with the lower-bound shear strength. For RM wall components governed by flexure, flexural actions shall be considered deformation controlled. For RM components governed by shear, shear actions shall be considered deformation controlled. Axial compression on RM wall or wall pier components shall be considered a force-controlled action.7.5.2 Linear Procedures
7.5.2.1 Forces and Deformations. Component forces and deformations shall be calculated in accordance with linear analysis procedures of Sections 7.4.1 or 7.4.2
7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP. Deformation-controlled actions, $Q_{U D}$, shall be calculated in accordance with Eq. (7-34):

$$
\begin{equation*}
Q_{U D}=Q_{G}+Q_{E} \tag{7-34}
\end{equation*}
$$

where
$Q_{U D}=$ Deformation-controlled action caused by gravity loads and earthquake forces.
$Q_{G}=$ Action caused by gravity loads as defined in Section 7.2.2; and
$Q_{E}=$ Action caused by the response to the selected Seismic Hazard Level calculated using either Section 7.4.1 or Section 7.4.2;

## Shear wall A

Roof seismic load, $\mathrm{V}=\quad 191.5 \mathrm{kip}$
diaphragm span, $\mathrm{L}=\quad 56.67 \mathrm{ft}$
roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=\quad 4 \mathrm{ft}$
tributary seismic load on shear wall, $Q_{E}=\quad 13.5$ kip
wall height, $\mathrm{h}=\quad 14.63 \mathrm{ft}$
tributary seismic moment on shear wall, $\mathrm{Mu}=\quad 197.8 \mathrm{kip}{ }^{*} \mathrm{ft}$
masonry strength, $\mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi}$
shear wall length, $\mathrm{d}=\quad 50 \mathrm{ft}$
vertitcal shear wall grout spacing $=\quad 24$ in
horizontal shear wall grout spacing $=\quad 48$ in
shear wall thickness, $t=\quad 7.625$ in
$\mathrm{A}_{\mathrm{n}}=2238.0 \mathrm{in}^{<}$
$\Phi=\quad 1.0$ (assumed per Tier 2)
$\left.\phi V_{m}=\phi\left[4.0-1.75\left(\frac{M}{V d_{v}}\right)\right] A_{n} \sqrt{\boldsymbol{f}_{m}}+0.25 P_{u}\right]$
masonry shear wall strength, $\phi Q C E_{m}=302.3 \mathrm{kip}$
horizontal masonry shear wall strength, $\phi Q C E_{\text {s }}=\quad 28.7$ kip
combined masonry shear wall strength, $\phi$ QCE $=331.0$ kip
Determining m-factor for wall governed by flexure
roof axial load on wall, $\mathrm{P}=\quad 3537.1 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=\quad 0.1 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{\star}{ }^{*}{ }_{m}=1950.0$ psi

$$
\begin{array}{rrr}
\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}= & 0.000 \\
\mathrm{~h} / \mathrm{L}= & 0.29 \\
\text { steel reinforcing ratio, } \rho_{\mathrm{g}}= & 0.004 \\
\rho_{\mathrm{g}}{ }^{*} \mathrm{f}_{\mathrm{ye}} / \mathrm{f}_{\mathrm{me}}= & 0.11 \\
& \\
\mathrm{~m} \text {-factor }= & 5.0 \text { (interpolated between LS \& CP. ASCE 41-17 Table 11-6) } \\
\text { knowledge factor, } \mathrm{K}= & 0.90 \\
\text { masonry shear wall strength, } \mathrm{Km} \mathrm{\phi QCE}= & 1489.5 \mathrm{kip} \\
\text { demand capacity ratio, } D C R= & 0.01 \quad \text { OK }
\end{array}
$$

Shear wall B

```
 Roof seismic load, V = 191.5 kip
 diaphragm span, L = }56.67\textrm{ft
 roof tributary width for seismic, Tw
 tributary seismic load on shear wall, Q }\mp@subsup{Q}{E}{}=\quad40.6\textrm{kip
 wall height, h= 14.63 ft
tributary seismic moment on shear wall, Mu= 593.3 kip*ft
 masonry strength, f'm}=\quad1500 ps
 shear wall length, d= 26.67 ft
 32 in
 48 in
 7.625 in
 1128.1 in`
 \Phi = 1.0 (assumed per Tier 2)
 \phi\mp@subsup{V}{m}{\prime}}=\phi[[4.0-1.75(\frac{M}{V\mp@subsup{d}{v}{\prime}})]|\mp@subsup{A}{n}{}\sqrt{}{\mp@subsup{\mathbf{f}}{m}{\prime}}+0.25\mp@subsup{P}{u}{}
 masonry shear wall strength, \phiQCE m}=132.8 ki
 horizontal masonry shear wall strength, \phiQCE
 combined masonry shear wall strength, \phiQCE = 161.5 kip
Determining m-factor for wall governed by flexure
 roof axial load on wall, P = 10064.7 lbs
 vertical compressive stress, fae = P/(d*t)= 0.7 psi
 factor for expected strength, F}\mp@subsup{\textrm{Fexp}}{}{=}\quad1.3\mathrm{ (ASCE 41-17 Table 11-1)
expected compressive strength, fme }=\mp@subsup{F}{\mathrm{ exp }}{}\mp@subsup{*}{}{*\prime}\mp@subsup{}{m}{m}=1950.0 ps
 fae
 h/L = 0.55
 steel reinforcing ratio, }\mp@subsup{\rho}{\textrm{g}}{=}=0.00
 \rhog}\mp@subsup{}{}{*}\mp@subsup{f}{\textrm{ye}}{}/\mp@subsup{f}{me}{}=0.1
 m-factor = 5.0 (interpolated between LS & CP. ASCE 41-17 Table 11-6)
 knowledge factor, }\textrm{\kappa}=\quad0.9
 masonry shear wall strength, km\phiQCE = 726.7 kip
 demand capacity ratio,DCR= 0.06 OK
```


## Shear wall C

| Roof seismic load, $\mathrm{V}=$ | 191.5 kip |
| ---: | :---: |
| diaphragm span, $\mathrm{L}=$ | 56.67 ft |
| roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}$ | $=$ |
| 24.33 ft |  |
| wall height, $\mathrm{h}=$ | 14.63 ft |
| tributary seismic load on shear wall, $\mathrm{Q}_{\mathrm{E}}=$ | 82.2 kip |
| tributary seismic moment on shear wall, Mu $=$ | $1202.8 \mathrm{kip}{ }^{* \mathrm{ft}}$ |
| masonry strength, $\mathrm{f}_{\mathrm{m}}=$ | 1500 psi |
| shear wall length, $\mathrm{d}=$ | 21.33 ft |

vertitcal shear wall grout spacing $=\quad 32$ in
horizontal shear wall grout spacing $=\quad 48$ in
shear wall thickness, $\mathrm{t}=\quad 7.625$ in
$\mathrm{A}_{\mathrm{n}}=\quad 926.9 \mathrm{in}^{<}$
$\Phi=\quad 1.0$ (assumed per Tier 2)

$$
\phi V_{m}=\phi\left[\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{Vd}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{f}}}+0.25 P_{u}\right]
$$

masonry shear wall strength, $\phi Q C E_{m}=100.5 \mathrm{kip}$
horizontal masonry shear wall strength, $\phi Q C E_{s}=\quad 28.7 \mathrm{kip}$ combined masonry shear wall strength, $\phi Q C E=129.2$ kip

## Determining m-factor for wall governed by flexure

roof axial load on wall, $\mathrm{P}=19994.8 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=\quad 1.6 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{*} f_{m}=1950.0$ psi
$\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.001$
$\mathrm{h} / \mathrm{L}=0.69$
steel reinforcing ratio, $\rho_{g}=0.004$
$\rho_{g}{ }^{*} \mathrm{f}_{\mathrm{ye}} / \mathrm{f}_{\mathrm{me}}=\quad 0.11$
$m$-factor $=\quad 5.0$ (interpolated between LS \& CP. ASCE 41-17 Table 11-6)
knowledge factor, $\mathrm{k}=\quad 0.90$
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=581.3 \mathrm{kip}$
demand capacity ratio, $D C R=0.14 \quad O K$
Shear wall D

masonry shear wall strength, $\phi Q C E_{m}=220.8 \mathrm{kip}$ horizontal masonry shear wall strength, $\phi Q C E_{\text {s }}=\quad 28.7 \mathrm{kip}$ combined masonry shear wall strength, $\phi$ QCE $=\quad 249.5 \mathrm{kip}$
Determining m-factor for wall governed by flexure
roof axial load on wall, $\mathrm{P}=13463.2 \mathrm{lbs}$
vertical compressive stress, $\mathrm{f}_{\mathrm{ae}}=\mathrm{P} /\left(\mathrm{d}^{\star} \mathrm{t}\right)=\quad 0.6 \mathrm{psi}$
factor for expected strength, $\mathrm{F}_{\text {exp }}=\quad 1.3$ (ASCE 41-17 Table 11-1)
expected compressive strength, $f_{m e}=F_{\text {exp }}{ }^{*} f_{m}=1950.0$ psi
$\mathrm{f}_{\mathrm{ae}} / \mathrm{f}_{\mathrm{me}}=0.000$
$\mathrm{h} / \mathrm{L}=\quad 0.39$
steel reinforcing ratio, $\rho_{g}=0.004$
$\rho_{g}{ }^{*} f_{y e} / f_{m e}=\quad 0.11$
$m$-factor $=\quad 5.0$ (interpolated between LS \& CP. ASCE 41-17 Table 11-6) knowledge factor, $\mathrm{\kappa}=\quad 0.90$
masonry shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=1122.7 \mathrm{kip}$
demand capacity ratio, $D C R=0.05 \quad O K$



4208



## BEAM AND COLUMN CHECK SUPPORTING CMU WALL ABOVE (VERTICAL IRREGULARITY TIER 1 FINDING)

5.4.2.3 Vertical Irregularities. An analysis shall be performed in accordance with Section 5.2.4, and the demand-capacity ratio (DCR) shall be determined in accordance with Section 7.3.1.1 for all elements of the seismic-force-resisting system in the noncompliant stories. The adequacy of the elements and connections below the vertical discontinuities shall be evaluated in accordance with Section 5.2.5 as force-controlled elements. The adequacy of struts and diaphragms to transfer loads to adjacent seismic-force-resisting elements as forcecontrolled elements shall be evaluated.
7.5.2.1.2 Force-Controlled Actions for LSP or LDP. Force-
controlled actions, $Q_{U F}$, shall be calculated using one of the following methods:

1. $Q_{U F}$ shall be taken as the maximum action that can be developed in a component based on a limit-state analysis considering the expected strength of the components delivering force to the component under consideration, or the maximum action developed in the component as limited by the nonlinear response of the building.
2. Altematively, $Q_{U F}$ shall be calculated in accordance with Eq. (7-35).

$$
\begin{equation*}
Q_{U F}=Q_{G} \pm \frac{\chi Q_{E}}{C_{1} C_{2} J} \tag{7-35}
\end{equation*}
$$

| Roof seismic load, $\mathrm{V}=$ | 191.5 kip |
| ---: | :---: |
| diaphragm span, $\mathrm{L}=$ | 56.67 ft |
| roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=$ | 24.33 ft |
| wall height, $\mathrm{h}=$ | 14.63 ft |
| tributary seismic load on shear wall, $\mathrm{V}_{\mathrm{E}}=$ | 82.2 kip |
| seismic overturning on shear wall, $\mathrm{M}_{\mathrm{E}}=$ | 1202.8 kip fft |
| Wall length, $\mathrm{L}_{\mathrm{w}}=$ | 21.33 ft |
| Factor for adjusting action, $\mathrm{X}=$ | 1.3 (interpolated between LS \& IO) |
| $\mathrm{C}_{1} \mathrm{C}_{2}=$ | 1.4 |
| Force delivery reduction factor, $\mathrm{J}=$ | 2 |

## Beam B2 (16"x32") Check

| Roof unit weight, $\mathrm{w}_{\text {Droof }}=$ | 15.3 psf |  |
| :---: | :---: | :---: |
| Wall unit weight, $\mathrm{w}_{\text {Dwall }}=$ | 47.0 lb/ft |  |
| Floor unit weight, $\mathrm{w}_{\text {Dfiloor }}=$ | 183 psf |  |
| Floor unit live load, $\mathrm{w}_{\text {Lfloor }}=$ | 200 psf |  |
| Tributary width to beam, $\mathrm{T}_{\text {wbeam }}=$ | 8 ft |  |
| supported gravity loads on beam, $\mathrm{Q}_{\mathrm{D}}=$ | 1633.4 lb/ft |  |
| supported live loads on beam, $\mathrm{Q}_{\mathrm{L}}=$ | $400 \mathrm{lb} / \mathrm{ft}$ | (assume only 25\% of LL) |
| supported combined loads on beam, $\mathrm{Q}_{\mathrm{G}}=$ | $2236.7 \mathrm{lb} / \mathrm{ft}$ |  |
| Axial load on beam, $\mathrm{Q}_{\mathrm{UF}}=$ | 38.2 kip |  |
| Bending moment demand on beam, $\mathrm{Q}_{\mathrm{UF}}=$ | 127.2 kip*ft |  |
| Shear demand on beam, $\mathrm{Q}_{\mathrm{UF}}=$ | 23.9 kip |  |
| Beam axial strength, $\mathrm{Q}_{\mathrm{CL}}=$ | 1534.8 kip | (From TEDDS calculation) |
| Beam bending strength, $\mathrm{Q}_{\mathrm{CL}}=$ | 296.6 kip*ft | (From TEDDS calculation) |
| Beam shear strength, $Q_{C L}=$ | 58.7 kip | (From TEDDS calculation) |
| knowledge factor, $\mathrm{k}=$ | 0.90 |  |
| Beam axial strength, $\kappa^{*} \mathrm{Q}_{C L}=$ | 1381.32 kip |  |
| Beam bending strength, $\kappa^{*} Q_{C L}=$ | 266.94 kip*ft |  |
| Beam shear strength, $\mathrm{K}^{*} \mathrm{Q}_{\mathrm{CL}}=$ | 52.83 kip |  |
| Axial $D C R=$ | 0.03 OK |  |
| Moment DCR = | 0.48 OK |  |
| Shear DCR = | 0.45 OK |  |

```
 Roof unit weight, w
 Wall unit weight, w}\mp@subsup{\textrm{w}}{\mathrm{ Dwall }}{}
 Floor unit weight, w
 Floor unit live load, w
 Tributary area to column, T}\mp@subsup{\textrm{w}}{\mathrm{ wolumn }}{}=\quad213.36\mp@subsup{\textrm{ft}}{}{+
 supported gravity loads on column, Q Q = 43.2 kip
 supported live loads on column, Q Q = 10.7 kip
 (assume only 25% of LL)
 supported combined loads on column, Q Q = 59.2 kip
```



```
Axial compression load on column, Q}\mp@subsup{\textrm{Q}}{\textrm{LF}.0mp}{}= 85.4 ki
 Axial tension load on column, QuFten = 12.7 kip
Bending moment demand on column, Q QuF = 42.7 kip*ft
 Shear demand on column, Q QF = 4.1 kip
 Column axial strength, \mp@subsup{Q}{CL}{}=
 Column axial strength, }\mp@subsup{\textrm{K}}{}{*}\mp@subsup{Q}{CL}{}=989.19 kip
Column bending strength, }\mp@subsup{\kappa}{}{*}\mp@subsup{Q}{CL}{}=207.45 kip*f
 Column shear strength, }\mp@subsup{\kappa}{}{*}\mp@subsup{Q}{CL}{}= 30.42 kip
 Axial DCR = 0.09 OK
 Moment DCR = 0.21 OK
 Shear DCR = 0.14 OK
```

5. LOCRML CPACTIY 1 TON.




RECORD DRAWINGS





```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
1. SNOW LOAD 25 paf * DRFT \\

\end{tabular}} \\
\hline & \\
\hline & \\
\hline \(\triangle\) \% wix & \\
\hline
\end{tabular}
|
```

1

| BY: | BS | DATE | Sep-21 | CLIENT | City of Wilsonville | SHEET |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CHKD BY |  | DESCR |  |  | Process Gallery | JOB NO. | 11962A. 00 |
| DESIGN T |  |  |  |  |  |  |  |

## DIAPHRAGM METAL DECK CHECK

9.10.1.3 Strength of Bare Metal Deck Diaphragms. The strength of bare metal deck diaphragms shall be determined in accordance with Section 9.3.2 and the requirements of this section.

Expected strength, $Q_{C E}$, for bare metal deck diaphragms shall be taken as 2 times allowable values specified in approved codes and standards, unless a larger value is justified by test data. Altematively, lower-bound strength shall be taken as nominal strength published in approved codes or standards, except that the strength reduction factor, $\phi$, shall be taken as equal to 1.0 .

Lower-bound strengths, $Q_{C L}$, of welded connectors shall be as specified in AWS D1.3, or other approved standard.

```
 Roof seismic load, V = 191.5 kip
 diaphragm span, L = }58.00\textrm{ft
 roof unit diaphragm load, v = 3.30 kip/ft
Roof span between shear walls, L}\mp@subsup{L}{1}{}
 Roof depth, d = 53.33 ft
 diaphragm shear, v
 diaphragm strength, Q Qllow = 530 lbs/ft
expected diaphragm strength, 罡 = 1060 lbs/ft (expected strength shall be 2x the allowable
 per ASCE 41-17 Section 9.10.1.3)
 m-factor = 1.625 (interpolated between LS & IO. ASCE 41-17 Table 9-6)
 knowledge factor, к=
diaphragm strength, кm\phi\mp@subsup{Q}{CE}{}=}\quad1.550\textrm{kip}/\textrm{ft
demand capacity ratio, DCR = 0.96 OK
```

- 36/5 Weld Pattern at Supports
- Sidelaps Connected with \#10 Screws


Allowable Diaphragm Shear Strength, $q$ (plf) and Flexibility Factors, F ((in./lb) $\times 10^{6}$ )

| DECK <br> GAGE | SIDELAP ATTACHMENT | SPAN (ft-in.) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 4'-0" | 5'-0" | 6'-0" | 7'-0" | 8'-0" | 9'-0" | 10'-0" | 11-0" | 12'-0" |
| $22$ | \#10 @ 24" | q | 431 | 378 | 310 | 289 | 249 | 242 | 218 |  |  |
|  |  | F | -2.3+190R | $0.2+152 \mathrm{R}$ | 2.9+126R | 3.9+108R | 5.6+94R | 6.1+83R | 7.4+75R |  |  |
|  | \#10 @ 18" | q | 480 | 417 | 343 | 317 | 298 | 264 | 257 |  |  |
|  |  | F | -3.3+190R | -0.7+152R | 1.8+126R | $3+108 \mathrm{R}$ | 3.8+95R | $5.2+84 \mathrm{R}$ | 5.7+75R |  |  |
|  | \#10 @ 12" | q | 527 | 456 | 408 | 373 | 347 | 329 | 316 |  |  |
|  |  | F | -4+190R | -1.3+152R | 0.5+127R | 1.8+109R | 2.8+95R | 3.5+84R | 4.1+76R |  |  |
|  | \#10 @ 8" | q | 607 | 565 | 506 | 485 | 445 | 438 | 414 |  |  |
|  |  | F | -4.8+191R | -2.5+153R | -0.6+127R | 0.4+109R | 1.5+95R | 2.1+85R | 2.8+76R |  |  |
|  | \#10 @ 6" | q | 682 | 627 | 589 | 561 | 539 | 522 | 509 |  |  |
|  |  | F | -5.4+191R | -2.9+153R | -1.3+127R | -0.1+109R | 0.8+95R | 1.5+85R | 2+76R |  |  |
|  | \#10 @ 4" | q | 817 | 769 | 736 | 712 | 693 | 678 | 666 |  |  |
|  |  | F | -6+191R | -3.6+153R | -2+127R | -0.9+109R | 0+96R | $0.7+85 \mathrm{R}$ | 1.2+76R |  |  |
| 20 | \#10 @ 24" | q | 601 | 526 | 433 | 403 | 349 | 335 | 301 | 297 | 272 |
|  |  | F | 0.9+120R | $2.5+95 \mathrm{R}$ | 4.5+79R | $5.1+68 \mathrm{R}$ | 6.5+59R | 6.7+52R | 7.7+47R | 7.8+43R | 8.6+39R |
|  | \#10 @ 18" | q | 662 | 577 | 476 | 440 | 413 | 363 | 352 | 344 | 315 |
|  |  | F | 0+120R | 1.7+96R | 3.5+79R | 4.3+68R | 4.8+60R | 5.9+53R | 6.2+47R | $6.4+43 \mathrm{R}$ | 7.1+39R |
|  | \#10 @ 12" | q | 716 | 629 | 561 | 513 | 477 | 449 | 430 | 414 | 401 |
|  |  | F | -0.6+120R | $1.1+96 \mathrm{R}$ | $2.3+80 \mathrm{R}$ | 3.2+68R | 3.8+60R | 4.3+53R | 4.8+48R | 5.1+43R | 5.4+40R |
|  | \#10 @ 8" | q | 820 | 760 | 683 | 658 | 606 | 592 | 558 | 554 | 530 |
|  |  | F | -1.5+121R | 0+96R | $1.3+80 \mathrm{R}$ | 2+69R | $2.7+60 \mathrm{R}$ | $3+54 \mathrm{R}$ | 3.5+48R | 3.7+44R | 4.1+40R |
|  | \#10 @ 6" | q | 916 | 841 | 788 | 750 | 720 | 697 | 678 | 662 | 649 |
|  |  | F | -2+121R | -0.4+97R | $0.7+80 \mathrm{R}$ | 1.4+69R | 2+60R | $2.5+54 \mathrm{R}$ | 2.8+48R | $3.1+44 \mathrm{R}$ | 3.4+40R |
|  | \#10 @ 4" | q | 1089 | 1024 | 979 | 945 | 920 | 899 | 883 | 869 | 857 |
|  |  | F | -2.5+121R | -1+97R | 0+81R | 0.8+69R | 1.3+60R | 1.7+54R | 2.1+48R | $2.4+44 \mathrm{R}$ | $2.6+40 \mathrm{R}$ |
| $18$ | \#10 @ 24" | q | 1002 | 885 | 731 | 677 | 588 | 562 | 502 | 491 | 450 |
|  |  | F | $3.2+58 \mathrm{R}$ | 4+46R | $5.4+38 \mathrm{R}$ | 5.6+33R | 6.6+28R | 6.6+25R | 7.4+22R | 7.4+20R | 8+18R |
|  | \#10 @ 18" | q | 1085 | 956 | 797 | 734 | 687 | 606 | 581 | 563 | 516 |
|  |  | F | 2.4+58R | $3.3+46 \mathrm{R}$ | 4.5+38R | 4.9+33R | 5.2+29R | $6+25 \mathrm{R}$ | 6.1+23R | $6.2+21 \mathrm{R}$ | 6.7+19R |
|  | \#10 @ 12" | q | 1166 | 1024 | 925 | 847 | 786 | 738 | 700 | 670 | 647 |
|  |  | F | 1.9+58R | $2.8+47 \mathrm{R}$ | $3.5+39 R$ | 4+33R | 4.3+29R | 4.6+26R | 4.9+23R | 5.1+21R | $5.2+19 \mathrm{R}$ |
|  | \#10 @ 8" | q | 1321 | 1219 | 1094 | 1049 | 973 | 951 | 898 | 886 | 845 |
|  |  | F | 1.1+59R | 1.9+47R | $2.6+39 \mathrm{R}$ | $2.9+34 \mathrm{R}$ | 3.3+29R | $3.5+26 \mathrm{R}$ | 3.8+23R | 3.9+21R | 4.1+19R |
|  | \#10 @ 6" | q | 1465 | 1340 | 1253 | 1189 | 1139 | 1100 | 1068 | 1042 | 1020 |
|  |  | F | 0.7+59R | 1.5+47R | 2.1+39R | 2.5+34R | 2.8+29R | $3+26 \mathrm{R}$ | 3.2+24R | $3.3+21 \mathrm{R}$ | 3.4+20R |
|  | \#10 @ 4" | q | 1721 | 1615 | 1540 | 1484 | 1441 | 1407 | 1379 | 1356 | 1337 |
|  |  | F | $0.2+59 \mathrm{R}$ | 1+47R | 1.5+39R | 1.9+34R | $2.1+30 \mathrm{R}$ | 2.4+26R | 2.5+24R | 2.7+21R | 2.8+20R |
| $16$ | \#10 @ 24" | q | 1277 | 1139 | 946 | 884 | 768 | 739 | 661 | 647 | 590 |
|  |  | F | 3.8+33R | $4.3+26 \mathrm{R}$ | $5.3+21 R$ | 5.4+18R | 6.2+16R | $6.2+14 \mathrm{R}$ | 6.9+12R | $6.8+11 \mathrm{R}$ | 7.3+10R |
|  | \#10 @ 18" | q | 1393 | 1235 | 1038 | 963 | 906 | 801 | 771 | 748 | 683 |
|  |  | F | 3.1+33R | $3.7+26 \mathrm{R}$ | $4.6+22 \mathrm{R}$ | 4.8+18R | 5+16R | 5.6+14R | 5.7+13R | 5.7+12R | $6.2+10 \mathrm{R}$ |
|  | \#10 @ 12" | q | 1505 | 1330 | 1208 | 1118 | 1044 | 985 | 937 | 899 | 867 |
|  |  | F | 2.6+33R | $3.2+26 \mathrm{R}$ | $3.6+22 R$ | 4+19R | 4.2+16R | 4.4+15R | 4.6+13R | 4.7+12R | 4.8+11R |
|  | \#10 @ 8" | q | 1717 | 1597 | 1440 | 1389 | 1292 | 1268 | 1200 | 1188 | 1138 |
|  |  | F | 2+33R | 2.4+27R | 2.9+22R | 3+19R | 3.3+17R | 3.4+15R | 3.6+13R | 3.6+12R | 3.8+11R |
|  | \#10 @ 6" | q | 1914 | 1763 | 1658 | 1580 | 1520 | 1472 | 1433 | 1402 | 1375 |
|  |  | F | 1.6+34R | 2.1+27R | $2.4+22 R$ | 2.6+19R | 2.8+17R | 2.9+15R | 3.1+13R | $3.2+12 \mathrm{R}$ | 3.2+11R |
|  | \#10 @ 4" | q | 2258 | 2132 | 2043 | 1977 | 1926 | 1886 | 1853 | 1825 | 1802 |
|  |  | F | 1.1+34R | 1.6+27R | $1.9+22 \mathrm{R}$ | 2.1+19R | $2.3+17 \mathrm{R}$ | 2.4+15R | 2.5+13R | $2.6+12 \mathrm{R}$ | 2.6+11R |

See footnotes on page 28.
Deck Span = 6'-8"
q = 530 psf (interpolated)

## WORKSHOP - TIER 2 CALCULATIONS

| BY: BS | DATE Aug-21 | CLIENT | City of Wilsonville | SHEET <br> JOB NO. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CHKD BY | DESCRIPTION |  | Workshop |  | 11962A. 00 |
| DESIGN TASK |  |  | EE 41-17 - Tier 2 (B |  |  |

## SEISMIC BASE SHEAR FOR WORKSHOP

7.4.1.3.1 Pseudo Seismic Force for LSP. The pseudo lateral force in a given horizontal direction of a building shall be determined using Eq. (7-21). This force shall be used to evaluate or retrofit the vertical elements of the seismic-force-resisting system.

$$
\begin{equation*}
V=C_{1} C_{2} C_{m} S_{a} W \tag{7-21}
\end{equation*}
$$

| Fundamental Period | $m_{\text {max }}<2$ | $2504 \mathrm{max}<6$ | max 26 | Na of Sspies | Concreto Monven Frame | Concrito Strear Wat | Concreto Pier-spundepl | Stool <br> Nomert <br> Frame | Sxel Concentricaly graced Frave | Strel Eccosticaly puaced Frame | Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T \leq 0.3$ | 1.1 | 1.4 | 1.8 | 1-2 | 1.0 | 1.9 | 1.6 | 10 | 10 | 10 | 1.0 |
| $0.3<T \leq 1.0$ | 1.0 | 1.1 | 1.2 | 3 or mone | 09 | 08 | 08 | 0.9 | 09 | 0.9 | 10 |
| $r>1.0$ | 1.0 | 1.0 | 1.1 |  |  | , |  | (1) | cumer |  |  |


| spectral response acceleration, $\mathrm{S}_{\mathrm{xs}}=$ | 0.744 g | (BSE-2E seismic hazard) |
| ---: | :---: | :--- |
| spectral response acceleration, $\mathrm{S}_{\mathrm{x} 1}=$ | 0.405 g | (BSE-2E seismic hazard) |
| building period, $\mathrm{T}=$ | 0.149 s |  |
| response spectrum acceleration, $\mathrm{S}_{\mathrm{a}}=$ | 0.744 g |  |
| effective seismic weight, $\mathrm{W}=$ | 59.0 kip |  |
| $\mathrm{C}_{1} \mathrm{C}_{2}=$ | 1.4 | (Table 12-3 for wood structural panels, $\mathrm{m}=4.15$ ) |
| effective mass factor, $\mathrm{C}_{\mathrm{m}}=$ | 1.0 |  |
| seismic lateral force, $\mathrm{V}=$ | 61.5 kip |  |




## NARROW SHEAR WALL CHECK ALONG EAST ELEVATION

5.5.3.6.1 Stucco, Gypsum Wallboard, Plaster, or Narrow Shear Walls. The overturning and shear demands for noncompliant walls shall be calculated in accordance with Section 5.2.4, and the adequacy shall be evaluated in accordance with Section 5.2.5.
12.4.3.6.2 Strength of Wood Structural Panel Sheathing or Siding Shear Walls. The expected strength of wood structural panel shear walls shall be taken as mean maximum strengths obtained experimentally. Expected strengths of wood structural panel shear walls shall be permitted to be based on 1.5 times yield strengths. Yield strengths shall be determined using LRFD procedures contained in AWC SDPWS, except that the resistance factor, $\phi$, shall be taken as 1.0 and expected material properties shall be determined in accordance with Section 12.2.2.

Approved allowable stress values for fasteners shall be permitted to be converted in accordance with Section 12.2.2.5.1 where the strength of a shear wall is computed using principles of mechanics.
For existing wood structural panel shear walls framed with $2-\mathrm{in}$. nominal framing at adjoining panel edges where $3-\mathrm{in}$. nominal framing is required per AWC SDPWS, the expected strength shall not be taken as greater than 0.90 times the expected strength associated with use of $3-\mathrm{in}$. nominal framing at adjoining panel edges.

```
7.5.2 Linear Procedures
7.5.2.1 Forces and Deformations. Component forces and
deformations shall be calculated in accordance with linear
analysis procedures of Sections 7.4.1 or 7.4.2.
7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP.
Deformation-controlled actions, QUD, shall be calculated in
accordance with Eq. (7-34):
QUD}=\mp@subsup{Q}{G}{}+\mp@subsup{Q}{E}{
where
QUD}=\mathrm{ Deformation-controlled action caused by gravity loads
 and earthquake forces.
 QG}=\mathrm{ Action caused by gravity loads as defined in
 Section 7.2.2; and
 QE = Action caused by the response to the selected Seismic
 Hazard Level calculated using either Section 7.4.1 or
 Section 7.4.2;
```

12.4.3.6.3 Acceptance Criteria for Wood Structural Panel Sheathing or Siding Shear Walls. For linear procedures, $m$-factors for use with deformation-controlled actions shall be taken from Table 12-3. For nonlinear procedures, the coordinates of the generalized force-deformation relation, described in Eq. (12-1), and deformation acceptance criteria for primary and secondary components shall be taken from Table 12-4.
12.3.3.1 Wood Construction. Unless otherwise specified in this standard, connections between wood components of a seismic-force-resisting system shall be considered in accordance with this section. Demands on connectors, including nails, screws, lags, bolts, split rings, and shear plates used to link wood components to other wood or metal components shall be considered deformationcontrolled actions. Demands on bodies of connections and bodies of connection hardware shall be considered force-controlled actions.
7.5.2.1.2 Force-Controlled Actions for LSP or LDP. Forcecontrolled actions, $Q_{U F}$, shall be calculated using one of the following methods:

1. $Q_{U F}$ shall be taken as the maximum action that can be developed in a component based on a limit-state analysis considering the expected strength of the components delivering force to the component under consideration, or the maximum action developed in the component as limited by the nonlinear response of the building.
2. Altematively, $Q_{U F}$ shall be calculated in accordance with Eq. (7-35).

$$
\begin{equation*}
Q_{U F}=Q_{G} \pm \frac{\chi Q_{E}}{C_{1} C_{2} J} \tag{7-35}
\end{equation*}
$$ be checked to resist the seismic load on structure. From ASCE 41-17 Section 12.4.3.6.2, the shear walls will be considered deformation-controlled actions. The anchor connections for these shear walls will be considered force-controlled.

| Roof seismic load, $\mathrm{V}=$ | 61.5 kip |
| ---: | :---: |
| diaphragm span, $\mathrm{L}=$ | 44.00 ft |
| 22 ft |  |
| roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=$ | 48 ft |
| wall length, $\mathrm{L}_{\text {wall }}=$ | 10.5 ft |
| effective shear wall length, $\mathrm{L}_{\text {sweff }}=$ | $0.64 \mathrm{kip} / \mathrm{ft}$ |
| unit roof seismic load on shear wall, $\mathrm{v}_{\mathrm{E}}=$ | $0.64 \mathrm{kip} / \mathrm{ft}$ |

(wall lengths considered to act as shear walls)

Wall Double Top Plate Check for Tension \& Compression
Diaphragm bending moment, $M=(V / 2)^{*} \mathrm{~L}_{\text {wall }} / 4=369.0 \mathrm{kip}{ }^{*} \mathrm{ft}$
Tension/ Compression force on top plate, $\mathrm{T}_{\mathrm{C}}=\mathrm{M} / \mathrm{L}=\quad 8.4 \mathrm{kip}$
top plate net area, $\mathrm{A}_{\text {net }}=\quad 8.25 \mathrm{in}^{<}$
tension/compression stress, $\mathrm{f}_{\mathrm{t}-\mathrm{c}}=\quad 1016.5 \mathrm{psi}$
Double Top Plate Check for Tension

| design tension value, $\mathrm{F}_{\mathrm{t}}=$ | 575.0 psi |
| ---: | :---: |
| wet service factor, $\mathrm{C}_{\mathrm{M}}=$ | 1.0 |

(3-2x6 plates but only one plate effective at joint)
(assumed Douglas Fir-Larch No. 2)

| temperature factor, $\mathrm{C}_{\mathrm{t}}=$ | 1.0 |
| ---: | :---: |
| size factor, $\mathrm{C}_{\mathrm{F}}=$ | 1.0 |
| incising factor, $\mathrm{C}_{\mathrm{i}}=$ | 1.0 |
| format conversion factor for tension, $\mathrm{K}_{\mathrm{F}}=$ | 2.7 |
| adjusted tension design stress, $\mathrm{F}_{\mathrm{t}}^{\prime}=$ | 1552.5 psi |
| knowledge factor, $\mathrm{K}=$ | 0.90 |
| $D C R=f_{t} /\left(\kappa^{*} \mathrm{~F}^{\prime}{ }_{t}\right)=$ | 0.73 |

Double Top Plate Check for Compression
design compression value perpendicular to grain, $\mathrm{F}_{\mathrm{c}}=\quad 625.0 \mathrm{psi} \quad$ (assumed Douglas Fir-Larch No. 2)
wet service factor, $\mathrm{C}_{\mathrm{M}}=\quad 1.0$
temperature factor, $\mathrm{C}_{\mathrm{t}}=\quad 1.0$ incising factor, $\mathrm{C}_{\mathrm{i}}=\quad 1.0$
bearing area factor, $\mathrm{C}_{\mathrm{b}}=\quad 1.0$
format conversion factor for tension, $\mathrm{K}_{\mathrm{F}}=$
adjusted compression design stress, $\mathrm{F}_{\mathrm{c}}^{\prime}=1500.0 \mathrm{psi}$
knowledge factor, $\mathrm{k}=\quad 0.90$
$D C R=f_{c} /\left(\kappa^{*} F^{\prime}{ }_{c}\right)=0.75 \quad$ OK

There is no detail provided to show how the top plates in wall are spliced together. This connection cannot be checked and as such considered deficient. Mitigation is required to provide chord connection.

Shear wall 1 - Shear Wall Strength Check

| wall height, $\mathrm{h}=$ | 15.5 ft |
| ---: | :---: |
| shear wall length, $\mathrm{L}=$ | 2 ft |
| shear wall ratio, $\mathrm{h} / \mathrm{L}=$ | $7.75>3.5$ (NG) |

As noted in ASCE 41-17 Table 12-3 footnote b , since the aspect ratio exceeds the maximum ratio this wall cannot be considered to act as part of the lateral resisting system.

Shear wall 2 - Shear Wall Strength Check
wall height, $\mathrm{h}=\quad 15.5 \mathrm{ft}$
shear wall length, $L=\quad 6 \mathrm{ft}$ shear wall ratio, $\mathrm{h} / \mathrm{L}=\quad 2.58<3.5$
tributary effective seismic shear on shear wall, $\mathrm{V}_{\text {ueff }}=\quad 17.6 \mathrm{kip}$
tributary effective seismic moment on shear wall, $\mathrm{M}_{\text {ueff }}=272.4 \mathrm{kip}^{*} \mathrm{ft}$

$$
\begin{array}{rcc}
\text { shear wall strength, } \mathrm{V}_{\mathrm{n}}= & 400 \mathrm{lbs} / \mathrm{ft} & \text { (per AWC SDPWS-2008 Table 4.3B) } \\
\text { expected yield strength, } \mathrm{Q}_{\mathrm{CE}}= & 600 \mathrm{lbs} / \mathrm{ft} & \begin{array}{r}
\text { (increased by 1.5 per ASCE 41-17 12.4.3.6.2) } \\
\mathrm{m} \text {-factor }=
\end{array} \\
\text { knowledge factor, } \mathrm{K}= & 0.15 \text { (interpolated between LS \& CP. ASCE 41-17 Table 12-3) } \\
\text { wood shear wall strength, } \mathrm{km} \mathrm{\phi QCE}= & 13.4 \mathrm{kip} \\
\text { demand capacity ratio, } D C R= & 1.31 \quad \mathrm{NG}
\end{array}
$$

Shear wall 2 Base Plate Anchorage (1/2" expansion anchor @ 4'-0" spacing)
Factor for adjusting action, $\mathrm{X}=1.15$ (interpolated between LS \& CP)
$\mathrm{C}_{1} \mathrm{C}_{2}=\quad 1.4$
Force delivery reduction factor, $\mathrm{J}=\mathrm{2}$
anchor spacing $=\quad 4 \mathrm{ft}$
Seismic shear force on sill bolt, $\mathrm{V}_{\text {sill }}=4.81 \mathrm{kip}$

| Anchor steel shear strength $=$ | 5.49 kip |  |
| ---: | :---: | ---: |
| Anchor pryout strength $=$ | 10.91 kip |  |
| Concrete edge failure strength $=$ | 17.84 kip |  |
| knowledge factor, $\mathrm{k}=$ | 0.90 |  |
| steel strength $D C R=$ | 0.97 | $O K$ |
| pullout strength $D C R=$ | 0.49 | $O K$ |
| concrete breakout strength $D C R=$ | 0.30 | $O K$ |

(Connection considered force-controlled)
(From Hilti Profis Calculation)
(From Hilti Profis Calculation)
(From Hilti Profis Calculation)

2x6 Sill Plate check for Shear
Seismic shear force on sill bolt, $\mathrm{V}_{\text {sill }}=\quad 4.81 \mathrm{kip}$
eference lateral design value for bolt in single shear, $Z=\quad 650 \mathrm{lbs}$

| wet service factor, $\mathrm{C}_{\mathrm{M}}=$ | 1 |
| :---: | :---: |
| temperature factor, $\mathrm{C}_{\mathrm{t}}=$ | 1 |
| group action factor, $\mathrm{C}_{\mathrm{g}}=$ | 1 |
| geometry factor, $\mathrm{C}_{\Delta}=$ | 1 |
| end grain factor, $\mathrm{C}_{\text {eg }}=$ | 1 |
| diaphragm factor, $\mathrm{C}_{\mathrm{di}}=$ | 1 |
| toe-nail factor, $\mathrm{C}_{\mathrm{tn}}=$ | 1 |
| format conversion factor for tension, $\mathrm{K}_{\mathrm{F}}=$ | 3.32 |
| adjusted bolt design value in shear, $\mathrm{Z}^{\prime}=$ | 2158 lbs |
| knowledge factor, $\mathrm{k}=$ | 0.90 |
| $D C R=V_{\text {sill }} /\left(\kappa^{*} Z^{\prime}\right)=$ | 2.48 |

(1/2"Ø bolt in assumed Douglas Fir-Larch)


Drawings do not indicate the use of hold-down hardware to foundation. This is considered a deficiency and will need

## Shear wall 3 - Shear Wall Strength Check

| wall height, $\mathrm{h}=$ | 15.5 ft |
| ---: | :---: |
| shear wall length, $\mathrm{L}=$ | 4.5 ft |
| shear wall ratio, $\mathrm{h} / \mathrm{L}=$ | $3.44<3.5$ |
| r on shear wall, $\mathrm{V}_{\text {ueff }}=$ | 13.2 kip |
| t on shear wall, $\mathrm{M}_{\text {ueff }}=$ | $204.3 \mathrm{kip}^{* \mathrm{ft}}$ |


| shear wall strength, $\mathrm{V}_{\mathrm{n}}$ | $400 \mathrm{lbs} / \mathrm{ft}$ | (per AWC SDPWS-2008 Table 4.3B) |
| :---: | :---: | :---: |
| expected yield strength, $\mathrm{Q}_{\mathrm{CE}}=$ | $600 \mathrm{lbs} / \mathrm{ft}$ | (increased by 1.5 per ASCE 41-17 12.4.3.6.2) |
| m -factor $=$ knowledge factor, $\mathrm{k}=$ | 4.15 (interpolated between LS \& CP. ASCE 41-17 Table 12-3) 0.90 |  |
| wood shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=$ | 10.1 kip |  |
| emand capacity ratio, DCR = |  |  |

Shear wall 3 Base Plate Anchorage (1/2" expansion anchor @ 4'-0" spacing)
Factor for adjusting action, $x=1.15$ (interpolated between LS \& CP)
$\mathrm{C}_{1} \mathrm{C}_{2}=\quad 1.4$
$\begin{aligned} \text { Force delivery reduction factor, } \mathrm{J}= & 2 \\ \text { anchor spacing }= & 4 \mathrm{ft}\end{aligned}$
Seismic shear force on sill bolt, $\mathrm{V}_{\text {sill }}=\quad 4.81 \mathrm{kip} \quad$ (Connection considered force-controlled)

| Anchor steel shear strength $=$ | 5.49 kip |  |
| ---: | :---: | :---: |
| Anchor pryout strength $=$ | 10.91 kip |  |
| Concrete edge failure strength $=$ | 17.84 kip |  |
| knowledge factor, $\mathrm{K}=$ | 0.90 |  |
| steel strength $D C R=$ | 0.97 | OK |
| pullout strength $D C R=$ | 0.49 | OK |
| concrete breakout strength $D C R=$ | 0.30 | OK |

(From Hilti Profis Calculation)
(From Hilti Profis Calculation)
(From Hilti Profis Calculation)

## 2x6 Sill Plate check for Shear

Seismic shear force on sill bolt, $\mathrm{V}_{\text {sill }}=\quad 4.81 \mathrm{kip}$
eference lateral design value for bolt in single shear, $Z=\quad 650 \mathrm{lbs}$ wet service factor, $\mathrm{C}_{\mathrm{M}}=\quad 1$ temperature factor, $\mathrm{C}_{\mathrm{t}}=\quad 1$ group action factor, $\mathrm{C}_{\mathrm{g}}=\quad 1$ geometry factor, $\mathrm{C}_{\Delta}=1$
end grain factor, $\mathrm{C}_{\text {eg }}=$ diaphragm factor, $\mathrm{C}_{\mathrm{di}}=\quad 1$
toe-nail factor, $\mathrm{C}_{\mathrm{tn}}=\quad 1$
format conversion factor for tension, $\mathrm{K}_{\mathrm{F}}=\quad 3.32$
adjusted bolt design value in shear, $Z^{\prime}=2158 \mathrm{lbs}$
knowledge factor, $\mathrm{k}=\quad 0.90$

$$
D C R=V_{\text {sill }} /\left(\kappa^{*} Z^{\prime}\right)=2.48 \quad N G
$$

Drawings do not indicate the use of hold-down hardware to foundation. This is considered a deficiency and will need
Shear wall 4-Shear Wall Strength Check
wall height, $\mathrm{h}=\quad 15.5 \mathrm{ft}$
shear wall length, $\mathrm{L}=\quad 2.5 \mathrm{ft}$
shear wall ratio, $\mathrm{h} / \mathrm{L}=\quad 6.20>3.5$ (NG)
As noted in ASCE 41-17 Table 12-3 footnote b , since the aspect ratio exceeds the maximum ratio this wall cannot be considered to act as part of the lateral resisting system.

Table 4.3B Nominal Unit Shear Capacities for Wood-Frame Shear Walls ${ }^{1,2,5,6}$
Wood Structural Panels Applied over $1 / \mathbf{2}^{\prime \prime}$ or 5/8" Gypsum Wallboard or Gypsum Sheathing Board

| Wood Structural Panels Applied over 1/2* or $5 / 8^{\prime \prime}$ Gypsum Wallboard or Gypsum Sheathing Board |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Shasting Natartal | Minlmarn <br> Noesiod Fenal Trickaess (in) |  | Fesloser Type 8880 | A 8Esunc |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { B } \\ \text { wMo } \end{gathered}$ |  |  |  |
|  |  |  |  | Panel Edge Fastosar Spaciag (in) |  |  |  |  |  |  |  |  |  |  |  | Pasol Ldje Fasdanar Bpacisg ( n ) |  |  |  |
|  |  |  |  | 6 |  |  | 4 |  |  | 3 |  |  | 2 |  |  | 6 | 4 | 1 | 2 |
|  |  |  |  | $\begin{gathered} v_{6} \\ \text { (ontif } \end{gathered}$ |  |  |  | $\begin{gathered} Q_{4} \\ (\mathrm{k} / \mathrm{p} / \mathrm{n}) \end{gathered}$ |  | $\begin{gathered} v_{k} \\ \text { (pinin } \end{gathered}$ | $\begin{gathered} Q_{4} \\ (\mathrm{c} / \mathrm{poln} \mid \end{gathered}$ |  | $\begin{gathered} \mathbf{v}_{\mathbf{t}} \\ (\mathrm{pin}) \end{gathered}$ | $\begin{gathered} \theta_{4} \\ \text { (kipo/n) } \end{gathered}$ |  | $\begin{gathered} v_{0} \\ y_{0} \mid t \end{gathered}$ | $\begin{gathered} v_{*} \\ \text { (9tf) } \end{gathered}$ | $\begin{gathered} v_{0} \\ \text { (pin) } \end{gathered}$ | $\begin{gathered} v_{0} \\ y_{0} \mid \end{gathered}$ |
| Wood 8vunarel Panda - | $5 / 16$ | 1.54 | Nall (commos or galvanlead bax) $8 d$ | 400 | $\begin{gathered} 088 \\ 13 \end{gathered}$ | $\begin{aligned} & \text { FLY } \\ & 10 \end{aligned}$ | 600 | $\begin{gathered} 088 \\ 18 \end{gathered}$ | $\begin{aligned} & \text { PLY } \\ & 13 \end{aligned}$ | 780 | $\begin{gathered} 088 \\ 23 \end{gathered}$ | $\begin{aligned} & \text { PLY } \\ & 16 \end{aligned}$ | 1020 | 085 <br> 35 | $\begin{aligned} & \text { PLY } \\ & 22 \end{aligned}$ | 500 | 340 | 1000 | 1430 |
| Stouchax ${ }^{24}$ | $\begin{gathered} 36.7 v 2 . \\ 1502 \end{gathered}$ | 5-38 | 103 | 560 | 14 | 11 | 860 | 18 | 14 | 1100 | 24 | 17 | 1030 | 37 | 28 | 235 | 1206 | 1540) | 2045 |
| Nood 8tuctura | $\begin{aligned} & 6 / 16 \\ & 3 / 6 \end{aligned}$ | 1-154 | 84 | $\begin{aligned} & 360 \\ & 460 \\ & \hline \end{aligned}$ | $\begin{aligned} & 18 \\ & 11 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.5 \\ & 8.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 540 \\ & 600 \\ & \hline \end{aligned}$ | $\begin{aligned} & 18 \\ & 15 \end{aligned}$ | $\begin{aligned} & 12 \\ & 11 \end{aligned}$ | $\begin{aligned} & 700 \\ & 360 \\ & \hline \end{aligned}$ | $\begin{aligned} & 24 \\ & 20 \end{aligned}$ | $\begin{aligned} & 14 \\ & 18 \\ & \hline \end{aligned}$ | 500 | $\begin{aligned} & 37 \\ & 30 \end{aligned}$ | $\begin{aligned} & 18 \\ & 17 \\ & \hline \end{aligned}$ | $\begin{aligned} & 505 \\ & 500 \\ & \hline \end{aligned}$ | $\begin{aligned} & 755 \\ & 205 \\ & \hline \end{aligned}$ | $\begin{aligned} & 600 \\ & 6090 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1500 \\ & 5402 \\ & \hline \end{aligned}$ |
| Pands: <br> Showirgen | $\begin{gathered} 910 . \pi 9 a \\ 15022 \end{gathered}$ | 538 | 130 | 680 | 18 | n) | 760 | 10 | 18 | 160 | 25 | 15 | 1290 | $3)$ | 20 | 730 | 1065 | 5370 | 1700 |
| Pywood Sising | $\begin{aligned} & 6 / 16 \\ & 3 / 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & 5-1,4 \\ & 5.09 \end{aligned}$ | Nall (galvarked caslisg d [2. V2 $\times 0.1597$ $109\left(2 x^{2} 0.18 x^{\prime}\right)$ | $\begin{array}{r} 260 \\ 206 \\ \hline \end{array}$ |  | $\begin{aligned} & 18 \\ & 16 \end{aligned}$ | $\begin{aligned} & 420 \\ & 460 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 18 \\ & \hline \end{aligned}$ | $\begin{aligned} & 650 \\ & 600 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 17 \\ & \% 0 \end{aligned}$ | $\begin{aligned} & 720 \\ & 600 \end{aligned}$ |  | $\begin{aligned} & 21 \\ & 22 \end{aligned}$ | $\begin{aligned} & 300 \\ & 200 \end{aligned}$ | $\begin{array}{r} 600 \\ 070 \\ \hline \end{array}$ | $\begin{aligned} & 770 \\ & 600 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1050 \\ & 1290 \\ & \hline \end{aligned}$ |










6. Galvazined naik shat be holdippod or tanblad

## Hilti PROFIS Engineering 3.1.1

www.hilti.com

| Company: | Carollo Engineers | Page: | 1 |
| :--- | :--- | :--- | ---: |
| Address: |  | Specifier: | B. Stuetzel |
| Phone I Fax: | Workshop - Sill plate anchorage check | E-Mail: | Date: |
| Design: |  | $9 / 17 / 2021$ |  |
| Fastening point: |  |  |  |

Specifier's comments: City of Wilsonville - Workshop - Shear Wall Sill Plate Anchorage into Concrete Foundation

## 1 Input data

Anchor type and diameter:
Item number:
Effective embedment depth:
Material:
Evaluation Service Report:
Issued I Valid:
Proof:
Stand-off installation:
Anchor plate ${ }^{R}$ :
Profile:
Base material:

## Installation:

Reinforcement:

Seismic loads (cat. C, D, E, or F)

Kwik Bolt TZ - CS 1/2 (3 1/4)
not available
$h_{\text {ef.act }}=3.250 \mathrm{in} ., h_{\text {nom }}=3.625 \mathrm{in}$.
Carbon Steel
ESR-1917
1/1/2020 | 5/1/2021
Design Method ACl 318-14 / Mech
$e_{b}=0.000$ in. (no stand-off); $t=1.500 \mathrm{in}$.
$\mathrm{I}_{\mathrm{x}} \times \mathrm{I}_{\mathrm{y}} \times \mathrm{t}=48.000 \mathrm{in} . \times 5.500 \mathrm{in} . \times 1.500 \mathrm{in} . ;$ (Recommended plate thickness: not calculated)
no profile
cracked concrete, 3000, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=3,000 \mathrm{psi} ; \mathrm{h}=28.000 \mathrm{in}$.
hammer drilled hole, Installation condition: Dry
tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar Tension load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.5.3 (c))

Note: the Kwik Bolt TZ - CS anchor is in the process of phase-out.
Application also possible with Kwik Bolt TZ2 - CS under the selected boundary conditions.
${ }^{R}$ - The anchor calculation is based on a rigid anchor plate assumption.
Geometry [in.] \& Loading [lb, in.Ib]


## Hilti PROFIS Engineering 3.1.1

www.hilti.com

| Company: | Carollo Engineers | Page: | Specifier: |
| :--- | :--- | :--- | ---: |
| Address: |  | E-Mail: | B. Stuetzel |
| Phone I Fax: | Workshop - Sill plate anchorage check | Date: | $9 / 17 / 2021$ |
| Design: |  |  |  |
| Fastening point: |  |  |  |

1.1 Design results

| Case | Description | Forces [lb] / Moments [in.lb] | Seismic |
| :---: | :--- | :---: | :---: |
| 1 | Combination 1 | $N=0 ; V_{x}=4,810 ; V_{y}=0 ;$ | Max. Util. Anchor [\%] |
|  |  | $M_{x}=0 ; M_{y}=0 ; M_{z}=0 ;$ | 135 |
|  |  |  |  |

## 2 Load case/Resulting anchor forces

## Anchor reactions [lb]

Tension force: (+Tension, -Compression)

| Anchor | Tension force | Shear force | Shear force $x$ | Shear force $y$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 4,810 | 4,810 | 0 |

max. concrete compressive strain:

- [\%]
max. concrete compressive stress: resulting tension force in (x/y)=(0.000/0.000): - [psi] $0[\mathrm{lb}]$ resulting compression force in $(x / y)=(0.000 / 0.000)$ : 0 [lb]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

## 3 Tension load

|  | Load $\mathrm{N}_{\text {ua }}{ }^{\text {[lb] }}$ | Capacity $\boldsymbol{\phi} \mathrm{N}_{\mathrm{n}}$ [ lb$]$ | Utilization $\beta_{N}=N_{\text {ua }} / \boldsymbol{\phi} \mathrm{N}_{\mathrm{n}}$ | Status |
| :---: | :---: | :---: | :---: | :---: |
| Steel Strength* | N/A | N/A | N/A | N/A |
| Pullout Strength* | N/A | N/A | N/A | N/A |
| Concrete Breakout Failure** | N/A | N/A | N/A | N/A |

## Hilti PROFIS Engineering 3.1.1

www.hilti.com

| Company: | Carollo Engineers | Page: | 3 |
| :--- | :--- | :--- | ---: |
| Address: |  | Specifier: | B. Stuetzel |
| Phone I Fax: | Workshop - Sill plate anchorage check | E-Mail: | Date: |
| Design: |  | $9 / 17 / 2021$ |  |
| Fastening point: |  |  |  |

## 4 Shear load

|  | Load $\mathrm{V}_{\text {ua }}$ [lb] | Capacity $\phi \mathrm{V}_{\mathrm{n}}$ [lb] | Utilization $\beta_{\mathrm{v}}=\mathrm{V}_{\mathrm{ua}} / \boldsymbol{\prime} \mathrm{V}_{\mathrm{n}}$ | Status |
| :---: | :---: | :---: | :---: | :---: |
| Steel Strength* | 4,810 | 5,495 | 88 | OK |
| Steel failure (with lever arm)* | N/A | N/A | N/A | N/A |
| Pryout Strength** | 4,810 | 10,911 | 44 | OK |
| Concrete edge failure in direction $\mathrm{y}+{ }^{* *}$ | 4,810 | 17,840 | 27 | OK |

### 4.1 Steel Strength

| $\mathrm{V}_{\mathrm{sa}}[\mathrm{lb}]$ | $\alpha_{\mathrm{V}, \text { seis }}$ | $\phi$ | $\phi \mathrm{V}_{\mathrm{sa}}[\mathrm{lb}]$ | $\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: | :---: |
| 5,495 | 1.000 | 1.000 | 5,495 | 4,810 |

### 4.2 Pryout Strength

| $\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in} .^{2}\right]$ | $\mathrm{A}_{\mathrm{Nc} 0}\left[\mathrm{in} .{ }^{2}\right]$ | $\mathrm{c}_{\mathrm{a}, \min }[\mathrm{in}]$. | $\mathrm{k}_{\mathrm{cp}}$ | $\mathrm{c}_{\mathrm{ac}}[\mathrm{in}]$. | $\psi_{\mathrm{c}, \mathrm{N}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 95.06 | 95.06 | 8.000 | 2 | 6.000 | 1.000 |
| $\mathrm{e}_{\mathrm{cc} 1, \mathrm{~V}}[\mathrm{in}]$. | $\psi_{\mathrm{ec} 1, \mathrm{~V}}$ | $\mathrm{e}_{\mathrm{c} 2, \mathrm{~V}}[\mathrm{in}]$. | $\psi_{\text {ec2,V}}$ | $\psi_{\mathrm{ed}, \mathrm{N}}$ | $\psi_{\mathrm{cp}, \mathrm{N}}$ |
| 0.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 |
| $\lambda_{\mathrm{a}}$ | $\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$ | $\phi$ | $\phi_{\text {seismic }}$ | $\phi \mathrm{V}_{\mathrm{cpg}}[\mathrm{lb}]$ | $\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$ |
| 1.000 | 5,455 | 1.000 | 10,911 | 4,810 |  |

### 4.3 Concrete edge failure in direction y+

| $\mathrm{I}_{\mathrm{e}}$ [in.] | $\mathrm{d}_{\mathrm{a}}$ [in.] | $\mathrm{C}_{\mathrm{a} 1}$ [in.] | $\mathrm{A}_{\mathrm{Vc}\left[\mathrm{in.}{ }^{2}\right]}$ | $\mathrm{A}_{\mathrm{Vc} 0}\left[\mathrm{in} .{ }^{2}\right]$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3.250 | 0.500 | 8.000 | 288.00 | 288.00 |  |
| $\psi_{\mathrm{ed}, \mathrm{V}}$ | $\psi_{\text {parallel,V }}$ | $\mathrm{e}_{\mathrm{c}, \mathrm{V}}[\mathrm{in}]$. | $\psi_{\mathrm{ec}, \mathrm{V}}$ | $\psi_{\mathrm{c}, \mathrm{V}}$ |  |
| 1.000 | 2.000 | 0.000 | 1.000 | 1.000 | $\psi_{\mathrm{h}, \mathrm{V}}$ |
| $\lambda_{\mathrm{a}}$ | $\mathrm{V}_{\mathrm{b}}[\mathrm{lb}]$ | $\phi$ | $\phi_{\text {seismic }}$ | $\phi \mathrm{V}_{\mathrm{cbg}}[\mathrm{lb}]$ | 1.000 |
| 1.000 | 8,920 | 1.000 | 1.000 | 17,840 | $\mathrm{~V}_{\mathrm{ua}}[\mathrm{lb}]$ |

## Hilti PROFIS Engineering 3.1.1

www.hilti.com

| Company: | Carollo Engineers | Page: | Specifier: |
| :--- | :--- | :--- | ---: |
| Address: |  | S-Mail: |  |
| Phone I Fax: | Workshop - Sill plate anchorage check | Date: | B. Stuetzel |
| Design: |  |  | $9 / 17 / 2021$ |

## 5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2018, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-14, Chapter 17, Section 17.2.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.2.3.4.3 (b), Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.2.3.5.3 (a), Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c).
- Section 17.2.3.4.3 (b) / Section 17.2.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.2.3.4.3 (d) / Section 17.2.3.5.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by $\omega_{0}$.
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-14, Section 17.8.1.


## Fastening meets the design criteria!

## Hilti PROFIS Engineering 3.1.1

## www.hilti.com

| Company: | Carollo Engineers | Page: | 5 |
| :--- | :--- | :--- | ---: |
| Address: |  | Specifier: | B. Stuetzel |
| Phone I Fax: | Workshop - Sill plate anchorage check | E-Mail: | Date: |
| Design: |  | $9 / 17 / 2021$ |  |
| Fastening point: |  |  |  |

## 6 Installation data

Profile: no profile
Hole diameter in the fixture: $d_{f}=0.562$ in.
Plate thickness (input): 1.500 in.
Recommended plate thickness: not calculated
Drilling method: Hammer drilled
Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Anchor type and diameter: Kwik Bolt TZ - CS 1/2 (3 1/4)
Item number: not available
Maximum installation torque: 480 in.lb
Hole diameter in the base material: 0.500 in.
Hole depth in the base material: 4.000 in.
Minimum thickness of the base material: 8.000 in.

Hilti KB-TZ stud anchor with 3.625 in embedment, $1 / 2$ (3 1/4), Carbon steel, installation per ESR-1917

### 6.1 Recommended accessories

| Drilling | Cleaning | Setting |
| :--- | :--- | :--- |
| - Suitable Rotary Hammer | • Manual blow-out pump | - Torque controlled cordless impact tool |
| - Properly sized drill bit |  | - Torque wrench |
|  |  | - Hammer |



## Coordinates Anchor [in.]

| Anchor | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{c}_{-\mathbf{x}}$ | $\mathbf{c}_{+\mathrm{x}}$ | $\mathbf{c}_{-\mathbf{y}}$ | $\mathbf{c}_{+\mathrm{y}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -0.000 | 0.000 | - | - | 8.000 | 8.000 |

## Hilti PROFIS Engineering 3.1.1

www.hilti.com

| Company: | Carollo Engineers | Page: | Specifier: |
| :--- | :--- | :--- | :--- |
| Address: |  | E-Mail: | B. Stuetzel |
| Phone I Fax: | Workshop - Sill plate anchorage check | Date: | $9 / 17 / 2021$ |
| Design: |  |  |  |
| Fastening point: |  |  |  |

## 7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

| BY: BS | DATE Aug-21 | CLIENT | City of Wilsonville | SHEET <br> JOB NO. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CHKD BY | DESCRIPTION |  | Workshop |  | 11962A. 00 |
| DESIGN TASK |  |  | ASCE 41-17 - Tier 2 (CSZ) |  |  |

## SEISMIC BASE SHEAR FOR WORKSHOP

7.4.1.3.1 Pseudo Seismic Force for LSP. The pseudo lateral force in a given horizontal direction of a building shall be determined using Eq. (7-21). This force shall be used to evaluate or retrofit the vertical elements of the seismic-force-resisting system.

$$
\begin{equation*}
V=C_{1} C_{2} C_{m} S_{a} W \tag{7-21}
\end{equation*}
$$

| Fundamental Period | $m_{\text {max }}<2$ | $2504 \mathrm{max}<6$ | max 26 | Na of Sspies | Concreto Monven Frame | Concrito Strear Wat | Concreto Pier-spundepl | Stool <br> Nomert <br> Frame | Sxel Concentricaly graced Frave | Strel Eccosticaly puaced Frame | Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T \leq 0.3$ | 1.1 | 1.4 | 1.8 | 1-2 | 1.0 | 1.9 | 1.6 | 10 | 10 | 10 | 1.0 |
| $0.3<T \leq 1.0$ | 1.0 | 1.1 | 1.2 | 3 or mone | 09 | 08 | 08 | 0.9 | 09 | 0.9 | 10 |
| $r>1.0$ | 1.0 | 1.0 | 1.1 |  |  | , |  | (1) | cumer |  |  |


| spectral response acceleration, $\mathrm{S}_{\mathrm{xs}}=$ | 0.446 g | (CSZ seismic hazard) |
| ---: | :---: | :--- |
| spectral response acceleration, $\mathrm{S}_{\mathrm{x} 1}=$ | 0.332 g | (CSZ seismic hazard) |
| building period, $\mathrm{T}=$ | 0.149 s |  |
| response spectrum acceleration, $\mathrm{S}_{\mathrm{a}}=$ | 0.446 g |  |
| effective seismic weight, $\mathrm{W}=$ | 59 kip |  |
| $\mathrm{C}_{1} \mathrm{C}_{2}=$ | 1.4 | (Table 12-3 for wood structural panels, $\mathrm{m}=2.75$ ) |
| effective mass factor, $\mathrm{C}_{\mathrm{m}}=$ | 1.0 |  |
| seismic lateral force, $\mathrm{V}=$ | 36.8 kip |  |



| BY: BS | DATE Sep-21 | CLIENT | City of Wilsonville | SHEET <br> JOB NO. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CHKD BY | DESCRIPTION |  | Workshop |  | 11962A. 00 |
| DESIGN TASK |  |  | ASCE 41-17 - Tier 2 (CSZ) |  |  |

## NARROW SHEAR WALL CHECK ALONG EAST ELEVATION

5.5.3.6.1 Stucco, Gypsum Wallboard, Plaster, or Narrow Shear Walls. The overturning and shear demands for noncompliant walls shall be calculated in accordance with Section 5.2.4, and the adequacy shall be evaluated in accordance with Section 5.2.5.
12.4.3.6.2 Strength of Wood Structural Panel Sheathing or Siding Shear Walls. The expected strength of wood structural panel shear walls shall be taken as mean maximum strengths obtained experimentally. Expected strengths of wood structural panel shear walls shall be permitted to be based on 1.5 times yield strengths. Yield strengths shall be determined using LRFD procedures contained in AWC SDPWS, except that the resistance factor, $\phi$, shall be taken as 1.0 and expected material properties shall be determined in accordance with Section 12.2.2.

Approved allowable stress values for fasteners shall be permitted to be converted in accordance with Section 12.2.2.5.1 where the strength of a shear wall is computed using principles of mechanics.
For existing wood structural panel shear walls framed with $2-\mathrm{in}$. nominal framing at adjoining panel edges where $3-\mathrm{in}$. nominal framing is required per AWC SDPWS, the expected strength shall not be taken as greater than 0.90 times the expected strength associated with use of $3-\mathrm{in}$. nominal framing at adjoining panel edges.

```
7.5.2 Linear Procedures
7.5.2.1 Forces and Deformations. Component forces and
deformations shall be calculated in accordance with linear
analysis procedures of Sections 7.4.1 or 7.4.2.
7.5.2.1.1 Deformation-Controlled Actions for LSP or LDP.
Deformation-controlled actions, QUD, shall be calculated in
accordance with Eq. (7-34)
QUD}=\mp@subsup{Q}{G}{}+\mp@subsup{Q}{E}{
where
QUD}=\mathrm{ Deformation-controlled action caused by gravity loads
 and earthquake forces.
 QG}=\mathrm{ Action caused by gravity loads as defined in
 Section 7.2.2; and
 QE = Action caused by the response to the selected Seismic
 Hazard Level calculated using either Section 7.4.1 or
 Section 7.4.2;
```

12.4.3.6.3 Acceptance Criteria for Wood Structural Panel Sheathing or Siding Shear Walls. For linear procedures, $m$-factors for use with deformation-controlled actions shall be taken from Table 12-3. For nonlinear procedures, the coordinates of the generalized force-deformation relation, described in Eq. (12-1), and deformation acceptance criteria for primary and secondary components shall be taken from Table 12-4.
12.3.3.1 Wood Construction. Unless otherwise specified in this standard, connections between wood components of a seismic-force-resisting system shall be considered in accordance with this section. Demands on connectors, including nails, screws, lags, bolts, split rings, and shear plates used to link wood components to other wood or metal components shall be considered deformationcontrolled actions. Demands on bodies of connections and bodies of connection hardware shall be considered force-controlled actions.
7.5.2.1.2 Force-Controlled Actions for LSP or LDP. Forcecontrolled actions, $Q_{U F}$, shall be calculated using one of the following methods:

1. $Q_{U F}$ shall be taken as the maximum action that can be developed in a component based on a limit-state analysis considering the expected strength of the components delivering force to the component under consideration, or the maximum action developed in the component as limited by the nonlinear response of the building.
2. Altematively, $Q_{U F}$ shall be calculated in accordance with Eq. (7-35).

$$
\begin{equation*}
Q_{U F}=Q_{G} \pm \frac{\chi Q_{E}}{C_{1} C_{2} J} \tag{7-35}
\end{equation*}
$$ be checked to resist the seismic load on structure. From ASCE 41-17 Section 12.4.3.6.2, the shear walls will be considered deformation-controlled actions. The anchor connections for these shear walls will be considered force-controlled.

| Roof seismic load, $\mathrm{V}=$ | 36.8 kip |
| ---: | :---: |
| diaphragm span, $\mathrm{L}=$ | 44.00 ft |
| 22 ft |  |
| roof tributary width for seismic, $\mathrm{T}_{\mathrm{w}}=$ | 48 ft |
| wall length, $\mathrm{L}_{\text {wall }}=$ | 10.5 ft |
| effective shear wall length, $\mathrm{L}_{\text {sweff }}=$ | $0.38 \mathrm{kip} / \mathrm{ft}$ |
| unit roof seismic load on shear wall, $\mathrm{v}_{\mathrm{E}}=$ | $0.38 \mathrm{kip} / \mathrm{ft}$ |

(wall lengths considered to act as shear walls)

Wall Double Top Plate Check for Tension \& Compression
Diaphragm bending moment, $M=(V / 2)^{*} \mathrm{~L}_{\text {wall }} / 4=220.8 \mathrm{kip}^{*} \mathrm{ft}$
Tension/ Compression force on top plate, $\mathrm{T}_{\mathrm{C}}=\mathrm{M} / \mathrm{L}=\quad 5.0 \mathrm{kip}$
top plate net area, $\mathrm{A}_{\text {net }}=\quad 8.25 \mathrm{in}^{\curlywedge} \quad(3-2 \times 6$ plates but only one plate effective at joint)

Double Top Plate Check for Tension

| design tension value, $\mathrm{F}_{\mathrm{t}}=$ | 575.0 psi |
| ---: | :---: |
| wet service factor, $\mathrm{C}_{\mathrm{M}}=$ | 1.0 |

(assumed Douglas Fir-Larch No. 2)

| temperature factor, $\mathrm{C}_{\mathrm{t}}=$ | 1.0 |
| ---: | :---: |
| size factor, $\mathrm{C}_{\mathrm{F}}=$ | 1.0 |
| incising factor, $\mathrm{C}_{\mathrm{i}}=$ | 1.0 |
| format conversion factor for tension, $\mathrm{K}_{\mathrm{F}}=$ | 2.7 |
| adjusted tension design stress, $\mathrm{F}_{\mathrm{t}}^{\prime}=$ | 1552.5 psi |
| knowledge factor, $\mathrm{K}=$ | 0.90 |
| $D C R=f_{t} /\left(\kappa^{*} \mathrm{~F}^{\prime}{ }_{t}\right)=$ | 0.44 OK |

Double Top Plate Check for Compression
design compression value perpendicular to grain, $\mathrm{F}_{\mathrm{c}}=\quad 625.0 \mathrm{psi} \quad$ (assumed Douglas Fir-Larch No. 2)
wet service factor, $\mathrm{C}_{\mathrm{M}}=\quad 1.0$
temperature factor, $\mathrm{C}_{\mathrm{t}}=\quad 1.0$
incising factor, $\mathrm{C}_{\mathrm{i}}=\quad 1.0$
bearing area factor, $\mathrm{C}_{\mathrm{b}}=\quad 1.0$
format conversion factor for tension, $\mathrm{K}_{\mathrm{F}}=$
adjusted compression design stress, $\mathrm{F}_{\mathrm{c}}^{\prime}=1500.0 \mathrm{psi}$
$\begin{array}{rrr}\text { knowledge factor, } \mathrm{K}= & 0.90 \\ D C R=f_{c} /\left(\kappa^{*} F^{\prime}{ }_{c}\right) & =0.45 \quad \text { OK }\end{array}$
There is no detail provided to show how the top plates in wall are spliced together. This connection cannot be checked and as such considered deficient. Mitigation is required to provide chord connection.

Shear wall 1 - Shear Wall Strength Check

| wall height, $\mathrm{h}=$ | 15.5 ft |
| ---: | :---: |
| shear wall length, $\mathrm{L}=$ | 2 ft |
| shear wall ratio, $\mathrm{h} / \mathrm{L}=$ | $7.75>3.5$ (NG) |

As noted in ASCE 41-17 Table 12-3 footnote b , since the aspect ratio exceeds the maximum ratio this wall cannot be considered to act as part of the lateral resisting system.

Shear wall 2 - Shear Wall Strength Check

| wall height, $\mathrm{h}=$ | 15.5 ft |
| ---: | :---: |
| shear wall length, $\mathrm{L}=$ | 6 ft |
| shear wall ratio, $\mathrm{h} / \mathrm{L}=$ | $2.58<3.5$ |
| tributary seismic shear on shear wall, $\mathrm{Vu}=$ | 10.5 kip |
| tributary seismic moment on shear wall, $\mathrm{Mu}=$ | $163.0 \mathrm{kip} \mathrm{ki}^{\star}$ |

shear wall strength, $\mathrm{V}_{\mathrm{n}}=\quad 400 \mathrm{lbs} / \mathrm{ft} \quad$ (per AWC SDPWS-2008 Table 4.3B)
expected yield strength, $\mathrm{Q}_{\mathrm{CE}}=\quad 600 \mathrm{lbs} / \mathrm{ft} \quad$ (increased by 1.5 per ASCE 41-17 12.4.3.6.2
m-factor $=\quad 2.75$ (interpolated between LS \& IO. ASCE 41-17 Table 12-3)
knowledge factor, $\mathrm{k}=\quad 0.90$
wood shear wall strength, $\mathrm{Km} \mathrm{\phi QCE}=\quad 8.9 \mathrm{kip}$
demand capacity ratio, $D C R=1.18 \quad$ NG
Shear wall 2 Base Plate Anchorage (1/2" expansion anchor @ 4'-0" spacing)
Factor for adjusting action, $\mathrm{X}=\mathrm{l} 1.3$ (interpolated between LS \& IO)
$\mathrm{C}_{1} \mathrm{C}_{2}=\quad 1.4$
$\begin{array}{rc}\text { Force delivery reduction factor, } \mathrm{J}= & 2 \\ \text { anchor spacing }= & 4 \mathrm{ft} \\ \text { Seismic shear force on sill bolt, } \mathrm{V}_{\text {sill }}= & 3.25 \mathrm{kip}\end{array}$

| Anchor steel shear strength $=$ | 5.49 kip |  |
| ---: | :---: | :---: |
| Anchor pryout strength $=$ | 10.91 kip |  |
| Concrete edge failure strength $=$ | 17.84 kip |  |
| knowledge factor, $\mathrm{K}=$ | 0.90 |  |
| steel strength $D C R=$ | 0.66 | OK |
| pullout strength $D C R=$ | 0.33 | OK |
| concrete breakout strength $D C R=$ | 0.20 | OK |

(From Hilti Profis Calculation)
(From Hilti Profis Calculation)
(From Hilti Profis Calculation)
$2 \times 6$ Sill Base Plate check for Shear
Seismic shear force on sill bolt, $\mathrm{V}_{\text {sill }}=\quad 3.25 \mathrm{kip}$
eference lateral design value for bolt in single shear, $Z=\quad 650 \mathrm{lbs}$

| wet service factor, $\mathrm{C}_{\mathrm{M}}=$ | 1 |
| ---: | ---: | ---: |
| temperature factor, $\mathrm{C}_{\mathrm{t}}=$ | 1 |
| group action factor, $\mathrm{C}_{\mathrm{g}}=$ | 1 |
| geometry factor, $\mathrm{C}_{\Delta}=$ | 1 |
| end grain factor, $\mathrm{C}_{\mathrm{eg}}=$ | 1 |
| diaphragm factor, $\mathrm{C}_{\mathrm{di}}=$ | 1 |
| toe-nail factor, $\mathrm{C}_{\mathrm{tn}}=$ | 1 |
| format conversion factor for tension, $\mathrm{K}_{\mathrm{F}}=$ | 3.32 |
| adjusted bolt design value in shear, $\mathrm{Z}^{\prime}=$ | 2158 lbs |
| knowledge factor, $\mathrm{K}=$ | 0.90 |
| $D C R=V_{\text {sill }} /\left(\kappa^{*} Z^{\prime}\right)=$ | 1.68 |

(1/2"Ø bolt in assumed Douglas Fir-Larch)


Drawings do not indicate the use of hold-down hardware to foundation. This is considered a deficiency and will need

## Shear wall 3 - Shear Wall Strength Check

| wall height, $\mathrm{h}=$ | 15.5 ft |
| ---: | :---: |
| shear wall length, $\mathrm{L}=$ | 4.5 ft |
| shear wall ratio, $\mathrm{h} / \mathrm{L}=$ | $3.44<3.5$ |
| 7.9 kip |  |
| tributary seismic shear on shear wall, $\mathrm{Vu}=$ | $122.2 \mathrm{kip}{ }^{\star} \mathrm{ft}$ |

shear wall strength, $\mathrm{V}_{\mathrm{n}}=\quad 400 \mathrm{lbs} / \mathrm{ft} \quad$ (per AWC SDPWS-2008 Table 4.3B)
expected yield strength, $\mathrm{Q}_{\mathrm{CE}}=\quad 600 \mathrm{lbs} / \mathrm{ft} \quad$ (increased by 1.5 per ASCE 41-17 12.4.3.6.2
$m$-factor $=\quad 2.75$ (interpolated between LS \& IO. ASCE 41-17 Table 12-3)
knowledge factor, $\mathrm{k}=\quad 0.90$
wood shear wall strength, $\mathrm{km} \mathrm{\phi QCE}=\quad 6.7 \mathrm{kip}$
demand capacity ratio, $D C R=1.18 \quad N G$
Shear wall 3 Base Plate Anchorage (1/2" expansion anchor @ 4'-0" spacing)
Factor for adjusting action, $\mathrm{x}=1.3$ (interpolated between LS \& IO)
$\mathrm{C}_{1} \mathrm{C}_{2}=\quad 1.4$
Force delivery reduction factor, $\mathrm{J}=\mathrm{2}$
anchor spacing $=\quad 4 \mathrm{ft}$
Seismic shear force on sill bolt, $\mathrm{V}_{\text {sill }}=\quad 3.25 \mathrm{kip}$
(Connection considered force-controlled)
(From Hilti Profis Calculation)
(From Hilti Profis Calculation)
(From Hilti Profis Calculation)

2x6 Sill Plate check for Shear
Seismic shear force on sill bolt, $\mathrm{V}_{\text {sill }}=3.25$ kip
eference lateral design value for bolt in single shear, $Z=\quad 650 \mathrm{lbs}$
wet service factor, $\mathrm{C}_{\mathrm{M}}=\quad 1$
temperature factor, $\mathrm{C}_{\mathrm{t}}=\quad 1$
group action factor, $\mathrm{C}_{\mathrm{g}}=\quad 1$
geometry factor, $\mathrm{C}_{\Delta}=\quad 1$
end grain factor, $\mathrm{C}_{\mathrm{eg}}=$
diaphragm factor, $\mathrm{C}_{\mathrm{di}}=\quad 1$
toe-nail factor, $\mathrm{C}_{\mathrm{tn}}=$
format conversion factor for tension, $\mathrm{K}_{\mathrm{F}}=$
adjusted bolt design value in shear, $Z^{\prime}=\quad 2158 \mathrm{lbs}$ knowledge factor, $\mathrm{k}=\quad 0.90$
$D C R=V_{\text {sill }} /\left(\kappa^{*} Z^{\prime}\right)=1.68 \quad N G$
(1/2"Ø bolt in assumed Douglas Fir-Larch)

Drawings do not indicate the use of hold-down hardware to foundation. This is considered a deficiency and will need
Shear wall 4-Shear Wall Strength Check
wall height, $\mathrm{h}=\quad 15.5 \mathrm{ft}$
shear wall length, $\mathrm{L}=\quad 2.5 \mathrm{ft}$
shear wall ratio, $\mathrm{h} / \mathrm{L}=\quad 6.20>3.5$ (NG)
As noted in ASCE 41-17 Table 12-3 footnote b , since the aspect ratio exceeds the maximum ratio this wall cannot be considered to act as part of the lateral resisting system.

Table 4.3B Nominal Unit Shear Capacities for Wood-Frame Shear Walls ${ }^{1,2,5,6}$
Wood Structural Panels Applied over $1 / \mathbf{2}^{\prime \prime}$ or 5/8" Gypsum Wallboard or Gypsum Sheathing Board










6. Galvazined naik shat be holdippod or tanblad


| BY: BS | DATE Aug-21 | CLIENT | City of Wilsonville | $\begin{aligned} & \text { SHEET } \\ & \text { JOB NO. } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CHKD BY | DESCRIPTION |  | Workshop |  | 11962A. 00 |
| DESIGN TASK |  |  | ASCE 41-17 - Tier 2 (CSZ) |  |  |

## WOOD DIAPHRAGM CHECK

12.5.3.6.2 Strength of Wood Structural Panel Sheathing Diaphragms. The expected strength of wood structural panel diaphragms shall be taken as mean maximum strengths obtained experimentally. Expected strengths shall be permitted to be based on 1.5 times yield strengths of wood structural panel diaphragms. Yield strengths shall be determined using LRFD procedures contained in AWC SDPWS, except that the resistance factor, $\phi$, shall be taken as 1.0 and expected material properties shall be determined in accordance with Section 12.2.2.
For existing wood structural panel diaphragms framed with $2-\mathrm{in}$. nominal framing at adjoining panel edges where $3-\mathrm{in}$. nominal framing is required per AWC SDPWS, the expected strength shall not be taken as greater than 0.80 times the expected strength associated with use of $3-\mathrm{in}$. nominal framing at adjoining panel edges.
Approved allowable stress values for fasteners shall be permitted to be converted in accordance with Section 12.2.2.5.1 where the strength of a diaphragm is computed using principles of mechanics
The expected shear capacity of unchorded diaphragms shall be calculated by multiplying the values given for chorded diaphragms by 0.60 .
5.6.2 Procedures for Wood Diaphragms. For wood diaphragms with noncompliant spans or aspect ratios, an analysis of the diaphragm shall be performed in accordance with Section 5.2.4, and the adequacy of the diaphragm system shall be evaluated in accordance with Section 5.2.5. The diaphragm deflection shall be calculated, and the adequacy of the vertical-load-carrying elements at the maximum deflection, including P-delta effects, shall be evaluated.

From Tier 1, the roof diaphragm exceeds the 30 ft span between lateral resisting members. The diaphragm will be considered unblocked as there is no indication if blocking is used between members. Nailing pattern is assumed 8d@6"oc for $1 / 2$ " plywood. Diaphragm is assumed to be deformation-controlled.

Roof seismic load, $\mathrm{V}=\quad 38.6$ kip
diaphragm span, $\mathrm{L}=\quad 56.00 \mathrm{ft}$
roof unit diaphragm load, $v=0.69 \mathrm{kip} / \mathrm{ft}$

| Roof span between shear walls, $L_{1}=$ | 34.00 ft |
| ---: | :--- |
| Roof depth, $\mathrm{d}=$ | 36.00 ft |
| diaphragm shear, $\mathrm{v}_{1}=$ | $0.325 \mathrm{kip} / \mathrm{ft}$ |


| diaphragm strength, $\mathrm{V}_{\mathrm{N}}=$ | $360 \mathrm{lbs} / \mathrm{ft}$ | (per AWC SDPWS-2008 Table 4.2C) <br> (expected strength shall be 1.5x the allowable) |
| ---: | :---: | :---: |
| expected diaphragm strength, $\mathrm{Q}_{\mathrm{CE}}=$ | $540 \mathrm{lbs} / \mathrm{ft}$ |  |
| m-factor $=$ | 2 (interpolated between LS \& IO. ASCE 41-17 Table 12-3) |  |

Checking diaphragm deflection in E-W direction. Deflection will be calculated per ASCE 41-17 Eq. 12-3.

$$
\Delta,=5 v_{p} L^{3} /(8 E / b)+v_{p} L / /\left(4 G_{d}\right)+\Sigma(\Delta, X) /(2 b) \quad(12-3)
$$

| roof unit diaphragm load, $v=$ | $689.3 \mathrm{lb} / \mathrm{ft}$ |
| ---: | :---: |
| diaphragm span, $\mathrm{L}=$ | 56.00 ft |
| modulus of elasticity, $\mathrm{E}=$ | 1700000 psi |
| area of diaphragm chord, $\mathrm{A}=$ | $34.5 \mathrm{in2}$ |
| diaphragm width, $\mathrm{b}=$ | 44 ft |
| diaphragm shear stiffness, $\mathrm{G}_{\mathrm{d}}=$ | $8000 \mathrm{lb} / \mathrm{in}$ |
| hord splice slip values, $\Sigma(\Delta \mathrm{c} X)=$ | $1.375 \mathrm{in} \times \mathrm{ft}$ |
| diaphragm deflection, $\Delta \mathrm{y}=$ | 1.25 in | (assumed one splice at midspan of wall)

Checking wall adequacy to resist P-delta effects due to deflection calculated. $2 \times 6$ stud will be checked.

$$
\text { roof } \mathrm{DL}=\quad 16.7 \mathrm{psf}
$$

tributary length of roof $\mathrm{DL}=\quad 6 \mathrm{ft}$

```
 wall stud spacing = 16 in
 unit vertical load on single stud, }\mp@subsup{P}{u}{}=133.6 lb
 diaphragm deflection, }\Delta\textrm{y}=\quad1.25\mathrm{ in
 moment due to P-delta effect, P}\mp@subsup{\textrm{P}}{\textrm{*}}{*}\Delta\textrm{y}=167.2\textrm{lbs}*\mathrm{ *in
 stud area, A = }8.25\textrm{in}
 stud wall height, }\mp@subsup{\textrm{I}}{\textrm{e}}{=}=\quad15.5\textrm{ft
 stud depth, d= 5.5 in
 le
 modulus of elasticity, E
 wet service factor, CM = 1
 temperature factor, Ct = 1
 incising factor, Ci= 1
 adjusted modulus of elasticity, E'min = 510000 psi
 FCE =0.822E'min
 design value, Fc = 850 psi (assumed Douglas Fir-Larch)
 design value, Fbn = 700 psi (assumed Douglas Fir-Larch)
format conversion factor for compression, KD =
 format conversion factor for bending, KD = 2.54
 size factor, CF =
 adjusted F"c= 2040 psi
 adjusted F'bn = 1778 psi
 c= 0.8
 FcE/F"c= 0.180
 (1+FcE/F"c)/(2c)= 0.737
 column stability factor, CP = 0.172
 adjusted F'c = 351.9 psi
 axial strength, }\mp@subsup{P}{n}{}=2903.1 lb
 section modulus, S = 7.6 in3
bending strength, Mn= F'bn*S = 13446.1 lbs*in
 knowledge factor, }\textrm{k}=\quad0.9
 DCR = P
 DCR=Mu}/(\mp@subsup{\kappa}{}{*}\mp@subsup{M}{n}{})=0.01 O
 Combined DCR = 0.06 OK
```

(assumed Douglas Fir-Larch) (assumed Douglas Fir-Larch)

Table 4.2C Nominal Unit Shear Capacities for Wood-Frame Diaphragms
Unblocked Wood Structural Panel Diaphragms ${ }^{2.2 .245}$

| Sheathing Grade | Common <br> Nail Stre | Minimum Fastener Penetration in Framing (in.) | Minimam <br> Nominal Panel <br> Thickness (in.) | Minisara Morsisad Wdth of Nalled Face at Supportes Bdges and Dcusdories (in) |
| :---: | :---: | :---: | :---: | :---: |
| Structural 1 | \%d | 1-1/4 | 516 | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ |
|  | 3 d | 1/360 | 3/5 | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ |
|  | 106 | 1.1/2 | 16/32 | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ |
| Sheating and Single-floor | $6 d$ | 1-1/4 | 5/16 | 2 3 |
|  |  |  | $3 / 8$ | 2 |
|  | $8 d$ | 1-38 | $3 / 8$ | 2 |
|  |  |  | 7/16 | 2 3 |
|  |  |  | 15132 | 2 |
|  | 108 | 1.1/2 | 15132 | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ |
|  |  |  | $18 / 32$ | 2 3 |


| ASEEMMIC |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 in Nail Spacing at diaphnagm boundaries and supported panel edges |  |  |  |  |  |
| Case 1 |  |  | Cases 2,3,4,5,6 |  |  |
| $\begin{gathered} v_{i} \\ (\mathrm{pI}) \end{gathered}$ | $B_{4}$ (kipsifin) |  | $\begin{gathered} v_{8} \\ \text { (pif) } \end{gathered}$ | $\begin{gathered} \text { Ge }_{2} \\ \text { (kipelh.) } \end{gathered}$ |  |
|  | OSB | Plr |  | CsB | PLY |
| 330 | 9.0 | 7.0 | 250 | 6.0 | 4.5 |
| 370 | 70 | 6.9 | 280 | 4.5 | 4.0 |
| 450 | 85 | 7.0 | \$60 | 6.0 | 4.5 |
| 530 | 75 | 8.0 | 400 | 5.0 | 4.0 |
| 570 | 14 | 19 | 430 | 85 | 70 |
| 840 | 12 | 9.9 | 450 | 80 | 8.0 |
| 300 | 90 | 6.5 | 220 | 60 | 4.0 |
| 340 | 70 | 5.5 | 260 | 50 | 35 |
| 330 | 7.5 | 6.5 | 250 | 5.0 | 4.0 |
| 370 | 6.0 | 4.5 | 280 | 4.0 | 30 |
| 430 | 9.0 | 6.5 | 320 | 6.0 | 4.5 |
| 430 | 7.5 | 5.5 | 380 | 5.0 | 35 |
| 480 | 85 | 6.0 | 340 | 5.5 | 40 |
| 510 | 79 | 5.5 | 380 | 4.5 | 35 |
| 480 | 75 | 5.5 | 350 | 5.0 | 40 |
| 530 | 65 | 50 | 480 | 4.0 | 35 |
| 510 | 15 | 90 | 350 | 10 | 80 |
| 530 | 12 | 8.0 | 430 | 8.0 | 5.5 |
| 570 | 13 | 8.5 | 430 | \% 5 | 5.5 |
| 1340 | 10 | 75 | 480 | 70 | 50 |


| $\begin{gathered} \text { is } \\ \text { WIND } \end{gathered}$ |  |
| :---: | :---: |
| 6 in. Nail Spacing at diaphragm boundaries and supported parel edges |  |
| Case 1 | $\begin{gathered} \text { Casess } \\ 2,3,4,5,4 \end{gathered}$ |
| $\begin{gathered} v_{m} \\ (\mathrm{pin}) \end{gathered}$ | $\begin{gathered} v_{m} \\ (\mathrm{pin}) \end{gathered}$ |
| $\begin{aligned} & 460 \\ & 520 \end{aligned}$ | $\begin{aligned} & 350 \\ & 390 \end{aligned}$ |
| $\begin{aligned} & 670 \\ & 740 \end{aligned}$ | $\begin{aligned} & 505 \\ & 500 \end{aligned}$ |
| 300 | 609 |
| 395 | 670 |
| 420 | 310 |
| 475 | 350 |
| 460 | 360 |
| 520 | 390 |
| 600 | 450 |
| 670 | 505 |
| 645 | 475 |
| 715 | 539 |
| 670 | 505 |
| 740 | 569 |
| 715 | 590 |
| 810 | 000 |
| 800 | 609 |
| 395 | 670 |

1. Noariral urit shear capociniks stall te adussed in accordence wih 42.3 so descraine ASD allowable unt shearcapokify and L.RUD fastored unk rosbtance. For grownd coronarion reguirerserss sie 4.2. . For spocific reguireremts, ge 4.2.7.1 5or wood groturel pawldisphogre. Se0 ApposixA forcommon azildimorshoss.
2. For spovies and grodes of froning coler than DouglesFitlarch or Soushem
 the abuland acetinal urit shout capaciy by be Specific Gevily djasftat Factor $=[1-(0.5-G)]$ whare $G=$ Spexific Grivity of the faming hander foom the NDS (Tabk 12:3.3Ay The Spedific Gevily Adjentand Fastor thall not be greater than $L$.
3. Appasent shear sáffreso values, $Q_{e}$ arc bued on asil slis in friming with moistare content kes twa or cgual 60 19\% at time of fabrication and parel stiffocs valaes for dagh ragras constructod with ciencr OSB or J-ply plywood
 valass shall te prixibod to be rackipiad by 1.2
4. Whas ractuture cocrert of the forring is gester tan $19 \%$ at tine of fitricatika, $G$, values shal be rectioled by 0 .
5. Diaptraen wsisance drpends on the drextion of cortiacoes pand joists wit segpevt wo the loodizg Girecioe and direction of frming netomers, and is isdependens of Be parel oficesicioa.

|  | Case 14.3Cocineas Pasel Jotrta Perpenficula so Framing | Cases 254:Cortinuces Paselforta Paralkl to Rasing | Canes SA6: Comireces Pand Janis PaparAmbrandPrelld is Franiag |
| :---: | :---: | :---: | :---: |
| Lorg Pind Deroctice Perpercisalar io Sappors |  |  |  |
| Loeg Pind Drectice Peralel so 5uppost" |  |  |  |

## Appendix C SEISMIC RETROFIT COST ESTIMATE

$\qquad$
Project Number: Operations Building
1962 A .00
Date Prepared
Prepared By:
Prepared By:
Date Accepted:
Accepted By: $\qquad$




$\qquad$
Project Number: 11962 A .0
Project Construction Duration
Date Prepared:
Prepared By:
Prepared By:
Date Accepted:
Accepted By: $\qquad$


Project Name: $\frac{\text { Wastewater Treatment Plant (Overall Site Structures) }}{1}$
Project Number: 11962 A .00
Project Construction Duration: $\qquad$

Date Prepared:
Prepared By:
Prepared By:
Date Accepted:
Accepted By: $\qquad$



[^0]:    Shear wall $A$

    $$
    \begin{aligned}
    & \text { Roof seismic load, } V=\quad 119.2 \text { kip } \\
    & \text { diaphragm span, } L=102.00 \mathrm{ft} \\
    & \text { roof tributary width for seismic, } \mathrm{T}_{\mathrm{w}}=\quad 6 \mathrm{ft} \\
    & \text { tributary seismic load on shear wall, } Q_{E}=\quad 7.0 \mathrm{kip} \\
    & \text { wall height, } \mathrm{h}=\quad 10.17 \mathrm{ft} \\
    & \text { tributary seismic moment on shear wall, } \mathrm{Mu}=\quad 71.3 \text { kip*ft } \\
    & \text { masonry strength, } \mathrm{f}_{\mathrm{m}}=\quad 1500 \mathrm{psi} \\
    & \text { shear wall length, } d=\quad 20 \mathrm{ft} \\
    & \text { vertitcal shear wall grout spacing }= \\
    & \text { horizontal shear wall grout spacing }= \\
    & \text { shear wall thickness, } \mathrm{t}=\quad 7.625 \text { in } \\
    & \mathrm{A}_{\mathrm{n}}=\quad 887.0 \mathrm{in}^{<} \\
    & \Phi=\quad 1.0 \text { (assumed per Tier 2) } \\
    & \left.\phi \mathrm{V}_{\mathrm{m}}=\phi\left[4.0-1.75\left(\frac{\mathrm{M}}{\mathrm{~V} \mathrm{~d}_{\mathrm{v}}}\right)\right] \mathrm{A}_{\mathrm{n}} \sqrt{\mathrm{f}_{\mathrm{m}}^{\prime}}+0.25 \mathrm{P}_{\mathrm{u}}\right]
    \end{aligned}
    $$

    masonry shear wall strength, $\phi Q C E_{m}=106.8 \mathrm{kip}$
    horizontal masonry shear wall strength, $\phi Q C E_{s}=\quad 28.7 \mathrm{kip}$ combined masonry shear wall strength, $\phi$ QCE $=\quad 135.5 \mathrm{kip}$

